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I.   INTRODUCTION 

A lack of adequate and timely data often prevents policymakers from monitoring economic 
activity in real time. This has been a major challenge for policymakers during the COVID-19 pandemic 
as government action is needed urgently. Many emerging market and developing economies have 
limited institutional capacity and do not necessarily compile and publish timely macroeconomic 
statistics. Official national accounts data on GDP, for example, are released with substantial delays.  
In such circumstances, the lack of information could undermine the quality of policy operations, 
especially during a crisis. 

This study seeks to bridge the gap between policymaking and data availability by developing a 
framework to track real-time economic activity in emerging markets and developing economies. 
The paper focuses on countries in sub-Saharan Africa, where data scarcity issues are pervasive. 
Economic activity is tracked using a “nowcasting” f ramework that extracts signals from indicators that 
are available earlier than the official GDP series. These signals allow for the real-time prediction of 
economic activity, often months or quarters before official GDP statistics are released. The framework 
draws on a broad range of increasingly popular machine-learning techniques. Machine learning has 
gained attention as an expanding sub-field of applied computational statistics and is ideally suited to the 
prediction challenge that lies at the core of the nowcasting problem. This is the first study to apply this 
methodology to a broad range of sub-Saharan African countries. 

As a flexible framework that focuses primarily on accurate predictions, machine-learning 
algorithms have often proven more effective than traditional econometric methods. Machine 
learning models frequently employ techniques that are familiar to most economists; indeed, most 
machine-learning textbooks start with simple ordinary least squares (OLS) regression (see Appendix). 
However, the focus of machine-learning models is somewhat different from traditional econometric 
models. Instead of exploring issues of identification and causality, the primary focus of machine 
learning is on producing more precise out-of-sample predictions. To this end, a machine-learning 
f ramework will exploit historical, often non-linear, statistical patterns in the data, without necessarily 
assuming that these relationships are known in advance (see Appendix). Applied to the nowcasting 
problem, a machine-learning framework will seek to extract reliable signals from a large set of noisy 
high-f requency indicators, capturing the co-movement between these indicators and GDP. 

The paper is structured as follows. Section II discusses the literature and places this study  
in context. Section III provides an overview of the framework used to nowcast GDP growth in  
sub-Saharan Africa. Section IV discusses the framework’s predictions during the COVID-19  
pandemic in sub-Saharan Africa. Section V concludes. The appendix provides an overview of  
machine-learning methods.  
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II.   RELATED LITERATURE 

The concept of nowcasting has long been a topic of interest among policymakers and has 
gathered increasing attention, particularly over the past 10–15 years. Following Giannone  
and others (2008), nowcasting models have been adopted at several central banks in advanced 
economies (Richardson and others 2021). Recent studies also develop nowcasting models for 
emerging markets and developing economies, including Turkey (Solmaz and Sanjani 2015),  
Lebanon (Tif fin 2016), India (Iyer and Gupta 2019), and others (Marini 2016; Narita and Yin 2018).  
This paper contributes to the literature by expanding the application to the data-sparse environment  
of  sub-Saharan Africa.2 

Machine-learning algorithms have often performed relatively well when quickly capturing sharp 
turning points in GDP growth. Jung and others (2018) test for the robustness of machine-learning 
forecasts in historical crises and find that, although the accuracy of their machine-learning framework 
deteriorated during crises, it nonetheless remained superior to other econometric approaches. Going 
further, Hu and others (2019) distinguish between crisis periods and non-crisis periods to find that 
machine-learning algorithms outperform linear regressions in both samples. 
 
Machine learning provides an alternative to the dynamic factor model methodology commonly 
used in the nowcasting literature. Factor-based models extract a small set of latent factors from  
a large set of indicators by exploiting the co-movement among variables (for example, Giannone  
and others 2008; Barhoumi and others 2012; Bok and others 2017; and Iyer and Gupta 2019).  
This approach has often performed well. However, even though the factors are generally able to 
ef f iciently summarize the information available in the indicator set, the models are not always focused 
on those variables that might individually be better predictors of the output indicator.  
 
The machine learning approach has been often studied with non-traditional data sources. For 
instance, Cerdeiro and others (2020) use real-time maritime data to nowcast world seaborne trade 
volume to show how international trade has been affected by the COVID-19 pandemic. Similarly, 
Carton and others (2020) forecast short-term international trade using the Society for Worldwide 
Interbank Financial Telecommunication (SWIFT) messages and other high-frequency data. Machine 
learning has also been used to predict credit-default swap (CDS) spreads (Hu and others 2019).  

  

 
2 Buell and others (2021) discuss potential projection tools without applying them to the COVID-19 period. 
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III.   NOWCASTING FRAMEWORK 

This new framework has three stages: 1) selecting predictors, 2) selecting the best model out of 
competing models (the “horserace”), and 3) nowcasting the GDP using the best model.  

A.   Stage 1: Selecting Predictors 

Predictors are selected based on three criteria. First, predictors should be historically related (linearly 
or non-linearly) to GDP growth.3 Second, predictors should be released in a timely fashion, ideally well 
before the release of GDP figures. Third, data for predictors should be available for a sufficiently long 
time period, ideally matching the length of the available GDP series.4  Figure 1 provides an example of 
two key indicators that could be used to nowcast Nigeria’s GDP growth. The f irst is the global oil price, 
which moves in sync with GDP growth in Nigeria. Data on the oil price becomes available quickly 
(almost in real time), and given Nigeria’s status as an oil exporter, could be a useful predictor. However, 
a second indicator, comprising of the year-over-year change rate in Nigeria’s stock price index, is less 
promising as a predictor because there is no clear correlation with Nigeria’s GDP growth. 

Figure 1: Selecting Predictors: Example 
 

The global oil price could be a good predictor as it moves together with Nigeria’s GDP growth, the data become 
available quickly, and the data go back to an earlier period. However, the year-on-year change rate in Nigeria’s 
stock price index is less promising as the relationship with GDP growth is not clear. 

  
Sources: Haver; and IMF staff calculations. 
Note: rhs = right-hand scale; y/y = year-on-year. 

 
The most relevant predictors depend on expert knowledge, careful statistical analysis of  
trends, and the country context. Tourist arrivals would be more appropriate for countries such  
as Cabo Verde, Mauritius, and Seychelles. The country’s economic survey indicators (such as the 

 
3 Useful predictors may not always have high correlation with GDP growth since the relationship may not be linear. Machine learning 
has the advantage of capturing both linear and non-linear relationships. 

4 For example, one such indicator is the Google mobility indicator, which may be related to economic activity and the impact of 
lockdown measures. However, the time series for this is relatively short, starting from early 2020, leading to missing data issues. 
Incorporating such indicators is a useful topic for future research, including developing more efficient algorithms to deal with missing 
data and using non-macroeconomic indicators for nowcasting. 
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purchasing managers index [PMIs] and consumer confidence index), vehicle sales, imports, exports, 
real ef fective exchange rate (REER), fiscal revenue, and the global prices of commodities that the 
country exports heavily, if available, can be considered as potential predictors. Nontraditional indicators, 
such as nighttime lights, nitrogen dioxide (NO2) emissions, and Google search volume indices, also can 
be considered. Finally, a COVID-19 dummy equal to one during the COVID-19 crisis, or estimating the 
model with a structural break during the crisis, could help capture the potential impact of the pandemic, 
which would not be captured by other predictors. 
 
Useful predictors are not limited to those compiled within the country. Key economic indicators 
f rom neighboring economies or major trading partners may also be considered as predictors. This is 
because they could reflect cross-country spillovers or common regional or global factors (such as 
f inancial conditions) affecting different countries simultaneously. For example, PMIs in China, Nigeria, 
South Africa, and other major regional or global economies, could be useful. The stock market index in 
South Africa could provide a useful market signal for other sub-Saharan African countries, even if there 
are not strong financial linkages between these countries, because South Africa’s financial markets 
could reflect financial conditions and risk appetite in the region. Furthermore, the Brent crude oil price 
can be considered. For oil exporters and for countries that are closely linked to them, the oil price often 
co-moves with GDP. For oil importers, the opposite may be true. The industrial materials index 
compiled by the Foundation for International Business and Economic Research (FIBER) also can be 
considered since it reflects global industrial demand (although it also co-moves with the oil price so may 
be less useful if the oil price is already included as a predictor). 
 
For the particular purpose of nowcasting GDP growth in sub-Saharan African countries, 
including too many predictors does not always help. The time horizon for GDP data in these 
countries tends to be limited. For example, if the country has about 10 years of quarterly GDP data     
(as is the case for several countries in the region), only about 40 data points exist for model estimation. 
In this case, adding a predictor may lead to the deterioration of model performance if it is not clearly 
correlated with GDP growth. For example, the euro area’s PMI could be viewed as a potentially useful 
predictor for a sub-Saharan African country’s GDP as there is likely a positive relationship between 
economic activities in the euro area and sub-Saharan Africa (for example, reflecting trade in goods    
and services). However, during our sample period of the recent 10 years or so, the euro area and    
sub-Saharan Africa faced large negative shocks during different periods. That is, the euro area had      
a f inancial crisis around 2012 (during which the PMI was low) while sub-Saharan Africa faced a large 
impact from the global commodity price shock during 2015–16. As a result, for some sub-Saharan 
African countries, the euro area’s PMI can be seen by our framework as moving in the opposite 
direction of the country’s GDP growth during the sample period. Therefore, if the euro area’s PMI is 
included, the framework could take the euro area’s economic recovery from the COVID-19 crisis as a 
negative development for some sub-Saharan African countries. 
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B.   Stage 2: Selecting the Best Model (“Horseracing”) 

Having selected the predictors for each country, the next stage in the framework is to evaluate  
a range of potential machine-learning models based on their out-of-sample predictive  
performance. For each machine learning model applied to the data, the first 85–95 percent of data is 
used as a training dataset, and the remaining 5–15 percent is set aside as a holdout dataset to evaluate 
the out-of-sample performance of the model. A separate horserace is run for each country, so that the 
“best” model will often differ from country to country.  

Before being evaluated on the holdout 
test set, each model is “tuned” to 
optimize its likely out-of-sample 
performance. While details will differ, most 
models include several “hyperparameters” 
that shape the model’s complexity and 
performance. These must be set ex-ante 
and are typically chosen to optimize the 
model’s likely predictive performance. 
Within each training set, therefore, the 
f ramework uses three-fold cross validation 
to tune the hyperparameters. Cross 
validation is a sampling technique that 
essentially conducts several simulated  
(in-sample) experiments to gauge the likely 
out-of-sample performance of a particular model (Figure 2). With three-fold cross validation, the training 
set is split into three random folds. For a given set of hyperparameters, the model is trained using two of 
those folds and the remaining fold is used to measure the model’s prediction error (for that set of 
hyperparameters). With three folds, this experiment can be run using three different combinations, 
providing three measurements of the model’s prediction error. For this study, the framework uses the 
Root Mean Squared Error (RMSE) as the measurement. 5 The average of these three errors then provides 
a measure of  how well that model is likely to do out of sample. This set of experiments can be conducted 
for a range of different hyperparameters, which then allows the researcher to choose the set of 
hyperparameters most likely to lead to the best performance. Once a “tuned” model is determined from 
the training set, that model is then used to predict GDP growth in the holdout test set.  

 
5 The RMSE, which measures the distance between the actual time series and the predicted values, is commonly used to evaluate 
how close the predictions are to the data. An alternate metric is the mean absolute error (MAE), which puts relatively less penalty 
weight on predictions with large errors and, therefore, makes the model less sensitive to them. There are discontinuities in its 
derivative, which hinder its widespread use. Thus, RMSE remains analytically convenient and the most popular in the literature. 
RMSE is used both in the training sample to tune hyperparameters and in the hold-out set to choose the algorithm in the horserace.  

Figure 2: Cross Validation 
Cross validation conducts several simulated experiments to 
gauge the likely out-of-sample performance of a particular 
model. Then, the framework evaluates the performance of 
more than 30 different types of models on the holdout test set. 

 

Source: IMF staff. 
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The nowcasting framework evaluates the performance of more than 30 different types of models 
on the holdout test set—having already “tuned” each model on the training set.6 Additionally, there 
is an ensemble option, which is a second-layer algorithm that combines the predictions of the previous 
models. While a detailed treatment of these models can be found elsewhere (see, for example, Flach 
2012), the Appendix to this paper provides an overview of some of the primary algorithms used in the 
nowcasting framework. Having evaluated more than 30 different types of models, the winner of the 
horserace is the one with the best likely out-of-sample performance. The model with the lowest RMSE 
during the hold-out evaluation period is typically selected.  

C.   Stage 3: Nowcasting  

The framework now deploys the winning model. The best model selected by the horserace is then  
re-estimated using the entire sample, rather than just the test set. The predictions from this re-estimated 
model then serve as the basis for the nowcast. 
 

Although these types of machine-learning models do not aim to identify causal relationships,  
an “interpretable machine-learning approach” can nonetheless be used as a guide for  
why the chosen model arrives at a particular projection. Some of the machine-learning algorithms, 
such as gradient boosting, are often considered a “black box” due to the difficulty in understanding how 
the results were derived. The authors of this paper draw on recent advances in the growing field of 
“interpretable machine learning” to help unpack the framework’s nowcast projections. These include 
Shapley decompositions.  
 
Shapley values draw on cooperative game theory to fairly estimate the contribution of each 
predictor to an individual projection. For the chosen model, Shapley values indicate which variables 
prompted the model to differ from the sample average, even accounting to non-linearities, and will provide 
a quantitative guide for each variable’s relative contribution to the point prediction.7  

D.   Illustrative Examples 

As an illustrative example of the predictive ability of the framework, Nigeria is first considered.8  
The predictors include Nigeria’s real effective exchange rate; Nigeria’s imports from the US and India; 

 
6 The techniques considered include OLS, step model, elastic net, principal component regression, partial least squares regression, 
multivariate adaptive regression spline, random forest, stochastic gradient boosting trees, support vector machine (linear, 
polynomial, and radial basis function), relevance vector machine (linear, polynomial, and radial basis function), and gaussian 
process (linear, polynomial, and radial basis function) and their “variable selection” variants. 
7 Alternatively, local interpretable model-agnostic explanations (LIME) are a local surrogate method that takes a particular prediction, 
perturbs the data underlying that prediction, employs a simple linear algorithm to fit the perturbed data, and essentially builds a 
simpler, more interpretable model for the space around the prediction. This also allows for an exploration of each variable’s 
contribution to the chosen prediction. 
8 This country was chosen because its GDP publication is relatively timely. This enables to compare the framework’s projections 
with realized values during the COVID-19 crisis. In addition, the PMI data are available, which are a useful predictor.  
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PMIs in Nigeria, South Africa, and China; stock price indices in South Africa (as an indicator ref lecting 
regional financial conditions); the oil price; the FIBER industrial materials index; and the COVID-19 
dummy. The models are estimated from the first quarter of 2011, while 90 percent of the sample is used 
for training purposes.9  
 
The horseracing results (in Stage 2) indicate that the machine-learning algorithms generally 
perform better than competing parametric models. The out-of-sample RMSE is the lowest for 
“Stochastic Gradient Boosting Trees” among the models considered, including the OLS. The runner-up 
models are "OLS with Variable Selection” and “Random Forest.” Figure 3 shows that projections based on 
“Stochastic Gradient Boosting Trees” have a lower value of out-of-sample RMSE than some of competing 
parametric models, such as the OLS, random walk, and an autoregressive model of order 1 (AR(1)). 
 

Figure 3: Nigeria (Out-of-Sample Period): Year-on-Year 
Rolling Quarterly Real GDP Growth, Data and Projections 

The selected model has the out-of-sample RMSE lower 
than traditional methods such as OLS, random walk, 
and AR(1). 

 

Sources: Nigerian authorities; Haver; and IMF staff 
calculations.  
Note: Random walk and AR(1) projections based on GDP data 
during the in-sample period only. 

Figure 4: Nigeria (All Period): Year-on-Year Rolling 
Quarterly Real GDP Growth, Data and Projections 

The nowcasting framework’s projections move closely 
with data. 
 

 
 

Sources: Nigerian authorities; Haver; and IMF staff 
calculations. 

 

  

The final machine learning algorithm chosen based on Step 2 is found to perform well. Figure 4 
illustrates that the framework’s projections move closely with data. In the second quarter of 2020 (the 
initial quarter which was fully impacted by the pandemic), the projected contraction (about –2 percent) is 
narrower than observed (about –6 percent). This suggests that the impact of COVID-19 was more severe 
than implied by observed predictors. Still, the projection shows an exceptional contraction. Such 

 
9 While there is no clear rule on how long the “training and tuning” period should be (for example, 90 percent), it should include at 
least one period during the COVID-19 crisis so that the COVID-19 dummy, if included as a predictor, varies over time. 
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information on projected “turning points” would be useful for policymakers. The selected model projects 
about 4 percent year-on-year growth ("nowcast”) for the quarter ending in August 2021. (Nigeria’s third 
quarter year-on-year growth was later released as 4.0 percent.) 

The Shapley decomposition of the nowcast helps to interpret the results (Figure 5). The 
decomposition for the third quarter of 2021 implies that, compared to Nigeria’s average year-on-year 
growth over the sample (2.5 percent), Kenya’s relatively low PMI in the third quarter of 2021 has lowered 
Nigeria’s predicted growth by 0.2 percentage point. Similarly, the COVID-19 dummy lowers the projection 
by 0.2 percentage point. However, Nigeria’s relatively high PMI raises the projection by 0.3 percentage 
point. South Africa’s stock market index, possibly reflecting loose financial conditions, raises the 
projection by 0.8 percentage point.10 Adding up these components, Nigeria’s nowcast becomes  
4.3 percent. 

Figure 5: Nigeria: Shapley Decomposition 

The Shapley decomposition of projected year-on-year 
real GDP growth in the quarter of interest is provided. 

Source: IMF staff calculations. 
Note: Sample Av. = Sample average.  KENPMI = Kenya’s PMI. 
COVIDDUM = COVID-19 dummy.  MATP = Materials price 
index.  GHAPMI = Ghana’s PMI. xZAFSTOCK = Stock market 
index in selected sub-Saharan African countries excluding 
South Africa. INDXNGA = India’s exports to Nigeria. NGAPMI 
= Nigeria’s PMI. CHNPMI = China’s PMI. ZAFNVS = South 
Africa’s new vehicles sold. ZAFSTOCK = South Africa’s stock 
market index. 

Figure 6: Botswana (Out-of-Sample Period): Year-on-Year 
Rolling Quarterly Real GDP Growth, Data and Projections 

The selected model has the out-of-sample RMSE lower 
than traditional methods such as OLS, random walk, and 
AR(1). 

Sources: Botswana authorities; Haver; and IMF staff calculations. 
Note: Random walk and AR(1) projections based on GDP data 
during the in-sample period only. 

Botswana is considered as another example, projecting GDP growth for the second quarter of 
2020 (the first full quarter under the COVID-19 crisis), provided that GDP data for the second 
quarter of 2020 are not yet released. The predictors include the Google search volume index (SVI)  
in the “Travel” category for the word “Botswana” (as an indicator for tourism activity in the country), 
Botswana’s real effective exchange rate, stock exchange index, inflation, imports, bank loans to 

 
10 South Africa’s stock market potentially reflects regional financial conditions, which also affect Nigeria’s economic activity. 
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households, diamond exports, electricity generation, tax revenue, and GDPs for India and the United 
States (which are Botswana’s major diamond importers). Data start from the second quarter of 2008. 
“Support Vector Machine” has the lowest out-of-sample RMSE among the models considered. This 
selected model projects about –19 percent year-on-year growth ("nowcast”) for the second quarter of 
2020, where the model was run with GDP data only up to the first quarter of 2020 (that is, provided that 
second quarter 2020 GDP data are not yet released). The actual growth for the second quarter of 2020 
was –24 percent. This shows that the “turning point” of GDP growth was relatively well identified through 
the f ramework, which could give policymakers more space for early action. The Shapley decomposition 
suggests that GDP in the United States, GDP in India, and diamond exports explain the nowcast  
(–19 percent) which is a lot lower than the sample average of GDP growth. 

Figure 7: Botswana (All Period): Year-on-Year Rolling 
Quarterly Real GDP Growth, Data and Projections 
The nowcasting framework’s projections move closely 
with data. 

 
Sources: Botswana authorities; Haver; and IMF staff 
calculations. 

Figure 8: Botswana: Shapley Decomposition 
The Shapley decomposition of projected year-on-year 
real GDP growth in the quarter of interest is provided. 

 

Source: IMF staff calculations. 
Note: Sample Av. = Sample average.  USGDP = United States’ 
GDP. IndiaGDP = India’s GDP. DiamondsExports = 
Botswana’s Diamonds Exports. Inflation = Botswana’s Inflation. 
Imports = Botswana’s Imports. RealEffectiveExchangeRate = 
Botswana’s Real Effective Exchange Rate. 
GoogleSVITravelBotswana = Botswana’s Google SVI (Travel). 
ChinaGDP = China’s GDP. 
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IV.   THE COVID-19 CRISIS IN SUB-SAHARAN AFRICA 

Sub-Saharan Africa has faced an 
unprecedented health and economic 
crisis. The second quarter of 2020 has 
been particularly damaging with a year-on-
year growth rate of −8.5 percent (Figure 9). 
Since then, sub-Saharan Africa has been 
experiencing a partial recovery throughout 
the year. Before the pandemic, sub-
Saharan Africa was projected to grow by 
3.6 percent in 2020 (October 2020 
Regional Economic Outlook: Sub-Saharan 
Africa), which was ultimately brought down 
to a contraction of −1.7 percent (October 
2021 Regional Economic Outlook: Sub-
Saharan Africa). This contraction, the worst 
on record, has reversed close to a decade 
of  hard-earned economic and social gains 
for the continent.  

The nowcasting framework tracks real GDP 
growth. It is applied to project year-on-year real GDP 
growth in each of the following four economies: (i) 
South Africa, (ii) Nigeria, (iii) Angola, and (iv) an 
aggregate of Botswana, Cameroon,  
Côte d’Ivoire, Ghana, Kenya, Lesotho, Namibia,  
and Tanzania (weighted by purchasing-power-parity 
[PPP] GDPs). Then, projections for these four 
economies are aggregated for sub-Saharan Africa. 
That is, sub-Saharan Africa is proxied by these 11 
countries. These countries have quarterly GDP data 
available at least from the first quarter of 2010 and 
account for about ¾ of the region’s PPP GDP.11  
The projections closely move together with available 
GDP growth observations up to the first quarter of 
2021.12  

 
11 Ethiopia is excluded due to the unavailability of quarterly GDP data. 

12 Growth in the first quarter of 2021 is assumed to be the same as in the last quarter available for the countries whose data  
are missing.  

Figure 9: Sub-Saharan Africa: Year-on-year Rolling Quarterly 
Real GDP Growth, Data and Projections 
After an unprecedented contraction in the second quarter of 
2020 at the height of the pandemic, sub-Saharan Africa’s 
economy continued to recover. 

   
Sources: Haver; IMF internal databases; and IMF staff calculations. 

Figure 10: Sub-Saharan Africa: Daily COVID-19 Cases 

Sub-Saharan Africa has faced three waves of the  
COVID-19 pandemic, the third one having the largest  
impact. 

 
Sources: Center for Systems Science and Engineering, Johns 
Hopkins University; and IMF staff calculations. 
Note: Chart shows seven-day moving averages.  
SSA = Sub-Saharan Africa. 
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The slowdown in GDP growth in the second quarter of 2020 reflects lockdown measures as well 
as lower commodity prices and lower external demand. As sub-Saharan Africa’s new COVID-19 
cases increased during second quarter of 2020 (Figure 10), voluntary social distancing and lockdown 
measures, such as quarantine requirements, (Figure 11) contributed to lowered mobility to nonresidential 
areas (Figure 12). In addition, West Texas Intermediate (WTI) crude oil prices declined from about $60 
before the pandemic to below $20 in April 2020. Eurobond spreads also significantly widened at the 
height of the crisis. The number of flight arrivals dropped substantially during the second quarter of 2020, 
ref lecting worldwide travel restrictions.  

As a second quarter 2021 nowcast, the framework predicts high year-on-year growth (about  
10 percent), largely reflecting the base effect from the bottom in the second quarter of 2020.13  
As the base effect phases out, growth for the third quarter of 2021 is projected to decline to 3.6 percent, 
partly ref lecting the impact of the third COVID-19 wave in sub-Saharan Africa. 

V.   CONCLUSION 

This study developed an algorithmic framework to track real-time economic activity in sub-
Saharan Africa using machine-learning methods. Among the first studies to nowcast GDP growth in 
sub-Saharan Africa, the findings in this paper indicate that machine-learning algorithms can potentially 
produce superior nowcasts compared to more traditional regression methods. Using inputs based on 

 
13 As of this writing, Angola, Nigeria, South Africa, and some other countries have released their second quarter 2021 GDP data. 
However, several countries have not released their data yet. 

Figure 11: Sub-Saharan Africa: Oxford Government 
Response Stringency Index (0=weakest, 100=strongest) 
Containment measures strengthened in March and  
April 2020, gradually loosened until late 2020, and then 
remained at a similar level since then. 

 
 
Sources: Oxford COVID-19 Government Response Tracker; and 
IMF staff calculations.   
Note: Figure shows the simple average across countries. 

 

Figure 12: Sub-Saharan Africa: Google Mobility Index for 
Workplaces 
Mobility to workplaces remained lower than pre-COVID-19  
until mid-2021. Mobility was lowered temporarily around the 
second and third waves. 

 
 
Sources: Google LLC, “Google COVID-19 Community Mobility 
Reports”; and IMF staff calculations. 
Note: Simple average across countries with data available. 
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expert knowledge, analysis of statistical trends, and the specific country context, the nowcasting 
f ramework provides a valuable addition to the policymaker’s toolkit. 

The nowcasting framework for sub-Saharan Africa’s GDP growth can enhance regional 
surveillance. Reflecting monthly releases of high-frequency data, nowcasts would inform IMF staff,  
as well as policymakers, about the latest status of regional economic development. Furthermore, the 
nowcast of GDP growth for individual countries (where quarterly GDP data are available) also can be 
produced on a regular basis as a reference for surveillance. In this case, country-specific information 
provided by IMF country teams would further improve the nowcasts.  

The nowcasting model and results can be used for internal IMF work as well as external 
engagement with member countries. For example, a nowcasting dashboard could be incorporated in 
the future based on the framework developed in our study, with regular updates on tracking real-time 
economic activity. Training sessions at the IMF could be held on the model, and based on resources, 
presentations of nowcasting results for several individual countries can be made to staff. IMF staff could 
provide workshops to the authorities of member countries to provide technical expertise and knowledge 
and to help expand their internal forecasting capacities.  

While this study seeks to make a significant contribution in tracking real-time activity in the  
data-sparse environment in sub-Saharan Africa, there is scope for future research, including 
improving the coverage of countries that do not publish quarterly GDP data. Countries with sparser 
data (especially those without quarterly national account statistics) constitute a significant number of sub-
Saharan African countries. The lack of quarterly GDP data compiled and published by country authorities 
could pose statistical challenges in implementing supervised machine-learning algorithms. To tackle this 
issue, a panel approach with a big data angle can be pursued. Another interesting angle to pursue in the 
future, especially as some countries lack timely data on macroeconomic series, would be to use non-
traditional data, including satellite, mobility, Google trends, flight, and textual data.
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VII.   APPENDIX: CONCEPTS AND TOOLS IN MACHINE LEARNING 

There is no widely accepted consensus on the definition of machine learning. Broadly, the field has its 
origins in computational statistics and is chiefly concerned with the use of algorithms to identify 
patterns within a dataset (Kuhn and Johnson 2016). The actual algorithms can range from the OLS 
regression to the most complex “deep learning” network; but machine learning is distinguished by its 
of ten single-minded focus on predictive performance—indeed, the core of machine learning is the 
design of experiments to assess how well a model trained on one dataset will predict new data. 

As such, machine learning is almost ideally suited to the nowcasting problem, where the goal is  
to use all currently available information to predict what future GDP releases will say about the current 
environment. For this purpose, it does not matter whether an indicator is a causal factor that shapes 
GDP or whether it is instead a symptom of GDP growth. What matters is simply that the indicator 
contains information about the current state of the economy (Tiffin 2016). 

In this regard, the growing popularity of machine-learning techniques stems from their ability to 
discover complicated patterns that have not been specified in advance. In economics in particular, the 
world is complex, and everything is connected. Hence, a useful predictive model should ideally be 
able to sift efficiently through a broad range of potential variables, identifying the relationships, 
thresholds, and interactions that are most reliably and robustly informative. 

The Essence of Machine Learning: Overfitting vs. Underfitting 

But the use of complex, flexible models often comes at a 
cost—they can work too well. Fitting is easy, prediction is 
hard. And a key danger of using a complex model is that 
it will almost always fit the existing sample well. Indeed, a 
suf ficiently complex model should be able to fit the data 
perfectly. But that is no guarantee of future predictive 
performance, as a perfect fit suggests that the model has  
not only captured the underlying predictive relationships 
in the data (the signal) but has also modeled the data’s 
idiosyncratic noise. When making predictions out of 
sample, therefore, such a model is likely to do relatively 
poorly. (Figure A1). Indeed, “data mining” in traditional 
econometrics is often disparaged, as it risks producing a 
model tailored to the peculiarities of a particular dataset, which will consequently be misleading in 
terms of what it implies about the underlying data-generating process (Kennedy 2008).  

In machine-learning parlance, this is called the “overfitting” problem. Much of the machine learning 
literature is tightly focused on addressing this very risk. The key goal of any machine-learning 
technique is to optimize its likely out-of-sample performance. And using various simulation 
techniques, such as cross validation, the aim is to filter out noise and produce a model that 
deemphasizes the peculiarities of a particular dataset. The result, from a machine learning  

Figure A1: Model Complexity and Forecast Error 

Source: IMF staff. 

Forecast Error

Model Complexity

Out of sample
error

In sample
error

OverfitUnderfit



 

INTERNATIONAL MONETARY FUND 20 

 

 
 
perspective is the best of all worlds; producing all the potential benefits of a data-mining approach—in 
terms of capturing key relationships without assuming that the modeler knows exactly how the world 
works—while avoiding data mining’s potential pitfalls. 

Key Concepts and Algorithms 

 

Regularization methods include ridge, least absolute shrinkage and selection operator (LASSO), 
and elastic net and are often called “shrinkage.” These methods help to prevent overfitting by 
stabilizing the parameters of a model and “shrinking” them toward zero. As a technique, regularization 
can be applied to most machine-learning problems but is most commonly used in linear modeling, 
where it shrinks the slope parameter of each variable toward zero. The most well-known 
regularization techniques for linear models are ridge regression, LASSO, and elastic-net regression. 

Ridge regression is very similar to OLS, except that the coefficients are estimated by minimizing a 
slightly adjusted loss function, which imposes a penalty that increases with the squared magnitude of 
the model’s coefficients (the “L2 norm”). More formally, the ridge regression takes the following form: 

𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = argmin�∑ �𝑦𝑦𝑖𝑖 −∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗
𝑝𝑝
𝑗𝑗=1 �

2
+𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1 �, 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃= 𝜆𝜆 �𝛽𝛽𝑗𝑗2
𝑝𝑝
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The main goal of the added term is to 
discourage model complexity by 
penalizing large coefficients, effectively 
biasing them toward zero. The 
deliberate introduction of a bias may 
seem counterintuitive at first but recall 
that the goal is to optimize out-of-
sample performance, rather than in-
sample fit. In cases the in-sample data 
includes idiosyncratic noise, the 
addition of some bias will often improve 
the reliability of out-of-sample 
predictions (known as the bias-variance tradeoff) (Figure A2).   

As a key part of the penalty term, λ is a hyperparameter that determines the term’s overall 
importance—a value of zero for λ would remove the penalty altogether and would be equivalent to 
f itting an OLS model, whereas increasing the value results in a progressively less complex model,  
with coefficients squeezed closer and closer to zero. The value for λ is typically defined ex ante and is 

Figure A2: Bias-Variance Tradeoff 

 
 
Source: IMF staff. 
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usually set to optimize expected out-of-sample performance, as determined by sampling techniques 
such as cross validation.  

LASSO regression is very similar to ridge regression, except that the LASSO uses a penalty that 
increases with the absolute value of the model’s coefficients (the “L1 norm”).  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) = 𝜆𝜆 �|𝛽𝛽𝑗𝑗

𝑝𝑝

𝑗𝑗=1

| 

Similar to the ridge regression, the penalty discourages complexity by biasing the coefficients toward 
zero. Unlike the ridge regression, however, with a large enough penalty some of these coefficients will 
be set exactly equal to zero, effectively removing the corresponding variable altogether. Hence, 
LASSO can be used for feature selection—so if a nowcasting problem has  
a large number of candidate variables, the model will automatically choose the subset of those 
variables that are most informative in predicting GDP. Again, the higher the value for λ, the more 
variables are discarded. And λ is typically chosen via cross validation to optimize expected  
out-of-sample performance. 

Elastic net regression is a compromise between the ridge and LASSO regressions and contains a 
hybrid of the two penalties. The net effect is that, as the regression’s penalty increases, some 
variables have their coefficients squeezed toward zero, while other less-informative variables are 
removed from the model entirely.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛) = 𝜆𝜆��(1 −𝛂𝛂)𝛽𝛽𝑗𝑗2
𝑝𝑝
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The hybrid penalty is a convex sum of the ridge and LASSO penalties, with relative weights 
determined by an additional hyperparameter α. Once again, the combination of α and λ are chosen  
ex ante and are typically set via cross-validation to optimize expected out-of-sample performance.  
For further details on these techniques, please see Rhys (2020). 

Ensemble methods include decision trees, random forests, gradient boosting, and adaptive 
boosting. 

Decision trees are f lowchart-like structures designed to predict a particular output. For instance, 
imagine a f lowchart where each level is a question with a binary yes or no answer (for example, “is a 
country’s debt larger than 60 percent of GDP?”), followed by other levels with binary answers. 
Following the chart and answering the questions one by one, eventually gives a solution to the initial 
problem. The challenge is to come up with the right initial questions. To arrive at the solution, the 
decision tree algorithm repeatedly partitions the predictor space into two sets, starting with an initial 
split that decreases the prediction error the most: that is, the algorithm considers every possible split 
on every possible predictor variable, and chooses the one split on the one variable that best 
separates the sample into the two most dissimilar subsamples (based on the predicted outcome). 
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These binary partitions then continue until the termination of the tree, and are recursive—that is, each 
subsequent split only considers the subsample under which it falls, rather than the whole dataset.  
The result is an ef ficient set of yes/no questions that quickly sorts the sample into similar bins. The 
prediction for that bin is then the average outcome of all “similar” observations within that bin. 

Decision trees are computationally efficient and work well for problems where there are important 
non-linearities and interactions. A potential downside, however, is that they are extremely flexible and 
so are prone to overfitting—with enough questions a large tree can feasibly sort each observation into 
its own individual bin, fitting the sample perfectly. A common solution, therefore, is to shorten or 
“prune” the tree by imposing a penalty for an overly long or complex structure. As a regularization 
technique similar to the penalties outlined above, the ideal degree of complexity is then chosen using 
cross-validation.  

The random forests algorithm takes the decision tree as a basic building block, but instead of 
pruning the tree, the algorithm filters out any idiosyncratic noise by bootstrapping a large number of 
separate (unpruned) trees, and then takes the average prediction of those trees. By constructing 
many trees under similar but randomly drawn conditions, the algorithm minimizes the variance of the 
model’s predictions without necessarily introducing any added bias.  

Random forest is one of the most successful general-purpose algorithms currently available. It 
requires almost no input preparation, since it can handle a range of different predictor types (binary, 
categorical, numerical) without the need for scaling. It implicitly incorporates an element of feature 
selection, is quick to train, and can be applied to a wide range of modeling tasks. When the popular 
machine-learning competition website Kaggle was established in 2010, the random forest algorithm 
quickly established itself as a platform favorite—at least until 2014, when gradient boosting machines 
took over (Chollett and Allaire 2018). 

The gradient boosting algorithm is much like a random forest, in that it entails aggregating a large 
number of decision trees. But rather than averaging over all models at once, boosting is a sequential 
ensemble algorithm, in which the trees are constructed one at a time, and in which each tree aims to 
learn f rom the mistakes of the previous one. For example, the gradient boosting algorithm starts out 
by training an initial decision tree on the full dataset. Taking the predictions of the first tree, a second 
tree is then trained to predict the errors from the first. A third tree is then trained to predict any 
residual errors from the second, and so on. The f inal prediction is then the sum of the individual 
predictions from all of the trees.  

Adaptive boosting (ADABoost) takes a slightly different approach. Instead of predicting the errors of 
the previous model, each iteration tries to generate predictions based on a reweighted dataset, where 
the weights are determined by the previous model. More weight is given to instances that the previous 
model handled poorly, and less weight is given to those it handled well. The f inal prediction is a 
weighted sum of all the models, with weights determined by each model’s accuracy. For further 
details on these techniques, please see Efron and Hastie (2016) 
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Kernel Methods include support vector regression (SVR). The SVR aims to address the potential 
role of  complex, non-linear relationships by first mapping the data to a higher-dimensional 
representation where the line of best fit can be expressed as a simple linear hyperplane. There are 
dif ferent possible ways of finding this hyperplane, but in the case of an SVR, it is found not by  

minimizing the sum of squared residuals, but instead by minimizing the sum of absolute errors, 
counting only errors that are greater than a certain threshold, and scaling those errors by a cost 
parameter.  

Mapping data to a higher-dimensional space—where the regression problem becomes simpler—is 
easier said than done and is often computationally intractable. However, kernel-based methods 
employ a shortcut (the “kernel trick”). To find a good hyperplane in the new representation space, it is 
not required to calculate the new coordinates of the data in that space. Instead, it is enough to simply 
compute the distance between any two points in the space. This can be done efficiently using a 
kernel function—a tractable operation that maps any two points in the initial data space to their 
distance in the new space, without having to actually calculate the new representation space 
explicitly.  

The kernel function is typically chosen ex ante and can take a range of forms (linear, polynomial of 
various degrees, sigmoid, and so on). The most popular, however, is the Gaussian Radial Basis 
Function (RBF) kernel:  

k(xi ,xj) = exp��xi − xj �
2
� 

Kernel-based methods are one of the few machine-learning approaches that are amenable to 
mathematical analysis, making them well understood, easily interpretable, and historically popular. 
But they do not always scale well to large datasets, so their popularity has eased over the past 
decade or so. For further details on these techniques, see James and others (2021). 
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