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I.   Introduction1 

Fiscal crises are extremely disruptive events that remain seared into the memories of entire 

generations. They are typically accompanied by a significant loss of annual output that is often 

permanent (Medas et al. 2018). Therefore, in the hope of preventing future crises, economists 

have long been working to develop early warning systems that help detecting crises before 

they occur, a quest that has been ongoing since at least the 1970s.2 Such early warning systems 

have become tools that directly inform policy decisions, so that limitations in their accuracy 

can have far-reaching consequences. In this paper, I assess the out-of-sample predictive 

performance of econometric methods and ask whether our ability to predict fiscal crises can 

be enhanced through machine learning methods. I then explore whether the predictors 

identified by these relatively novel algorithms offer new insights into economic variables that 

can serve as robust early warning indicators. 

The appeal of machine learning methods is that they allow us to tackle several well-known 

challenges in the literature on macroeconomic early warning systems: First, the dynamics 

preceding fiscal crises are most likely very complex, and simple linear or threshold models, 

while providing an intuitive narrative, may have a hard time capturing such complexities 

adequately. Second, given the small sample sizes in macroeconomic panels, with at best a few 

thousand (often correlated) observations, it is easy to identify patterns – narratives to explain 

past crises – that are simply spurious and will not be relevant for predicting future crises. This 

latter concern, the risk of overfitting (i.e., of explaining patterns that are specific to the 

estimation sample and don’t generalize to other samples), is particularly pressing for the 

methods most popular among applied economists, maximum-likelihood and least-squares 

which, by definition, try to fit the data as much as possible as they are “tuned to generating 

 
 
1 I am grateful to Philip Barrett, Andy Berg, Fabrice Collard, Patrick Feve, Philippe Goulet Coulombe, Andreas 
Joseph, Christian Hellwig, Martin Hellwig, Jonathan Hersh, Andrew Hodge, Catherine Pattillo, Mehdi Raissi, 
Chris Redl, Kevin Wiseman, Yunhui Zhao, and seminar participants at the IMF, the 2020 World Congress of 
the Econometric Society, the 2020 conference on “Modelling with Big Data & Machine Learning: Measuring 
Economic Instability” at the Bank of England, and the 2020 European Winter Meeting of the Econometric 
Society for their comments and suggestions. The dataset used in this paper was developed jointly with Marialuz 
Moreno Badia and Paulo Medas. Juliana Gamboa Arbelaez, Chuqiao Bi, and Yuan Xiang provided excellent 
research assistance. All errors are my own. 
 
2 See Moreno Badia et al. (2020) for an extensive survey. 
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unbiased estimates of coefficients rather than minimizing prediction error” (Kleinberg et al., 

2015). The two concerns about underfitting and overfitting create a well-known trade-off for 

any predictive modeling exercise: predicting fiscal crises potentially requires complex models; 

but by adding complexity we may increase the risk of overfitting. Machine learning algorithms 

try to optimally solve the trade-off between underfitting and overfitting, which has made them 

the method of choice for a range of prediction problems. 3  

When predicting fiscal crises, the risk of picking up spurious patterns is particularly high, as 

there are reasons to think that such crises may not be predictable at all: For one, the possibility 

of multiple equilibria in the context of sovereign debt (Cole and Kehoe 1996, 2000; 

Detragiache 1996) means that, even though it may be possible to identify fundamentals that 

make a country vulnerable to self-fulfilling shifts in expectations, the timing of these shifts 

would be inherently unpredictable. Moreover, as highlighted by Berg and Pattillo (1999), crisis 

risk is endogenous to policy choices: if crises are predictable, then government and creditors 

can take action to prevent crises before they occur.4 Finally, crises are rare events, which 

compounds the problem of small sample size. Berg and Pattillo (1999) and Christofides et al. 

(2016) show empirically that the early warning systems in use at the time were not able to 

predict the Asian currency crises of the 1990s or the Global Financial Crisis, respectively. In a 

similar vein, my first result in this paper is that the out-of-sample predictions for fiscal crises 

obtained from common econometric approaches, on average, cannot outperform an 

uninformed heuristic rule of thumb and are considerably less accurate than what their in-

sample performance suggests. 

By using some of the most popular machine learning approaches, I obtain improvements in 

predictive performance relative to established econometric methods. These methods, elastic 

net (Chou and Hastie, 2005), random forest (Breiman, 2001), and gradient boosted trees (Chen 

et al., 2015) build on models that are familiar to many economists (logit regressions and 

classification trees), and they can be implemented with standard statistical software. I first 

 
 
3 See Mullainathan and Spiess (2017) for an introduction to machine learning for applied economists. For a 
technical treatment of specific methods, see e.g., Hastie et al. (2012). 
 
4 Berg and Pattillo (1999) point out that the notion of predictable crises is difficult to reconcile with the Lucas 
critique. A similar argument can be found in Taleb (2007). Political scientists have also discussed the 
predictability of rare events using models (e.g., Ulfelder, 2012) or expert judgement (e.g., Tetlock, 2017). 
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show that, even when using only a small pre-selected set of predictors, machine learning can 

yield sizable improvements in performance. The gains in performance become larger when I 

expand the set of candidate predictors and delegate variable selection to algorithms. I find that 

these gains are statistically significant and not driven by just a few individual countries or years 

in the evaluation sample.   

How are these gains in accuracy achieved? First, unlike most econometric estimators, machine 

learning techniques impose limits on the degree to which models are allowed to fit the data in 

the estimation sample. Relative to an unconstrained maximum likelihood estimator (e.g., logit), 

this results in a poorer in-sample accuracy and in estimated marginal effects that are biased 

towards zero. 5 At the margin, however, reducing the in-sample fit also reduces the risk of 

overfitting and can therefore lead to better out-of-sample predictive performance. Second, 

these constraints on model fit make it safe for algorithms to explore a rich set of interactions 

between predictor variables and uncover non-linear relationships without the increased risk of 

overfitting that such explorations would carry in unconstrained settings.6 Third, ensemble 

approaches (e.g. random forest) achieve additional gains in accuracy by averaging the 

predictions of several models instead of relying on a single model. Using the “crowd wisdom” 

of a large number of weak models can lead to strong average predictions if the prediction errors 

of individual models tend to cancel each other out.  

In approaching the crisis prediction problem, I am equipped not just with an expanded 

statistical toolkit but also with richer data than previous studies. Overfitting, if left 

unaddressed, is first and foremost the consequence of small sample size, and I explore several 

ways to enhance or at least preserve the sample size. These methods are common in predictive 

modeling but less so in the economics literature: First, unlike previous authors, I explore the 

pooling of countries with very heterogeneous characteristics into a single large sample instead 

of estimating separate models for countries with different characteristics (e.g., by income 

level). This pooling may abstract from important structural differences between advanced, 

 
 
5 Machine learning methods share this feature with Bayesian techniques which also limit the degree to which a 
model is allowed to learn from a small sample. 
 
6 Goulet Coulombe et al. (2020a) show that this ability to address non-linearities is the main source of 
performance gains from machine learning methods in macroeconomic forecasting applications. 
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emerging, and low-income countries. But I find that any reduction in in-sample fit from this 

abstraction is offset (and in some cases outweighed) by the reduced risk of overfitting achieved 

through a larger estimation sample.7 Second, I investigate whether, by relying on imputation 

techniques to avoid the loss of observations due to missing values, I can obtain additional gains 

in accuracy. Of course, imputation adds noise to my predictors, which leads to biased 

coefficients and reduces the in-sample fit. But, again, the larger estimation sample reduces the 

risk of overfitting. Hence, imputation is another, complementary, way to navigate the trade-off 

between underfitting and overfitting. I show that pooling of observations and imputation can 

help improve model accuracy. Moreover, imputation allows me to make predictions for all 

observations, not just those with better data coverage. My imputation approach is extremely 

simple: missing values are replaced by their sample median. Future research could explore 

more elaborate imputation techniques to obtain additional gains in accuracy. 

Machine learning algorithms and larger estimation samples reduce but don’t eliminate the risk 

of overfitting. Therefore, in addition to exploring novel algorithms and data imputation, the 

paper emphasizes the need for a machine learning approach to model evaluation: throughout 

the paper, the focus is on out-of-sample prediction; and great care is applied to avoid any 

spillover of information from the evaluation sample to the estimation sample. 

The risk of overfitting is present not just in parameter estimation but also in variable selection. 

Variable selection based on economic theory or on in-sample fit is inevitably driven by 

hindsight. As already mentioned, machine learning algorithms allow me to consider a large 

number of predictor variables. The more candidate predictors we add, the lower the risk that 

variable selection is biased by our own judgement. I take this idea to the extreme by including 

a large number of series on economic, demographic, and political conditions, and taking into 

account sources of contagion as well as global variables and cross-sectional averages of 

country-specific variables. I am also agnostic about the exact form in which a series should 

enter the model and hence include current levels, lags, and changes over time at various 

frequencies. All told, I arrive at 748 individual series. 

 
 
7 Intuitively, estimating a single model on the full sample requires half as many parameters as estimating two 
separate models on two sub-samples. The smaller the number of parameters, the lower the risk of overfitting. 
Bolhuis and Rayner (2020) explore the question of optimal sample pooling more systematically. 
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The set of variables selected from this large number of candidate predictors varies somewhat 

across modeling techniques. But when it comes to the most important predictors, there is 

considerable agreement across models. To be sure, predictor importance reflects correlations, 

not causation: my gains in predictive performance are achieved at the cost of biased model 

parameters, so that an economic interpretation of model parameters – establishing a narrative 

of fiscal crises – is difficult if not impossible. Machine learning algorithms in this paper 

identify predictors, not causes of fiscal crises.  

I find that the algorithms confirm, as highlighted in the literature, the strong predictive power 

of the current account balance and of public external debt stocks. On the other hand, unlike 

many previous authors, I do not find a strong role for the real exchange rate, the GDP growth 

rate, or trade openness. Moreover, my results indicate that demographics and the quality of 

governance may be stronger indicators of crisis risk than recognized in previous work. Perhaps 

surprisingly, fiscal variables appear to have less predictive value, and public debt matters only 

to the extent that it is owed to external creditors. 

The paper is organized as follows: the next section revisits the literature on fiscal crisis 

prediction. Section III specifies the definition of fiscal crises. Section IV describes the 

methodological approach and data. Section V assesses the predictive performance for a limited 

set of variables. Section VI discusses performance with algorithmic variable selection, and 

Section VII discusses the ranking of predictors by importance. 

II.   Past Attempts at Predicting Crises 

Although crisis prediction has a long history (see, for example, Frank and Cline 1971), it was 

only in the wake of the Asian crisis of the late 1990s that the literature on EWS experienced a 

renaissance.8 Many of the earlier studies only look at currency and/or financial crises. EWS 

for fiscal crises are far less common, and they tend to cover a relatively small sample of mostly 

 
 
8 See Moreno Badia et al (2020) for an in-depth review of the literature on fiscal crises, including of predictors 
commonly identified as informative. For a review of the literature on early warning systems in 
macroeconomics, see Kaminsky, Lizondo and Reinhart (1998), Hawkins and Klau (2000), Abiad (2003), and 
Frankel and Saravelos (2012)  
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emerging market economies over different time periods.9 Only a few studies include LIDCs, 

notably Cerovic et al. (2018). The literature has generally focused on external debt crises 

although a wave of recent studies encompasses a broader dimension of fiscal stress. While 

crisis definitions, sample coverage, forecast horizon, and evaluation methodology differ 

widely across studies, the empirical research can be classified into two broad categories, in 

terms of the methodology used: 

(1) Multivariate regressions. This approach relies on the Generalized Linear Model (GLM 

– typically the probit or logit version). Several studies use GLM to identify the 

determinants of fiscal crises, including Marashaden (1997), Detragiache and Spilimbergo 

(2001), Peter (2002), Manasse et al. (2003), Ciarlone and Trebeschi (2005), Kraay and 

Nehru (2006), Gourinchas and Obstfeld (2012), Berg et al. (2014), Dawood, Horsewood, 

and Strobel (2017), and Pamies Sumner and Berti (2017).10 Probit models also have an 

important role in policy practice, notably in the IMF/World Bank debt sustainability 

framework for low-income countries (see IMF, 2015). In most papers, predictor variables 

are manually pre-selected based on the authors’ judgement. Only a handful of papers 

choose more agnostic approaches such as Extreme Bound Analysis (e.g. Chakrabarti and 

Zeaiter, 2014; and Bruns and Poghosyan, 2018) or selection algorithms based on 

bivariate correlations with the outcome (e.g., Cerovic et al., 2018).  

 
(2) Tree-based approaches. An alternative strand of the literature has used models based on 

classification trees to predict crises. This approach was developed by Breiman et al. 

(1984) and is more flexible in capturing non-linear structures and complex variable 

interactions. The basic idea is to look for the characteristics that are most closely 

associated to a class membership (crisis versus non-crisis) and to iteratively sort the 

sample using binary splits according to those characteristics (see Section IV.C below for 

more details). Examples of this approach for sovereign debt crises can be found in 

 
 
9 Most of these early studies focused on debt crises of the 1980s and 1990s. In contrast, the empirical literature 
looking at fiscal crises in advanced economies has only taken off in the aftermath of the European sovereign 
debt crises of 2010 and thereafter.  
 
10 In some instances, the focus is on the duration of crises, using survival analysis (see, for example, Ghulam 
and Derber 2018).  
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Manasse et al. (2003), Manasse and Roubini (2009), van Rijkjeghem and Weder (2009), 

Savona and Vezzoli (2015), and Savona et al. (2015). 11 In some cases, predictions from 

several such trees are aggregated. A special case of very short classification trees is the 

so-called “signaling” approach.12 A few papers looking at sovereign defaults and/or fiscal 

stress have followed this methodology (see, Reinhart, 2002; Baldacci et al., 2011; Berti 

et al., 2012; De Cos et al. 2014; and Cerovic et al., 2018). 

The use of machine learning techniques in the EWS literature is a more recent development in 

the EWS literature. Examples include Celiku and Kraay (2017) for predicting conflicts, 

Weisfeld et al. (2020) and Basu et al. (2019) for balance of payments crises, and Bluwstein et 

al. (2020) for financial crises. Similar to my present paper, Savona et al. (2015) and Jarmulska 

(2020) use random forest to predict fiscal crises, though with a narrower scope in terms of 

country and predictor coverage. Moreno Badia et al. (2020) explore a range of alternative 

variable selection techniques for the random forest model. A few papers have used artificial 

neural networks to predict sovereign debt crises (Rodriguez and Rodriguez, 2006; Fioramanti, 

2008). 

III.   Defining Fiscal Crises  

I use the term fiscal crises to describe a period of heightened budgetary distress. Although a 

sovereign default is the canonical example, not all fiscal crises are associated with debt defaults 

or pre-emptive restructuring. In some instances, they entail other forms of expropriation—such 

as domestic arrears or inflation—that erodes the value of debt (Reinhart and Rogoff 2011a), or 

a default is avoided altogether thanks to assistance from official creditors (Manasse et al. 

 
 
11 Outside economics, tree-based methods have become popular for many predictive tasks, including email 
spam filters, fraud detection, and image recognition. The use of trees in empirical macroeconomics reaches back 
at least to the 1990s (e.g. Durlauf and Johnson, 1995). Duttagupta and Cashin (2011) use classification trees to 
model the risk of financial crises. 
 
12 Pioneered by Kaminsky, Lizondo, and Reinhart (1998) for currency crises, this approach selects several 
leading indicators and derives threshold values beyond which the indicator signals a predicted crisis. Like in a 
very short tree, the thresholds are endogenously derived (within sample) to maximize the predictive power of 
the indicator. In an extension, Kaminsky (1998) aggregates the information from several signals models, 
effectively creating a tree ensemble model.  
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2003). Thus, to capture a broader notion of fiscal stress, I rely on the IMF’s fiscal crises 

database (Medas et al., 2018), which uses the following four criteria:13 

1. Credit events. I include all sovereign defaults to private or official creditors as well as 

debt restructurings. To exclude small technical defaults and avoid the perpetuation of a 

crisis being classified as a string of new events, I impose some minimum requirements 

in terms of the size and accumulation of defaulted amounts (for more details on the 

definitions and data sources, see Annex Table 1).  

 
2. Exceptionally large official financing. Under this criterion, any IMF financial 

arrangement with a fiscal adjustment objective and access above 100 percent of quota is 

counted as a crisis episode. I also consider financial assistance programs by the European 

Union.  

 
3. Implicit domestic public debt default. Two types of events are included: (1) high inflation 

(thresholds vary by income group to reflect the different degree of monetary deficit 

financing); and (2) accumulation of domestic arrears proxied by other accounts payable. 

 
4. Loss of market confidence. To account for both the volume and price dimensions, I 

consider two criteria: (1) loss of market access, capturing bond issuance coming to a halt; 

and (2) large spikes in sovereign yields.  

A country is classified as being in a fiscal crisis in any given year if at least one of the four 

criteria is met. Consecutive crisis years count as a single crisis episode. To separate between 

crisis episode, I require at least two years of no crisis between two distinct events. Based on 

this definition, there are 418 crisis episodes for a sample of 188 countries over the period 1980–

2016.14 On average, countries have undergone two fiscal crises since 1980, but there is large 

heterogeneity. At one end, low-income developing countries (LIDCs) have experienced more 

than three crises on average while advanced economies (AEs) have less than one. The duration 

 
 
13 In addition to some changes in the definition of each criterion (see Annex Table 1), the set of crises may 
depart from Medas et al. (2018) due to data revisions.  
 
14 For a description of the data and country groupings, see Annex Table 2. 
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of crises also varies significantly, with emerging market economies (EMEs) and LIDCs 

showing the longest episodes—on average five years. There are also a few cases of serial 

default, resulting in some countries being in crisis virtually throughout the entire sample.  

Historically, fiscal crises tend to come in waves—a pattern consistent with the sovereign debt 

cycles discussed in Reinhart and Rogoff (2011b). The largest concentration of episodes took 

place in the 1990s with 93 countries (more than 50 percent of which were emerging market 

economies) undergoing a crisis at its peak. But there has also been bunching in the early 

1980s—reflecting the collapse of commodity prices and a surge in global interest rates—and 

in 2010, in the aftermath of the global financial crisis. LIDCs are the group with the largest 

incidence of events—about two-thirds of them are in a fiscal crisis at any point in time—but 

EMEs also have a relatively high frequency—on average, 40 percent. By contrast, less than 15 

percent of AEs experience a fiscal crisis in any given year. 

Credit events are the most frequent trigger of crises accounting for over 40 percent of episodes 

(Figure 3.1). This means that countries commonly resort to either default or restructuring as a 

way out of their fiscal troubles. An exception, however, was the 1980s when inflation became 

the most prominent form of implicit default on domestic currency debt, surpassing the 

incidence of external credit events. Only in the last decade has exceptionally large official 

financing become the second-most common criterion, accounting for almost a third of crisis 

episodes, underlying the importance of IMF programs during the global financial crisis.
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FIGURE 3.1. CRISIS CRITERIA TRIGGERED 

(PERCENT OF TOTAL CRISIS EPISODES) 

 
Sources: Bloomberg; Datastream; Eurostat; Gelos, Sahay, and Sandleris (2004); 
Guscina, Sheheryar, and Papaioannou (2017); IMF, International Financial 
Statistics; OECD; Reuters; and authors’ calculations. 

  
IV.   Empirical Strategy and Data 

A.   The prediction problem and sample 

The objective of crisis prediction models is to map a vector of k observables at time t into the 

probability of a crisis start occurring sometime between the end of year t and the end of year 

t+h.15 In line with the literature, I choose a prediction window h =2, giving policy makers some 

time to take corrective policy actions when observing a crisis warning.16  

The analysis covers 188 countries (see Annex Table 2), and the sample spans from 1979 to 

2015. Since much of the literature has focused on advanced and emerging market economies 

– i.e., countries that regularly borrow from markets – I analyze model performance for these 

economies separately from performance for low-income developing countries.  

It is important to note that, while I separate the sample by income group for the evaluation of 

the models, I don’t do so for the estimation process. A priori, as pointed out in Weisfeld et al 

 
 
15 At any point in time a country is either in a state of crisis or in a non-crisis state. Since we are interested in 
transitions from non-crisis to crisis state, I only consider observations in which a country is not in a crisis in 
year t and drop from the analysis all observations in which a country is in a crisis in year t. 
 
16 See Berg and Pattillo (1999) and Bluwstein et al. (2020) for further discussions. 
 

0

10

20

30

40

50

60

1980-89 1990-99 2000-09 2010-16

Pe
rc

en
t

Credit
Event

Exceptional
financing

Implicit
default

Market
confidence



 

12 

(2020), there are many similarities between some of the countries classified as emerging 

market economies and some countries in the low-income group, so that much could potentially 

be gained by pooling countries from different income groups in the estimation sample, 

allowing us to learn about the former from the experience of the latter and vice versa.17 By 

contrast, van den Berg et al. (2008) question whether there is sufficient homogeneity across 

countries and argue for a separation of countries into clusters in which crisis prediction models 

are then estimated separately.18 I follow an approach of pooling all countries together and 

letting the algorithms decide how to split the data. For logit models, I check whether this 

approach leads to losses in performance.  

B.   Model evaluation 

Sample splitting 

As mentioned earlier, model evaluation is done out of sample. That is, I split the data into two 

disjoint sub-samples: The training sample is used to estimate the model parameters. The held-

out test sample is then used to generate predicted crisis probabilities as fitted values from the 

model. These predicted probabilities are then assessed against the actual crisis outcomes.  

Out-of-sample testing requires that no information from the test sample influences the process 

of variable selection and model estimation. Test sample information spilling into the training 

sample can occur… 

- when variable selection is done using all observations (including on the test sample); 

the selected variables are then used to estimate the model on the training sample and 

make predictions for the test sample. Strictly speaking, variable selection based on 

judgement (or based on the recent literature) compromises the principle of out-of-

sample prediction, since our economic judgement is influenced by recent events that 

could form part of the test sample. 

 
 
17 E.g., Angola and Gabon are classified as emerging market economies, whereas the neighboring Republic of 
Congo and Cameroon, both fellow oil producers, are counted as low-income countries. 
 
18 Their recommendation is based on in-sample results. Moreover, their finding is limited to linear models 
which assume homogeneity, whereas tree-based models, by design, can endogenously sort countries into the 
relevant clusters. 
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- when the training and test samples are not separated by year – for example, Spain 2009 

could be in the training sample, while Portugal 2009 is in the test sample. 19 Bluwstein 

et al. (2020) demonstrate that this can lead to biased performance assessments.  

- when predictor variables are constructed so that they incorporate test sample 

information. Examples include output gaps or credit gaps that are based on two-sided 

(rather than purely backward looking) filtering approaches. 

To avoid any use of test sample information in the model estimation process, I use a cutoff 

year to separate training and test sample. In choosing the cutoff year, we face a trade-off: a late 

cutoff year yields a larger training sample, so that the quality of the model is likely to be close 

to the quality we would obtain when estimating the model on the full sample to make 

predictions about the future – the ultimate objective of any early warning system. By contrast, 

an earlier cutoff year would yield a larger test sample, allowing for a more robust assessment 

of the model’s accuracy.  

To ease this trade-off, I use an iterative procedure with a rolling threshold: I estimate the model 

with data up to year t – h to then make predictions using data observed at time t. With each 

new year t+j in the test sample, the cutoff year for the end of the training sample is then moved 

by one year to t+j-h. I choose a test sample that spans 2001-2015 and that includes 1878 

country-year observations, 301 of which include a crisis start in year t+1 or t+2. Hence, for a 

test sample spanning 15 years, I estimate 15 models, each one based on a larger training sample 

than the previous one.20  

Performance measures 

I assess performance according to several measures. It is important to note upfront that the 

choice of performance measure should depend on the application. For example, some 

 
 
19 This would occur if test and training sample were split by country or randomly. In the case of many 
prediction tasks, such as e-mail spam filters, observations could be assigned randomly the test and training 
samples. In the case of cross-country panel data, however, the sample splitting should take into account that, 
within any given year, global variables (e.g., oil prices) are common across countries, so that it can be unwise to 
assign observations from the same year to both the training and the test sample. 
 
20 Hyperparameters (see below) are retuned accordingly. 
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applications require us to provide a ranking of crisis risk across countries, whereas others 

demand a crisis probability for just one specific country. In the first case, one would put more 

weight on a performance measure that reward an accurate ranking of probabilities. By contrast, 

in the second case, one would put more weight on whether the predicted probabilities 

accurately reflect the crisis risk in absolute terms. Since different performance measures 

capture different aspects of predictive performance, any measure of accuracy reflects the 

(somewhat subjective) weights one assigns to different types and magnitudes of prediction 

errors.  

In terms of accuracy of predicted probabilities, I choose three measures, each of which 

penalizes prediction errors differently:  

- log-likelihood, defined as 

 1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�∑ log(𝑝𝑝𝑖𝑖)𝑖𝑖∈𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ∑ log(1− 𝑝𝑝𝑖𝑖)𝑖𝑖∈𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 

- weighted log-likelihood, defined as 

 0.5
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∑ log(𝑝𝑝𝑖𝑖)𝑖𝑖∈𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 0.5
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∑ log(1− 𝑝𝑝𝑖𝑖)𝑖𝑖∈𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

- mean squared error (MSE), also known as the Brier score, 

 1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�∑ (1− 𝑝𝑝𝑖𝑖)2𝑖𝑖∈𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ∑ 𝑝𝑝𝑖𝑖2𝑖𝑖∈𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 

where 𝑝𝑝𝑖𝑖 denotes the prediction for observation i, 𝐼𝐼𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐  and 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 denote the sets of crisis 

start and non-crisis observations in the test sample, and  𝑁𝑁𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐  and 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐  are the 

respective numbers of crisis and non-crisis observations in the test sample.21 

Predictions are not binary, so that individual prediction errors are somewhere between zero 

and one.22 In practice, one of the main differences between the performance measures is how 

 
 
21 Note that the log-likelihood is the objective function of logit or probit regressions. 
 
22 Many authors transform the continuous predicted probabilities into binary predictions, by applying a 
probability threshold, and then count the number of missed crises and false alarms. While this approach is 
intuitive, it requires the estimation of an additional parameter – the threshold – making it impossible to separate 
the accuracy of the learning algorithm from that of the threshold. 
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they penalize crises that are missed by a large margin. Whenever the predicted probability is 

close to zero for an observation that is within two years of a crisis start, the log-likelihood 

assigns a score near -∞, while the MSE assigns at most a loss of 1. The main difference between 

the unweighted and weighted log-likelihood is the relative importance of missing crises versus 

issuing false alarms. Since the majority of observations are non-crisis observations which are 

easier to predict than crisis observations, the unweighted log-likelihood is typically larger than 

the weighted likelihood.23 

Accuracy can be visualized with the help of calibration curves (see Tetlock, 2017, for an 

extensive discussion). These graphical devices plot a model’s predicted probabilities against 

observed crisis frequencies. The calibration curve thereby answers the question how many 

times a prediction of, say, 40 percent is actually followed by a crisis. If two out of five 40-

percent predictions are followed by a crisis, then the model is very well calibrated. Calibration 

curves are also informative about a model’s discrimination, the extent to which the model 

captures variation in crisis risk. A model that assigns the same probability to each observation 

has zero discrimination, whereas a model that is willing to assign probabilities close to 0 and 

1 exhibits stronger discrimination. Accuracy is assessed as a combination of calibration and 

discrimination. Models with perfect calibration but little discrimination may not be very useful. 

Neither are models with strong discrimination but poor calibration. 

I also display receiver-operator characteristic curves which, for each possible probability 

cutoff, plot true positives against false positives. And I report the area under the receiver-

operator characteristics curve (AUROC), a popular measure of how well the rankings of 

probabilities correspond to observed outcomes (see, e.g., Jorda et al. (2011) or Berg et al. 

(2014)). Intuitively, the AUROC captures the probability that an algorithm selects the crisis 

out of a randomly selected crisis and non-crisis case. The ranking of countries by their risk 

level is important, for example, for creditors trying to identify a group of at-risk countries that 

require more regular monitoring. However, a model’s AUROC does not always provide 

 
 
23 This issue becomes important when comparing predictive performance of a model in advanced vs developing 
countries where the frequency of crises is considerably higher. 
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guidance on the absolute accuracy of individual probabilities: Models with poor calibration 

and poor discrimination can have an AUROC close to 1. 

Significance 

In principle, measures of model performance are specific to the test sample. Given the fact that 

outcomes are correlated within countries and within years across countries, it is important to 

know whether differences in performance are driven by just a few countries or years in the test 

sample. To quantify the degree to which results are sensitive to variations in the test sample, I 

report standard errors around all performance measures. I obtain these standard errors by 

bootstrapping on the test sample. Since crisis starts are correlated across countries and within 

countries across time, I adjust standard errors for two-way clustering, following the procedure 

described in Cameron et al. (2011). 

Similarly, I compute standard errors for the differences in performance between methods (e.g., 

between the AUROC of logit and the AUROC of elastic net), which allows us to perform t-

tests of differences in performance. For log-likelihoods and MSE, these tests correspond to 

Diebold-Mariano (2002) tests, common in the forecasting literature but less so in the literature 

on early warning systems. 

Heuristic benchmarks 

Papers on early warning systems typically rank models in terms of one or several of the 

performance measures presented above. However, while such rankings can give a sense of a 

model’s usefulness relative to other models, interpreting measures of predictive accuracy in 

terms of their absolute usefulness is not straightforward. For example, a log-likelihood score 

of, say, -.2 is better than a log-likelihood score of -.5, but it is not clear a priori whether a score 

of -.2 is good enough for a model to be deemed informative for policy purposes. To put these 

measures into perspective, I let model predictions compete against the predictions obtained 

from simple rules of thumb. I consider three such rules: 

1.      Pooled global averages: this rule of thumb takes the empirical frequency at which all 

countries have entered a crisis between 1980 and year t-1 as the predicted probability of any 
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country entering a crisis in year t+1.24 According to this very naïve rule, all countries are 

assigned the same probability at any point in time, as in Hellwig (2018).25 

2.      Country specific averages: this rule of thumb takes the empirical frequency at which a 

specific country has entered a crisis between 1980 and year t-1 as the predicted probability of 

that country entering a crisis in year t+1. 

3.      A combination (simple average) of the first two rules. 

Figure 4.1 shows the calibration plots for the out-of-sample predictions generated using the 

three historical benchmarks, by income group. The global averages show, unsurprisingly, very 

little variation. And for advanced and emerging markets, global averages overpredict crises 

while they underpredict crises for low-income countries. By contrast, the country-specific 

averages show a relatively large dispersion and are relatively close to the 45-degree line. This 

suggests that, by simply looking at a country’s history, a lot can already be learned about that 

country’s crisis risk – a finding reminiscent of Reinhart et al. (2003) who find that countries 

have idiosyncratic levels of “debt tolerance” that move very little over time.

 
 
24 For a two-year prediction window, the predicted probability is computed as 𝑝𝑝𝑡𝑡 + (1− 𝑝𝑝𝑡𝑡)𝑝𝑝𝑡𝑡. 
 
25 Predictions vary from year to year as the training sample grows. 
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FIGURE 4.1. CALIBRATION PLOTS FOR HEURISTIC BENCHMARKS 
USING HISTORICAL AVERAGES 

 
ADVANCED AND EMERGING MARKET ECONOMIES LOW-INCOME COUNTRIES 

  
  

Note: Plot shows average predictions and outcomes (observed crisis frequencies) by quintile of predictions. 
 

Table 4.1 illustrates how different aspects of predictions affect the performance assessment 

metrics. Since the pooled averages do not discriminate between high and low risk countries, 

their AUROC is very low. By contrast, using country-specific averages leads to better rankings 

into high risk and low risk countries. However, country-specific averages are prone to costly 

mistakes: whenever a country with no crisis history experiences a crisis, the likelihood score 

assigns a heavy penalty which, on average offsets the gains from better discrimination. The 

large mistakes incurred from country-specific averages motivate the choice of the third rule of 

thumb which makes only partial use of country-specific information.  

It is noteworthy that predictive performance in terms of log-likelihood, MSE, and AUROC, 

based on historical experience is higher for market access countries than for developing 

countries. This is purely because there are a lot fewer crises in market access countries, so that 

the underlying uncertainty is significantly smaller.  

It is also interesting to compare the AUROC values in Table 4.1 with some of the values 

reported in the literature and thereby put into perspective the informativeness of those models. 

The combination of historical averages delivers an AUROC of .744 for market access countries 
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and .695 for low-income developing countries. By contrast, the largest in-sample AUROC for 

model-based predictions of financial crises in Jorda et al. (2011) and Jorda et al. (2016) is 

0.719. And for fiscal crises, Cerovic et al. (2018) report an out-of-sample AUROC of 0.69 for 

market access countries and 0.68 for developing countries.26 

C.   Estimation methods 

I now turn to the prediction algorithms used in this paper and their implementation. I limit my 

attention to methods that are fairly close to those commonly used in the applied economics 

literature (see Section II). The descriptions provided in this section are kept relatively non-

technical. A more detailed introduction to machine learning techniques can be found in Hastie 

et al. (2012). The cross-validation procedure for selecting tuning parameters and the tuning 

grids are described in Annex B. 

Penalized logit: elastic net 

To address the potential overfitting problem within the logit framework, I us the elastic net 

(Zou and Hastie, 2005).27 While maximum likelihood estimators like the logit attempt to fit the 

data in the estimation sample as tightly as possible, elastic net limits the model’s ability to fit 

the data by adding a penalty term, punishing larger slope coefficients, to the likelihood 

maximization problem. I follow the conventional notation,  

max𝛽𝛽 �𝐿𝐿(𝑋𝑋,𝑦𝑦;𝛽𝛽) − 𝜆𝜆 �𝛼𝛼 ∑ ||𝛽𝛽𝑖𝑖||𝑘𝑘
𝑖𝑖=1 + (1 − 𝛼𝛼)∑ 𝛽𝛽𝑖𝑖𝑖𝑖

2
��,  

where L is the likelihood function, X is the matrix of predictors, y is a vector of outcomes, β 

is a vector of linear model coefficients, the parameter λ is the marginal size of the penalty and 

the parameter α is the relative importance of the LASSO penalty relative to the Ridge penalty.28 

The values of hyperparameters λ and α are chosen by searching over a grid of values and 

evaluating model-performance through cross-validation. When α=1, the above maximization 

 
 
26 For the subsample of commodity exporting developing countries, they report an AUROC as high as 0.78. 
 
27 Elastic net generalizes the Ridge (Hoerl and Kennard, 1970) and LASSO techniques (Tibshirani, 1996). 
 
28 When λ is zero, then the estimated β corresponds to the logit estimator. When λ → ∞ , then the estimated 
values of β converge to zero. When 𝛼𝛼 = 1 (LASSO) and λ is sufficiently large, some elements of β are set to 
exactly zero. Whenever 𝛼𝛼 = 0 (Ridge), all elements of β are non-zero.  
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problem can be interpreted as a constrained optimization problem where 𝜆𝜆  is the Lagrange 

multiplier on a fixed budget constraint: ∑ ||𝛽𝛽𝑖𝑖||𝑘𝑘
𝑖𝑖=1 < 𝑐𝑐.  

Classification trees 

Classification trees, formally introduced by Breiman et al. (1984), are sequential decision rules 

by which a sample is recursively divided into bins with different levels of crisis risk. The 

sample splitting is done by applying thresholds to the variable that is (locally) the most 

informative (in terms of Gini index) about crisis risk within a given subsample.29  

Trees also have a range of hyperparameters: To reduce the risk of overfitting, I impose a 

maximum tree depth of 4 levels. In addition, I impose that each node must have at least 7 

observations, that any split must improve the Gini by at least 0.01, and that additional splits 

are attempted only if a node has at least 20 observations. While this (ad-hoc) parametrization 

is more restrictive than in Manasse et al. (2003), I show that it is already extremely prone to 

overfitting, despite allowing for only up to 16 leaves. 

While classification trees have been used in various economic applications, they also have 

some well-known weaknesses: unlike for most linear estimators, estimating the globally 

optimal tree (i.e., the maximum likelihood fit for a given tree depth) would require evaluating 

an infinite number of combinations. Instead, trees are estimated to find a locally optimal tree, 

so that finding a good fit may require deep trees (i.e., a large number of parameters) which 

come with an increased risk of overfitting. Moreover, trees are inherently unstable: the tree 

structure is path dependent in that the first split (i.e., at the top node) determines the importance 

of variables in downstream nodes. Small variations in the underlying estimation sample can 

lead to changes in the first split which then propagate through the entire tree.  

Stand-alone classification trees are found to be unreliable in many applications, but their 

performance is often greatly enhanced when predictions made by several such trees are 

combined to generate “crowd wisdom”. Gains from aggregating predictions across tree models 

are achieved to the extent that these trees are sufficiently diverse so that they offset each other’s 

prediction errors, thereby complementing each other. I use two of the most popular machine 

 
 
29 The Gini measures the class imbalance within a sample and is defined as ∑ (1 − 𝑝𝑝𝑖𝑖2)𝑖𝑖 ∈{𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 ,𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐} .  
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learning methods to showcase the gains from aggregating the predictions made by weak 

individual models: gradient boosted trees and random forest. 

Gradient boosting 

Trees can be grown in a targeted way so that they complement each other. If a model consists 

of N trees, the additional N+1th tree can be grown to explain the unexplained residuals from 

the first N trees, thereby “boosting” the fit of the ensemble. I use the “XG boost” 

implementation by Chen et al (2015) which relies on gradient descent. I tune over (i) the 

number of trees; (ii) the maximum permissible depth of any single tree; (iii) the minimum gain 

required for an additional split; and (iv) the minimum size of any leaf. 

Random Forest 

In the random forest algorithm (Breiman, 2001), a large number of trees is aggregated, where 

diversity is created through double randomization: (i) each tree is estimated on a synthetic 

sample that is drawn at random from the original estimation sample; and (ii) at each node of 

each tree, the tree growing algorithm is limited in its choice of splitting variables. That is, while 

the standard classification trees can choose among all k predictors, the trees in a random forest 

can only choose among a subset of mtry < k randomly selected predictors. The tuning parameter 

mtry is chosen from a grid of candidate values through cross-validation. As suggested by 

Breiman, I do not place any other restrictions on the tree growing process, so that each tree is 

grown exhaustively and can perfectly separate crisis starts from non-crisis observations in the 

random sample it is grown on.30 The number of trees is set to 3000. 

D.   Data 

The analysis relies on a large database of possible predictors of fiscal crises (see Annex Table 

3 for a detailed variable list). The predictors include a large array of country-specific economic 

and institutional variables and a number of global variables, such as interest rates, commodity 

prices, and information on financial market conditions.  

 
 
30 Each tree is overfitted to perfectly explain some (randomly selected) observations. But different trees are 
overfitted to different samples, and their prediction errors due to overfitting tend to cancel each other out as the 
number of trees becomes large. See Goulet Coulombe (2020) for an instructive interpretation of Random Forest. 
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Since I am agnostic about the form in which a variable would have its strongest predictive 

power, I make heavy use of feature engineering by using various permutations (e.g., levels, 

first differences, 3-year differences) and lags. In addition, I include global averages for a 

considerable number of series, to reduce the risk of confounding country-specific with global 

developments. As a result of these operations, the number of individual series used in the 

analysis reaches 748. 

While many of these predictors are likely to be collinear and thus potentially redundant, a 

notable feature of the machine learning methods used here is that (unlike OLS or logit models) 

they are able to use collinear variables. This will allow us to investigate questions such as 

whether the models pay more attention to revenues, expenditure, or the overall fiscal balance. 

Or whether they put more weight on public external debt, private external debt, or total external 

debt. Similarly, we can include the current level, the lag, and the first difference of a variable. 

To avoid any undue influence of outliers in linear models, I winsorize each variable at the 1st 

and 99th percentile. 

FIGURE 4.2. TOTAL IMPUTATION BY INCOME GROUP AND YEAR 

(PERCENT) 
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E.   Missing values 

A potentially problematic issue for any empirical work is the treatment of missing values. My 

aim is for the models to provide predictions for all countries, regardless of data availability. 

From a policy perspective, a model that refrains from making predictions for certain countries 

is of limited use, so that we should favor keeping all observations in the sample regardless of 

data coverage. From a methodological point of view, crisis risk is likely correlated with data 

availability and quality, so that any performance assessment would be affected by dropping 

observations. As will become clear below, losing observations from the training sample due to 

missing values can also be extremely costly, because smaller samples exacerbate the 

overfitting problem. 

Hence, I favor keeping all observations in the sample, which requires some form of imputation. 

Whenever the value of a variable is missing, I replace it with the median over the entire training 

sample of the non-missing values for that variable. While this is arguably the most 

unsophisticated form of imputation (see Hastie et al. 2012), I choose it to demonstrate that even 

a very simple approach can lead to sizable gains in performance. I expect that future research 

into alternative and more involved imputation methods will yield additional gains. As Figure 

4.2 shows, most of the missing data is in the 1980s, while since 2000 it is significantly less of 

a problem and similar across country groups.   

Imputation is particularly useful when using a large number of variables since, without 

imputation, we would lose additional observations for any variable added to the model. By 

imputing variables, I avoid variable selection based on data availability. Variables with smaller 

coverage are more noisy, but I leave the decision whether the noise outweighs the information 

content to the algorithm. 

V.   Predictive Performance: Baseline Predictors 

I now compare the out-of-sample performance of the various modeling approaches. In this 

section, I rely only on a small set of predictor variables that have been identified as relevant by 

the literature. Keeping the set of variables fixed for now allows me to analyze the choice of 

prediction models separately from the issue of variable selection. Hence, the question in this 
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first part is whether some models are better at aggregating the information contained in a given 

set of variables.  

I use ten variables that are closely related to those frequently found to be statistically significant 

in the literature. These baseline predictors are: log(GDP per capita), real GDP growth, foreign 

exchange reserves (in months of imports), the current account balance (in percent of GDP), 

trade openness (measured as the 10-year average of the sum of exports and imports in percent 

of GDP), the real exchange rate (measured using PPP price levels, as in Rodrik, 2008), total 

external debt (in percent of GDP), general government interest expense (in percent of GDP), 

Public debt (in percent of GDP), and the Polity IV score.31 These predictors are already relevant 

in the literature preceding my test sample. Thus, in the spirit of Berg and Pattillo (1999), I ask 

how well one would have been served in the recent past by the predictions of models developed 

more than 15 years ago. 

The section starts by demonstrating the overfitting problem of econometric approaches without 

pooling or imputation. It then compares the econometric approach with machine learning 

algorithms before discussing imputation and sample pooling.  

A.   Econometric approach 

As a first step, I revisit the logit model and classification trees, the most commonly used 

approaches in the literature on fiscal crises. To be closer to the literature, I also refrain from 

imputing missing values for now, so that any observations with missing values are dropped 

from the sample. And, in line with previous authors, I split the training samples by income 

group.  

The first three columns in panel (i) of Table 5.1. report the performance of the logit model for 

advanced and emerging market economies. The in-sample performance (column (i)) reflects 

the model estimated on market access country data from 2001-2015. By construction, the in-

sample likelihood fit is the best a logit model can attain. When looking at out-of-sample 

 
 
31 The choice of variables is guided by the survey in Moreno Badia et al. (2020); I use interest expense instead 
of debt service, due to the wider data coverage. 
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performance (column (ii)), the performance deteriorates dramatically across all measures. Note 

that the AUROC of 0.697 is nearly identical to that reported in Cerovic et al (2018). 

In principle, the poor out-of-sample performance could be due to structural breaks: a model 

estimated on data from the 1979-2000 may be of limited use for the post-2000 era. However, 

performance deteriorates further when I drop the 1980s from the training data (column (iii)), 

which suggests that the smaller sample leads to even more overfitting.  

Columns (iv)-(vi) of Table 5.1, panel (i), report the results from using a classification tree 

instead of the logit. In sample, the tree easily outperforms the logit model. This suggests that 

non-linearities could be a promising way to improve predictive performance. Out-of-sample, 

however, the classification tree model proves to be even less useful than the logit model. This 

comparison of the tree-based approach highlights the dilemma of predictive modeling: a model 

that allows for non-linearities appears to provide a better narrative for the historical experience. 

But the better in-sample fit comes at the cost of worse out-of-sample performance. 

To put the performance measures further into perspective, the significance stars indicate the 

extent to which performance is statistically different from that of my third heuristic benchmark 

introduced in Section IV.B above (i.e., the combination of country-specific and pooled 

averages), reported in column (vii).32 While in-sample fit of the logit model is better than the 

heuristic benchmark for all but one measure, the differences in AUROC and MSE are not 

statistically significant. By contrast, the in-sample fit of the tree model is significantly better 

than the historical benchmark along all dimensions. Out of sample, neither model can robustly 

outperform the historical benchmark. And the weighted log-likelihood is significantly worse. 

These findings should give the reader pause: modeling approaches that are widely used in 

policy applications are not any more useful than an uninformed rule of thumb. 

When looking at low-income countries (panel (ii) of Table 5.1), a similar picture emerges. One 

key difference in performance relative to advanced and emerging markets is that LIDCs 

experience more crises, and crisis years are more difficult to predict. Hence, the unweighted 

 
 
32 Note that the numbers in column (vii) of Figure 5.1 are somewhat different from those in Table 4.1, as the test 
sample now covers only those observations with non-missing values for the ten baseline predictors. 
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likelihood is worse for low-income countries than for more developed countries. The weighted 

likelihood, by contrast is higher for low-income countries, because models assign higher crisis 

probabilities to low-income country observations, so that crises are “missed” by a smaller 

margin. Overall, the mixed performance for LIDCs suggests that models with the most 

frequently used predictors are not sufficiently useful for predicting fiscal crises in developing 

countries. Of course, the variable selection is based on a literature that has mainly focused on 

countries with market access, so that the worse performance in a LIDC context is not entirely 

surprising. 

B.   Machine learning algorithms 

Table 5.2.A compares the logit model (column (i)) with the three machine learning algorithms 

used in this paper. For advanced and economies, the logit model is outperformed by all three 

other methods along nearly every performance measure. And random forest dominates the 

other three methods, not just in terms of the level of performance measures, but also in terms 

of stability, as can be seen from the smaller standard deviations. Tree ensemble methods (i.e., 

random forest and XG boost) outperform linear methods (logit / elastic net), and – except for 

the MSE – the improvements in performance are statistically significant, as can be seen from 

Table 5.2.B. Random forest also outperforms all three heuristic benchmarks, and with high 

probability, though the probability is somewhat lower for the weighted log-likelihood. 

For low-income developing countries, the picture is more mixed. Random forest still 

outperforms the logit model along all criteria, but otherwise the ranking is more ambiguous. 

And not all of the differences between random forest and logit are statistically significant (see 

Table 5.2.B). More concerning is that none of the four models can systematically outperform 

the heuristic benchmarks. Again, this suggests that the variable selection for this baseline 

specification is not well suited for low-income countries. 

C.   Imputation and pooling 

As discussed above, one way to potentially improve predictive performance is by expanding 

the training sample, so that models become more robust to overfitting. I now explore two ways 

to expand the training sample: (i) pooling all countries into a single sample instead of splitting 
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the estimation sample by income group; and (ii) replacing missing values with an imputed 

value (the sample median). 

To what extent can imputation or pooling improve the performance of a logit model? Table 

5.3.A shows the effect of adding variable imputation and sample pooling to the logit estimator. 

When looking at countries with market access (panel (i)), expanding the training sample to 

include LIDCs (column(ii)) leads to marginally better performance, except for the weighted 

log-likelihood. Imputation of missing values without sample pooling (column (iii)) leads to a 

doubling of the training sample size relative to column (i) and to pronounced gains in 

performance that are statistically significant (see Table 5.3.B). Once missing values are 

imputed, there appear to be no benefits from pooling, as can be seen by comparing columns 

(iii) and (iv). These results suggest that imputation of missing values reduces the overfitting 

problem to an extent that pooling the training sample to include LIDCs adds more noise than 

valuable information. 

For LIDCs (panel (ii of Table 5.3.A), pooling and imputation combined (column (iv)) improves 

the performance relative to column (i) across all criteria. Table 5.3.B shows that, for the 

weighted log-likelihood and AUROC, we can say with relatively a high degree of confidence 

(78 percent and 84 percent, respectively) that these improvements are not just driven by a few 

countries or years in the test sample. When applied individually (columns (ii) and (iii)), the 

benefits from pooling or imputation are not as clear. The doubling of the sample through 

imputation (column (iii)) appears to add a large amount of noise, so that the log-likelihoods, 

both weighted and unweighted, deteriorate relative to column (i). By contrast, when using 

information from advanced and emerging market economies (column (ii)), the benefits from 

tripling the sample size marginally outweigh the costs of a more heterogeneous training 

sample. 

Table 5.4. reports the performance measures when pooling and imputing missing values for all 

learning algorithms. Again, the test sample consists only of complete observations, so that it is 

identical to the test sample in Table 5.2.A and results are comparable. Most changes relative 

to Table 5.2.A are relatively small. For advanced and emerging market economies, the 

unweighted likelihood and AUROC systematically improves, and random forest does 
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marginally better across all performance measures – and standard errors are smaller than in 

Table 2.5.A. It is worth noting that logit exhibits the largest gains in performance relative to 

Table 5.2.A. Unlike the other methods, logit has no built-in way of addressing the overfitting 

problem, so that it benefits the most from the expanded training sample. 

D.   Graphical Comparison 

Figures 5.1 and Figure 5.2 visualize the results so far. For advanced and emerging market 

economies, the logit models are too confident about the ability to assign high and low 

probabilities. And observations in the middle quintile of predicted probabilities have a lower 

actual crisis frequency than those in the 2nd lowest quintile – a poor ranking of crisis risk. By 

contrast, random forest predictions are relatively well calibrated, with a monotonically 

increasing curve: on average, higher predictions imply higher observed crisis frequencies, and 

the calibration curve is close to the 45-degree line. And random forest is particularly reliable 

in identifying observations with low crisis risk. The ability to better rank crisis risk is also 

expressed in the shape of the ROC curve (Figure 5.1.B).  

FIGURE 5.1. OUT-OF-SAMPLE PERFORMANCE WITH 10 PRE-SELECTED VARIABLES, ADVANCED 
AND EMERGING MARKET ECONOMIES 
A. CALIBRATION CURVES B. ROC CURVES 
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FIGURE 5.2. OUT-OF-SAMPLE PERFORMANCE WITH 10 PRE-SELECTED VARIABLES, LOW-INCOME 
COUNTRIES 

A. CALIBRATION CURVES B. ROC CURVES 

  
 

 
 

 

For low-income developing countries, the differences in performance in Figure 5.2 are at best 

marginal. The random forest model is less prone to assigning high probabilities and hence 

overpredicts less than the logit model. But both calibration curves are non-monotonic. 

VI.   Predictive Performance: Model-Based Variable Selection 

How do the various statistical methods fare if we don’t impose my literature-based priors on 

what the relevant predictors should be? And can we improve the predictive performance for 

low-income countries if we allow for additional predictors? I now expand the set of variables 

to the full set of all 748 variables, as described in Section IV.D above. And, to make use of the 

largest possible training samples, I impute missing values (see Section IV.E) and pool the 

sample across income groups (see Section IV.A). The results are reported in Tables 6.1.A and 

6.1.B. Note that I now impute missing values not just in the training but also in the test sample, 

so that the performance measures reflect performance for all observations, not just for those 

with complete observations.  
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Linear models 

For the logit model, variable selection is done by applying a stepwise forward selection 

algorithm. That is, starting with the intercept, I expand the model by iteratively adding the 

variable that maximizes the model fit, evaluated using the Bayesian Information Criterion 

(BIC), until there is no more scope for improvement. The BIC offers a parametric approach to 

address the risk of overfitting from too many variables (see, e.g., Berg et al., 2014). It selects 

only 25 variables on average (over the 15 rolling regressions). Even so, Table 6.1.A shows that 

the resulting model (column (ii)) performs worse than the model with ten pre-selected variables 

(shown in column (i)) – only the AUROC shows marginal improvements.  

The elastic net, by contrast, is able to consider a large number of candidate predictors without 

a deterioration in performance (columns (iii) and (iv)). And for low-income developing 

countries, the additional predictors lead to improved performance measures. Interestingly, the 

elastic net models are less sparse than the logit models with BIC selection: On average over 

the 15 rolling regressions, elastic net makes use of more than 116 variables out of a possible 

748, suggesting that some redundancy inherent in a large set of predictors enhances the 

robustness. As a result, the performance improves relative to the logit/BIC approach along all 

dimensions. Table 6.2.B shows that the differences in performances between logit and elastic 

net are unlikely to be spurious. Still, when compared against the historical benchmarks, the 

performance of the elastic net algorithm remains mixed. 

The finding that BIC leads to poor out-of-sample fit and a smaller set of predictors is in line 

with the findings from a more systematic comparison of methods conducted by Goulet 

Coulombe et al. (2020a). To understand the differences between logit and elastic net, it is 

important to keep in mind that the BIC approach limits the number of variables but maintains 

the maximum likelihood principle. That is, once the variables are selected, their coefficients 

are selected to maximize the in-sample fit which, in small samples, mechanically leads to 

overfitting (see, e.g., Copas, 1983). By contrast, the elastic net restricts the estimator’s ability 

to fit the data and thereby reduces the risk of overfitting. A second difference is that the BIC 

determines the number of variables based on in-sample fit, whereas the penalty parameter for 

elastic net is cross-validated, based on out-of-sample accuracy. 



 

31 

Tree ensembles 

Gradient boosted trees (XG boost) deal with the large number of variables by using only those 

variables that are deemed informative and ignoring the rest. For market access countries, 

performance improves marginally relative to the elastic net, though not always in a statistically 

significant way. For LIDCs, performance improves relative to the logit approaches, but not 

relative to elastic net. And performance is not always superior to that of the heuristic 

benchmarks. 

In the case of random forest, the large number of predictors is potentially problematic. It is 

likely that many of the predictors are noise and – unlike logit with BIC, elastic net, or gradient 

boosted trees – a stand-alone random forest has no way of entirely ignoring those noisy 

variables. Indeed, the variable importance chart (Figure 7.1) below shows that more than half 

of all variables provide no valuable information. Hence, there are potential benefits from pre-

selecting variables. I do so by using recursive feature elimination (RFE).33 The algorithm 

iteratively estimates a random forest, drops the least important variables, and re-estimates the 

model until performance (cross-validated, within the training sample) stops improving.  

In columns (viii) and (ix) of Table 6.1.A, I report both the stand-alone random forest and the 

random forest with RFE. Despite having to use many noisy predictors, the stand-alone random 

forest outperforms the logit with BIC along every dimension. Note also that performance is 

more robust than for logit across the test sample, as can be seen from the smaller standard 

deviations. And, finally, random forest outperforms the heuristic benchmarks across all 

measures, and with relatively high degree of confidence (see Table 6.1.B). 

For random forest, the AUROCs and weighted log-likelihoods are particularly large. The fact 

that these measures put more weight on crisis than non-crisis observations suggests that 

random forest with its many built-in redundancies is particularly well-suited to avoiding 

“missed” crises. And for low-income countries, the performance of the random forest with 748 

 
 
33 Degenhardt et al. (2011) identify RFE as the most popular variables selection method for random forest. For a 
comparison of alternative selection algorithms in the context of fiscal crises, see Moreno Badia et al. (2020).  
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variables is substantially better than the performance with pre-selected variables, suggesting 

that the set of predictors used in the baseline specification above was too narrow.  

When I combine the random forest with RFE, the results are qualitatively similar but more 

significant, statistically speaking.34 While the ranking between random forest with and without 

RFE is ambiguous, performance with RFE improves relative to all other methods. That said, 

for advanced and emerging markets, the AUROC and the weighted log-likelihood decline 

when using RFE.35  

FIGURE 6.1. OUT-OF-SAMPLE PERFORMANCE WITH VARIABLE SELECTION, ADVANCED AND 

EMERGING MARKET ECONOMIES 

A. CALIBRATION CURVES B. ROC CURVES 

  
 

Figure 6.1.A illustrates the calibration of logit and random forest for advanced and emerging 

economies. As in the specification with preselected variables, the logit model is too confident 

when assigning low crisis probabilities. The bottom quintile of predictions is very close to zero, 

 
 
34 RFE selects 93 out of the 748 variables. 
 
35 These declines could be, to some extent, mechanical and owed to the variable selection procedure: selection is 
based on a variable importance measure that is calculated by placing equal weight on each observation. For 
policy applications where the weighted likelihood or AUROC is the relevant performance measure, a RFE with 
variable selection based on a weighted variable importance measure would be more suitable. 
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but this group includes more crisis observations than the second quintile. By contrast, the 

calibration curve of the random forest model is increasing and remains fairly close to the 45-

degree line. For the top quintile of predictions, the random forest model is exaggerating crisis 

risk, but less than the logit model.  

FIGURE 6.2. OUT-OF-SAMPLE PERFORMANCE WITH VARIABLE SELECTION, LOW-INCOME 

DEVELOPING COUNTRIES 

A. CALIBRATION CURVES B. ROC CURVES 

  
For low-income countries (Figure 6.2), the differences in calibration are more pronounced. 

While the random forest’s calibration curve follows the 45-degree line closely, the logit model 

with BIC obtains a flatter calibration curve, overpredicting crises in the upper quintiles and 

underpredicting in the lower quintiles. 

VII.   Predictors of Fiscal Crises 

I now turn to the issue of predictor importance. That is, I ask which variables are identified as 

important predictors by the various statistical algorithms. It should once more be emphasized 

that the purpose of this exercise is to identify early warning indicators, not causes of fiscal 

crises.36  

 
 
36 A canary in the coalmine is a useful early warning indicator if it prompts miners to evacuate their shaft. It is 
less useful if miners confound correlation and causation and decide to resuscitate the canary. 
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To assess predictor importance, I re-run the algorithms used above, this time on the full 1979-

2015 sample (i.e., without retaining a test sample). Annex Table 4 lists the tuning parameter 

values for each model.  

The variable importance measures are as follows: 

- For linear models (logit and elastic net), I use each predictor variable’s slope coefficient 

and scale it by multiplying with the variable’s standard deviation. 

- For gradient boosted trees, I compute the improvement in fit (measured by the 

reduction in Gini) attributed to each predictor. 

- For random forest, I compute the out-of-bag permuted predictor importance (see e.g., 

Hastie et al., 2012).  

 

Dense and sparse models 

When interpreting these importance measures, it is useful to keep in mind that there are 

substantial differences in shrinkage – i.e., in how the individual methods treat predictors that 

are collinear and hence potentially redundant:37 At the one extreme, sparse estimators try as 

much as possible to reduce the number of predictors used, so that the weight of two collinear 

variables is allocated entirely to one variable while the other variable is dropped. This is exactly 

the case for elastic net which in our case corresponds to a LASSO regression, since the optimal 

value for the tuning parameter α is found at 1. At the other end of the spectrum, dense 

estimators keep all variables, distributing the weights evenly over collinear predictors. This is 

the case for random forest, where it is difficult for any single variable to get an outsize share 

of importance. Giannone et al. (2018) and Goulet Coulombe (2020b) find that, in 

macroeconomic applications, dense models are typically superior in performance. Gradient 

boosted trees inhabit a space somewhere in the middle.  

The differences in variable selection are illustrated in Figure 7.1. which ranks the variables 

according to their importance. While random forest uses all variables, elastic net reduces the 

set to 120 variables, and gradient boosted trees are somewhere in the middle. I plot the variable 

 
 

37 See Belloni and Chernozhukov (2011) and Ng (2013) for a more formal discussion of sparse and dense 
estimators.  
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importance measures relative to the importance of the 10th most important variable. The elastic 

net model attributes greater importance to the top 10 variables, whereas the weights are 

distributed more evenly in the random forest model where important variables have to share 

their role with other variables that are closely correlated.  

 

Due to the differences in shrinkage, a predictor could be identified as highly informative by 

one algorithm and as merely redundant by a different algorithm. Moreover, the informativeness 

of each variable naturally depends on whether other, correlated, variables are available. Despite 

these differences and despite using model-specific measures of variable importance, I find a 

remarkable stability of predictor importance rankings across the various approaches. 

The plot for random forest in Figure 7.1. also illustrates the source of the gains obtained from 

recursive feature elimination in the previous section: most of the variables’ importance is close 

zero or even negative. In other words, some predictors are not just redundant but irrelevant for 

FIGURE 7.1. VARIABLE IMPORTANCE MEASURES 

 
 
Notes: importance measures refer to (i) slope coefficient (scaled by predictor’s standard deviation) for logit and elastic 
net; (ii) reduction in Gini for XG boost; and (iii) out-of-bag permuted predictor importance for random forest. Importance 
measures are expressed relative to the 10th most important variable. 
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predicting crises. Eliminating such noise factors allows the model to focus on the more 

important predictors. 

Top 30 predictors 

In Table 7.1 I document the rankings of variables within the top 30 for each prediction method. 

A few results stand out: first, there is considerable overlap across machine learning methods 

in the variables selected. The fact that crisis history and GDP per capita are within the top 3 

for elastic net, boosted trees, and random forest is perhaps not surprising. But the agreement 

across methods goes further than that: boosted trees and random forest agree on 7 variables 

that are in the top 10.  

Results from machine learning algorithms confirm the importance of several predictors used 

in my literature-based model in Section V: GDP per capita, debt service, external debt, and the 

current account balance are found among the more important predictors. For random forest, 

the current account’s importance is shared with external gross financing needs, due to the 

correlation between the two series. Foreign exchange reserves are found to be important, but 

in random forest this importance again is divided between several indicators, notably ratios of 

debt amortization to reserves. By contrast, none of the algorithms identify trade openness, the 

real exchange rate, or the real GDP growth rate as important predictors.  

The rankings moreover suggest that both demographics (captured by the size of the working-

age population and the age dependency ratio) and governance (measured by the quality of 

bureaucracy) have a strong role in predicting crises. Other important variables include gross 

domestic savings, inflation, and volatility measures. The role of volatility is intuitive and 

consistent with economic theory. Merton (1974) suggests that debt default can be seen as an 

option. The higher the volatility of the underlying asset (in this case: the economy), the more 

likely it is that an option is exercised. It is not the materialization of shocks but their volatility 

and implied likelihood of materializing that helps us predict crises ex ante. 

It is also worth taking note of some of the series that are not found in the top 30 ranking for 

random forest and boosted trees: government revenues (apart from foreign development aid), 
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expenditures, or deficits are absent, as are interest-growth differentials.38 And public debt only 

matters to the extent that it is owed to external creditors. The same is the case for global 

variables such as oil prices or interest rates. These variables are found to be either relatively 

redundant or irrelevant for predicting crises. 

Overall, the predictors suggest that external sector variables, both stocks and flows, have key 

role as early warning indicators. This finding is consistent with narratives in which foreign 

currency borrowing by both the private and public sector creates a vulnerability and exposes 

countries to external shocks (see, e.g., Eichengreen and Hausman, 1999). 

VIII.   Conclusion 

This paper has explored the benefits of using machine learning tools to assess the risk of fiscal 

crises. In several ways, the approach taken in this paper is a significant departure from 

statistical analysis in macroeconomics. The focus is not on parameter identification and 

statistical significance (the internal validity of narratives) but on external validity – the extent 

to which a narrative generalizes over time and are helpful for making accurate predictions.  

My analysis shows that crisis predictions based on established econometric approaches are of 

limited use, given that they cannot outperform a relatively naïve prediction rule. It also shows 

that the performance ranking of algorithms can depend the performance measure used and that 

differences are not always statistically significant. Even so, random forest approaches 

systematically outperform the heuristic benchmarks and other statistical models. Relying on a 

single model for all countries and imputation of missing values does not lead to lower 

predictive performance. Neither does taking an agnostic approach by allowing for a large set 

of predictor variables. For low-income developing countries, expanding the set of variables 

and leaving variable selection to an algorithm leads to considerable gains in accuracy. 

 
 
38 The low importance of fiscal balances, while somewhat surprising, is in line with the earlier literature, as 
pointed out by Van Rijkjeghem and Weder (2009). Van Rijkjeghem and Weder (2009) find that fiscal balances 
have some predictive value only when reserves are low or international liquidity conditions are tight.  
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Tables for main text 

Table 4.1. Predictive performance of historical averages 

 

pooled
country-
specific

combination pooled
country-
specific

combination

accuracy of predictions:

log(likelihood) -0.353 -0.484 -0.314 -0.655 -1.01 -0.578
(0.032) (0.126) (0.031) (0.056) (0.231) (0.049)

log(likelihood), weighted -0.972 -1.778 -0.886 -0.97 -1.515 -0.82
(0.003) (0.416) (0.025) (0.003) (0.424) (0.023)

MSE 0.098 0.092 0.089 0.224 0.193 0.198
(0.014) (0.012) (0.012) (0.024) (0.019) (0.02)

accuracy of rankings:
AUROC 0.362 0.75 0.744 0.379 0.701 0.695

(0.031) (0.03) (0.031) (0.033) (0.035) (0.035)    
size of test sample 1323 1323 1323 555 555 555

of which: crisis observations 136 136 136 165 165 165

advanced and emerging market 
economies

low-income developing countries

Note: bootstrapped standard deviations in parentheses (with two-way clustering by country and year, following 
Cameron et al. 2008); backward-looking averages are used as the predicted probability of a crisis start occurring in year 
t+1 or t+2; test sample covers t = 2001-2015.
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Table 5.1. Baseline predictors: benchmarking in-sample and out-of-sample 
performance of econometric approaches 

 

 
  

(i) (ii) (iii) (iv) (v) (vi) (vii)

historical averages

in-sample in-sample
impute in training sample no no
impute in test sample no no
training sample coverage AE + EM AE + EM
training sample start year 2001 1979 1989 1979 1979 1989
accuracy of predictions:

log(likelihood) -0.28* -0.302 -0.31 -0.231*** -0.332 -0.33 -0.307
(0.037) (0.034) (0.036) (0.035) (0.041) (0.044) (0.03)

log(likelihood), weighted -1.03*** -1.038*** -1.094*** -0.844 -0.968** -1.06*** -0.878
(0.058) (0.062) (0.078) (0.071) (0.07) (0.093) (0.026)

MSE 0.081 0.086 0.087 0.064*** 0.099** 0.095 0.086
(0.013) (0.012) (0.012) (0.012) (0.014) (0.014) (0.012)

accuracy of rankings:
AUROC 0.756 0.697 0.682* 0.822** 0.694 0.718 0.745

(0.037) (0.039) (0.04) (0.027) (0.036) (0.04) (0.032)

average size of training sample 1148 1309 994 1148 1309 994
of which: crisis observations 112 146 108 112 146 108

size of test sample 1148 1148 1148 1148 1148 1148 1148
of which: crisis observations 112 112 112 112 112 112 112

historical averages

in-sample in-sample
impute in training sample no no
impute in test sample no no

training sample coverage LIDC LIDC

training sample start year 2001 1979 1989 2001 1979 1989
accuracy of predictions:

log(likelihood) -0.638 -0.692 -0.705 -0.506*** -1.596* -1.911* -0.676
(0.033) (0.038) (0.034) (0.065) (0.501) (0.739) (0.055)

log(likelihood), weighted -0.697*** -0.741** -0.733*** -0.548*** -1.67*** -1.86*** -0.805
(0.023) (0.034) (0.033) (0.121) (0.51) (0.567) (0.022)

MSE 0.223 0.246 0.253 0.167*** 0.318*** 0.298* 0.24
(0.015) (0.017) (0.015) (0.018) (0.024) (0.033) (0.024)

accuracy of rankings:
AUROC 0.627 0.553 0.547* 0.803*** 0.483*** 0.53* 0.628

(0.044) (0.054) (0.052) (0.042) (0.039) (0.042) (0.049)
average size of training sample 355 276 218 355 276 218

of which: crisis observations 134 122 97 134 122 97
size of test sample 355 355 355 355 355 355 355

of which: crisis observations 134 134 134 134 134 134 134

out-of-sample
no
no

out-of-sample
no
no

AE + EM

combination of 
country-specific 

and pooled 
average

combination of 
country-specific 

and pooled 
average

Note: bootstrapped standard deviations in parentheses (with two-way clustering by country and year, following Cameron et al. 2008). All models 
use the same 10 variables to predict the probability of a crisis start occurring in year t+1 or t+2; test sample covers t = 2001-2015. Out-of-sample 
performance obtained from 15 rolling regressions. Stars indicate whether performance is significantly different from the historical benchmark in 
column (vii), sith significance levels 10%, 5%, and 1% indicated by  *,**, and ***, respectively.

(i) Advanced and emerging market economies

(ii) Low-income countries

logit classification tree

logit classification tree

out-of-sample

out-of-sample
no
no

LIDC

no
no

AE + EM

LIDC
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Table 5.2.A. Baseline predictors: predictive performance of different models  

(without imputation or pooling) 

  
  

(i) (ii) (iii) (iv)

method Logit Elastic net XG boost Random forest

accuracy of predictions:
log(likelihood) -0.302 -0.3 -0.287 -0.281

(0.034) (0.033) (0.034) (0.027)
log(likelihood), weighted -1.038 -1.053 -0.902 -0.906

(0.062) (0.035) (0.055) (0.045)
MSE 0.086 0.085 0.083 0.081

(0.012) (0.012) (0.012) (0.011)
accuracy of rankings:

AUC 0.697 0.697 0.75 0.772
(0.039) (0.033) (0.033) (0.024)

average size of training sample 1309 1309 1309 1309
of which: crisis observations 146 146 146 146

size of test sample 1148 1148 1148 1148
of which: crisis observations 112 112 112 112

(ii) Low-income developing countries
impute in training sample no no no no
impute in test sample no no no no
training sample coverage LIDC LIDC LIDC LIDC
method Logit Elastic net XG boost Random forest
accuracy of predictions:

log(likelihood) -0.692 -0.666 -0.68 -0.681
(0.038) (0.012) (0.024) (0.026)

log(likelihood), weighted -0.741 -0.7 -0.718 -0.702
(0.034) (0.004) (0.016) (0.022)

MSE 0.246 0.237 0.243 0.244
(0.017) (0.006) (0.011) (0.012)

accuracy of rankings:
AUROC 0.553 0.546 0.53 0.577

(0.054) (0.028) (0.041) (0.043)
average size of training sample 276 276 276 276

of which: crisis observations 122 122 122 122
size of test sample 355 355 355 355

of which: crisis observations 134 134 134 134

Note: bootstrapped standard deviations  in parentheses (with two-way clustering by country and year, following Cameron 
et al. 2008). All models use the same 10 variables to predict the probability of crisis start occurring in year t+1 or t+2; test 
sample covers t = 2001-2015. Out-of-sample performance obtained from 15 rolling regressions. Training samples start in 
1979.

Linear Tree ensembles
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Table 5.2.B. Baseline predictors: significance of differences in performance of different 
models (without imputation or pooling) 

 

 
  

glo
bal 

av
erag

e

co
untry

 av
erag

e

mix o
f a

ve
rag

es

logit elasti
c n

et

XG boost

random fo
rest

glo
bal 

ave
rag

e

co
untry

 ave
rag

e

mix o
f a

ve
rage

s

logit elasti
c n

et

XG boost

random fo
rest

logit 0.83 0.97 0.24 - 0.38 0.13 0.02 1 0.91 0.61 - 0.16 0.33 0.34
elastic net 0.92 0.98 0.23 0.63 - 0.09 0.02 1 0.92 0.78 0.84 - 0.83 0.76
XG boost 0.98 0.98 0.7 0.87 0.91 - 0.22 1 0.91 0.69 0.67 0.17 - 0.52
random forest 0.98 0.99 0.87 0.98 0.98 0.78 - 1 0.91 0.68 0.66 0.24 0.48 -

logit 0.99 0.97 0.08 - 0.77 0.00 0 1 0.9 1.0 - 0.08 0.22 0.09
elastic net 1 0.97 0.01 0.23 - 0.00 0 1 0.92 1.0 0.92 - 0.91 0.54
XG boost 1 0.99 0.87 1 1 - 0.55 1 0.91 1.0 0.78 0.09 - 0.18
random forest 1 0.99 0.89 1 1 0.45 - 1 0.92 1.0 0.91 0.46 0.82 -

logit 0.62 0.81 0.28 - 0.42 0.22 0.06 0.99 0.08 0.57 - 0.18 0.4 0.41
elastic net 0.73 0.84 0.22 0.58 - 0.16 0.05 0.99 0.31 0.74 0.82 - 0.84 0.78
XG boost 0.86 0.95 0.56 0.78 0.84 - 0.31 0.99 0.16 0.62 0.6 0.16 - 0.52
random forest 0.87 0.99 0.69 0.94 0.95 0.69 - 0.99 0.17 0.61 0.59 0.22 0.48 -

logit 1 0.07 0.09 - 0.53 0.0 0 1 0.05 0.05 - 0.58 0.68 0.29
elastic net 1 0.06 0.09 0.47 - 0.0 0 0.99 0.06 0.07 0.42 - 0.63 0.23
XG boost 1 0.5 0.59 0.98 0.98 - 0.11 0.99 0.02 0.02 0.32 0.37 - 0.12
random forest 1 0.83 0.89 1 1 0.9 - 1 0.11 0.12 0.71 0.77 0.88 -

AUC, AE + EM AUC, LIDC

Note: tables indicate degree of confidence (1 - p-value) that the model in row i outperforms the model (or historical benchmark) in column j, based on a one-sided t-test 
using bootstrapped standard errors, adjusted for two-way clustering by country and year (following Cameron et al., 2008). 

log(likelihood), AE + EM log(likelihood), LIDC

weighted log(likelihood), AE + EM weighted log(likelihood), LIDC

MSE, AE + EM MSE, LIDC
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Table 5.3.A. Baseline predictors: predictive performance of logit model (with and 
without imputation and pooling) 

  

(i) Advanced and emerging market economies

(i) (ii) (iii) (iv)

impute in training sample
impute in test sample
training sample coverage AE + EM all countries AE + EM all countries

accuracy of predictions:

log(likelihood) -0.302 -0.298 -0.297 -0.295
(0.034) (0.038) (0.033) (0.039)

log(likelihood), weighted -1.038 -1.093 -0.978 -1.087
(0.062) (0.06) (0.057) (0.059)

MSE 0.086 0.084 0.085 0.083
(0.012) (0.013) (0.012) (0.013)

accuracy of rankings:
AUROC 0.697 0.705 0.714 0.712

(0.039) (0.037) (0.038) (0.036)

average size of training sample 1309 1585 1888 2679
of which: crisis observations 146 268 238 471

size of test sample 1148 1148 1148 1148
of which: crisis observations 112 112 112 112

(ii) Low-income countries
impute in training sample

impute in test sample
training sample coverage LIDC all countries LIDC all countries
accuracy of predictions:

log(likelihood) -0.692 -0.695 -0.709 -0.672
(0.038) (0.04) (0.063) (0.045)

log(likelihood), weighted -0.741 -0.724 -0.817 -0.733
(0.034) (0.051) (0.059) (0.049)

MSE 0.246 0.25 0.246 0.238
(0.017) (0.016) (0.024) (0.018)

accuracy of rankings:
AUROC 0.553 0.536 0.572 0.556

(0.054) (0.051) (0.048) (0.048)

average size of training sample 276 1585 791 2679
of which: crisis observations 122 268 233 471

size of test sample 355 355 355 355
of which: crisis observations 134 134 134 134

no yes
no no

Note: bootstrapped standard deviations  in parentheses (with two-way clustering by country and year, following 
Cameron et al. 2008). All models use the same 10 variables to predict the probability of crisis start occurring in 
year t+1 or t+2; test sample covers t = 2001-2015. Out-of-sample performance obtained from 15 rolling 
regressions. Training samples start in 1979. 

no yes

no no
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Table 5.3.B. Baseline predictors: significance of differences in performance of logit, 
with and without imputation and pooling 

 
  

glo
bal 

av
erag

e

co
untry

 av
erag

e

mix o
f a

ve
rag

es

no poolin
g, 

no im
putatio

n

poolin
g, 

no im
putatio

n

no poolin
g, 

im
putatio

n

poolin
g, 

im
putatio

n

glo
bal 

ave
rag

e

co
untry

 ave
rag

e

mix o
f a

ve
rage

s

no poolin
g, 

no im
putatio

n

poolin
g, 

no im
putatio

n

no poolin
g, 

im
putatio

n

poolin
g, 

im
putatio

n

no pooling, no imputation 0.97 0.92 0.6 - 0.34 0.02 0.17 0.98 0.96 0.23 - 0.45 0.51 0.28
pooling, no imputation 1 0.93 0.76 0.66 - 0.17 0.07 0.96 0.96 0.33 0.55 - 0.56 0.18
no pooling, imputation 0.99 0.94 0.88 0.98 0.83 - 0.58 0.99 0.96 0.18 0.49 0.45 - 0.27
pooling, imputation 1 0.95 0.92 0.83 0.93 0.42 - 0.98 0.97 0.43 0.72 0.82 0.74 -

no pooling, no imputation 0.57 0.95 0.05 - 0.57 0.00 0.84 1 0.95 0.99 - 0.12 1.00 0.16
pooling, no imputation 0.56 0.95 0.01 0.44 - 0.01 0.93 1 0.96 1 0.88 - 1.00 0.57
no pooling, imputation 0.91 0.97 0.19 1.00 1 - 1.00 1 0.94 0.85 0.00 0.00 - 0.00
pooling, imputation 0.35 0.95 0 0.17 0.07 0 - 1 0.96 1 0.84 0.43 1.00 -

no pooling, no imputation 0.92 0.96 0.72 - 0.57 0.19 0.48 0.96 0.05 0.29 - 0.55 0.44 0.37
pooling, no imputation 0.97 0.98 0.78 0.43 - 0.27 0.31 0.93 0.11 0.32 0.45 - 0.41 0.18
no pooling, imputation 0.94 0.99 0.8 0.82 0.73 - 0.62 0.99 0.08 0.28 0.56 0.59 - 0.4
pooling, imputation 0.99 0.98 0.87 0.52 0.69 0.38 - 0.96 0.19 0.42 0.64 0.82 0.6 -

no pooling, no imputation 1 0.05 0.07 - 0.11 0 0.02 0.64 0.01 0.01 - 0.35 0.1 0.22
pooling, no imputation 1 0.14 0.17 0.89 - 0.06 0.03 0.71 0.03 0.02 0.65 - 0.27 0.20
no pooling, imputation 1 0.32 0.38 1.00 0.94 - 0.52 0.81 0.06 0.04 0.90 0.73 - 0.50
pooling, imputation 1 0.31 0.36 0.98 0.97 0.48 - 0.8 0.09 0.07 0.78 0.81 0.5 -

AUC, AE + EM AUC, LIC

Note: tables indicate degree of confidence (1 - p-value) that the model in row i outperforms the model (or historical benchmark) in column j, based on a one-sided t-test using 
bootstrapped standard errors, adjusted for two-way clustering by country and year (following Cameron et al., 2008). Results refer to logit models evaluated without imputation in the 
test sample (i.e., "imputation" refers to imputation in the training samples).

log(likelihood), AE + EM log(likelihood), LIC

weighted log(likelihood), AE + EM weighted log(likelihood), LIC

MSE, AE + EM MSE, LIC
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Table 5.4. Baseline predictors: predictive performance of different models  

(with imputation and pooling) 

  
 

(i) Advanced and emerging market economies
(i) (ii) (iii) (iv)

impute in training sample yes yes yes yes
impute in test sample no no no no
training sample coverage all countries all countries all countries all countries
method Logit Elastic net XG boost Random forest
accuracy of predictions:

log(likelihood) -0.295 -0.294 -0.281 -0.283
(0.039) (0.035) (0.032) (0.024)

log(likelihood), weighted -1.087 -1.057 -0.924 -0.882
(0.059) (0.043) (0.044) (0.036)

MSE 0.083 0.083 0.082 0.082
(0.013) (0.013) (0.012) (0.01)

accuracy of rankings:
AUROC 0.712 0.716 0.761 0.777

(0.036) (0.037) (0.033) (0.022)
average size of training sample 2679 2679 2679 2679

of which: crisis observations 471 471 471 471
size of test sample 1148 1148 1148 1148

of which: crisis observations 112 112 112 112

(ii) Low-income developing countries
impute in training sample yes yes yes yes
impute in test sample no no no no
training sample coverage all countries all countries all countries all countries
method Logit Elastic net XG boost Random forest
accuracy of predictions:

log(likelihood) -0.672 -0.669 -0.688 -0.669
(0.045) (0.046) (0.049) (0.03)

log(likelihood), weighted -0.733 -0.737 -0.778 -0.734
(0.049) (0.044) (0.041) (0.031)

MSE 0.238 0.237 0.244 0.237
(0.018) (0.018) (0.021) (0.013)

accuracy of rankings:
AUROC 0.556 0.555 0.555 0.581

(0.048) (0.048) (0.047) (0.038)
average size of training sample 2679 2679 2679 2679

of which: crisis observations 471 471 471 471
size of test sample 355 355 355 355

of which: crisis observations 134 134 134 134

Note: bootstrapped standard deviations  in parentheses (with two-way clustering by country and year, following Cameron et al. 2008). 
All models use the same 10 variables to predict the probability of crisis start occurring in year t+1 or t+2; test sample covers t = 2001-
2015. Out-of-sample performance obtained from 15 rolling regressions. Training samples start in 1979.



 
 

 

Table 6.1.A. Model-based variable selection: predictive performance (with imputation and pooling) 
 

 

Table 6.1.A. Predictive performance for baseline specification

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)

method logit logit with BIC
random 

forest with 
rfe

number of predictors 10 748 10 748 10 748 10 748 748

(i) Advanced and emerging market economies

accuracy of predictions:

log(likelihood) -0.305 -0.322 -0.304 -0.294 -0.293 -0.289 -0.289 -0.3 -0.293 -0.314
(0.038) (0.047) (0.047) (0.037) (0.032) (0.036) (0.039) (0.027) (0.029) (0.031)

log(likelihood), weighted -1.081 -1.158 -1.051 -0.978 -0.94 -0.945 -0.875 -0.747 -0.799 -0.886
(0.052) (0.101) (0.059) (0.051) (0.041) (0.061) (0.044) (0.029) (0.041) (0.025)

MSE 0.087 0.09 0.087 0.087 0.085 0.085 0.085 0.088 0.087 0.089
(0.013) (0.013) (0.017) (0.013) (0.012) (0.013) (0.015) (0.01) (0.011) (0.012)

accuracy of rankings:
AUROC 0.714 0.748 0.717 0.766 0.75 0.771 0.78 0.802 0.787 0.744

(0.033) (0.032) (0.038) (0.032) (0.03) (0.031) (0.031) (0.026) (0.029) (0.031)

(ii) Low-income developing countries

accuracy of predictions:

log(likelihood) -0.593 -0.645 -0.59 -0.576 -0.591 -0.575 -0.58 -0.557 -0.558 -0.578
(0.042) (0.062) (0.027) (0.046) (0.046) (0.049) (0.022) (0.036) (0.038) (0.049)

log(likelihood), weighted -0.73 -0.771 -0.735 -0.715 -0.767 -0.74 -0.725 -0.665 -0.661 -0.82
(0.046) (0.08) (0.044) (0.047) (0.038) (0.055) (0.039) (0.028) (0.038) (0.023)

MSE 0.203 0.216 0.202 0.198 0.202 0.195 0.199 0.189 0.19 0.198
(0.017) (0.021) (0.011) (0.019) (0.019) (0.019) (0.009) (0.015) (0.016) (0.02)

accuracy of rankings:
AUROC 0.62 0.662 0.623 0.676 0.634 0.683 0.654 0.705 0.7 0.695

(0.039) (0.041) (0.039) (0.042) (0.044) (0.042) (0.034) (0.04) (0.041) (0.035)

Note: bootstrapped standard deviations  in parentheses (with two-way clustering by country and year, following Cameron et al. 2008). Models predict probability of crisis start occurring 
in year t+1 or t+2; test sample covers t = 2001-2015. Out-of-sample performance obtained from 15 rolling regressions. Training samples start in 1979 and pool all countries. Missing 
values in the test and training samples are imputed using the training sample median.

combination of 
country-specific 

and pooled 
average

elastic net XG boost random forest
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Table 6.1.B. Model-based variable selection: significance of differences in performance 
(with imputation and pooling)  

 

glo
bal 

ave
rag

e

co
untry

 ave
rag

e

mix o
f a

ve
rage

s

logit
 w

ith
 BIC

elasti
c n

et

XG boost

random fo
rest

random fo
rest 

with
 rfe

glo
bal 

ave
rag

e

co
untry

 ave
rag

e

mix o
f a

ve
rage

s

logit
 w

ith
 BIC

elasti
c n

et

XG boost

random fo
rest

random f

 
 

logit with BIC 0.88 0.95 0.37 - 0.049 0.04 0.19 0.1 0.59 0.95 0.04 - 0.00 0.02 0.01 0.01
elastic net 1 0.97 0.96 0.95 - 0.25 0.65 0.45 0.99 0.97 0.53 1.00 - 0.47 0.14 0.13
XG boost 1 0.97 0.99 0.96 0.746 - 0.78 0.66 1.00 0.97 0.56 0.98 0.53 - 0.17 0.16
random forest 1 0.95 0.93 0.82 0.349 0.22 - 0.09 1.00 0.98 0.82 0.99 0.86 0.83 - 0.57
random forest with rfe 1 0.96 0.99 0.9 0.547 0.34 0.91 - 1.00 0.98 0.81 0.99 0.87 0.84 0.43 -

logit with BIC 0.03 0.95 0 - 0.00 0.00 0.00 0.00 0.99 0.97 0.75 - 0.10 0.28 0.06 0.05
elastic net 0.45 0.98 0.01 1.00 - 0.15 0.00 0.00 1.00 0.97 1.00 0.90 - 0.83 0.04 0.03
XG boost 0.67 0.99 0.11 1.00 0.85 - 0.00 0.00 1.00 0.97 0.96 0.72 0.17 - 0.01 0.00
random forest 1 1 1 1.00 1.00 1.00 - 1.00 1.00 0.98 1.00 0.94 0.96 0.99 - 0.40
random forest with rfe 1 0.99 1 1.00 1.00 1.00 0.001 - 1.00 0.98 1.00 0.96 0.97 1.00 0.60 -

logit with BIC 0.91 0.68 0.44 - 0.203 0.144 0.323 0.25 0.69 0.03 0.09 - 0.00 0.03 0.01 0.01
elastic net 0.99 0.9 0.69 0.8 - 0.21 0.546 0.47 0.98 0.24 0.50 1.00 - 0.31 0.06 0.08
XG boost 1 0.98 0.91 0.86 0.79 - 0.758 0.75 1.00 0.37 0.66 0.98 0.70 - 0.18 0.21
random forest 0.97 0.91 0.64 0.68 0.454 0.242 - 0.34 1.00 0.68 0.84 0.99 0.94 0.82 - 0.70
random forest with rfe 0.99 0.95 0.72 0.75 0.534 0.252 0.658 - 0.99 0.62 0.80 0.99 0.93 0.79 0.31 -

logit with BIC 1 0.47 0.56 - 0.13 0.12 0.01 0.03 1.00 0.12 0.15 - 0.21 0.24 0.08 0.10
elastic net 1 0.75 0.82 0.87 - 0.39 0.02 0.11 1.00 0.20 0.25 0.79 - 0.37 0.09 0.12
XG boost 1 0.81 0.87 0.88 0.62 - 0.02 0.1 1.00 0.27 0.33 0.77 0.64 - 0.09 0.13
random forest 1 1 1 1 0.98 0.99 - 0.95 1.00 0.56 0.64 0.92 0.91 0.91 - 0.65
random forest with rfe 1 0.96 0.98 0.97 0.90 0.90 0.05 - 1.00 0.50 0.58 0.90 0.88 0.87 0.35 -

log(likelihood), AE + EM log(likelihood), LIDC

weighted log(likelihood), AE + EM weighted log(likelihood), LIDC

Note: tables indicate degree of confidence (1 - p-value) that the model in row i outperforms the model (or historical benchmark) in column j, based on a one-sided t-
test using bootstrapped standard errors, adjusted for two-way clustering by country and year (following Cameron et al., 2008)

MSE, AE + EM MSE, LIDC

AUC, AE + EM AUC, LIDC
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Table 7.1. Ranking of predictors by importance 

Color coding: = Top 10 = Top 20

logit elastic 
net

XG boost random 
forest

Crisis history
Historical crisis frequency 31 (+) 7 3
Years since last crisis 8 (-) 1 (-) 2 4
Number of countries with banking crisis starts, current year 21 (+) 486

Output, demand, prices
log(GDP per capita), PPP level 2 (-) 2 (-) 3 1
log(GDP per capita), PPP lag 1 2
log(GDP per capita), PPP 10-year change 66 (-) 27 89
log(GDP), US dollars level 8 (-) 22 23
Real GDP per capita 3-year growth rate 19 (-) 42 (-) 90 112
Gross domestic savings / GDP level 16 (-) 23 56
Gross domestic savings / GDP lag 19 62
Gross domestic savings / GDP 10-year average 15 40
Trading partner real GDP 3-year growth rate 30 163
Natural resource rents / GDP level 12 (-) 54 121
Agricultural GDP (share of total) level 45 13
CPI percentage change 20 (+) 7 (+) 16 28
CPI 3-year pct change 107 27
Real exchange rate 3-year depreciation 28 (+) 62 173

Volatility
CPI inflation 10-year std. dev. 30 (+) 12 14
Terms of trade growth 10-year std. dev. 26 (+) 56 (+) 20 55
Nominal exchange rate depreciation rate 10-year std. dev. 26 132

External sector
Current account balance / GDP level 10 (-) 9 (-) 21 25
External gross financing needs / GDP level 161 22
External gross financing needs / GDP lag 23 (-) 130 46
Official developent assistance / GDP level 129 26
Official developent assistance / GDP lag 22 (-) 415 41
Official reserves (in months of imports) level 6 50
Official reserves (in US dollars) percentage change 18 128

Population
Working-age population, share of total level 12 (-) 6
Working-age population growth rate 24 80
Age dependency ratio level 8 5
Age dependency ratio 10-year change 28 146
Population density level 6 (-) 10 (-) 14 71
Urban population (share of total) level 280 10

Table lists all predictors that are ranked 30th or higher for at least one prediction method. Numbers indicate ranks in 
terms of variable importance (see Section 7)
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Table 7.1. Ranking of predictors by importance (continued)  

 

Color coding: = Top 10 = Top 20

logit elastic 
net

XG boost random 
forest

Fiscal
Government revenues / GDP lag 6 (-) 134 96

Debt stocks
Public external debt / GDP level 7 (+) 11 (+) 4 8
Public external debt / GDP lag 47 (+) 25 15
Public external debt / exports level 15 (-) 9 7
Public external debt / exports lag 92 12
Short-term public external debt / GDP lag 30 (+) 389 293
Total external debt / exports lag 10 60
Private debt / GDP level 290 24
Private debt / GDP lag 178 29
Private debt / GDP 5-year change 11 (+) 22 (+) 291 151

Debt service
Government interest expenditure / GDP 3-year change 28 (+) 33 (+) 245
Public external debt amortization / reserves level 53 9
Public external debt amortization / reserves lag 31 20
Public external debt amortization / GDP level 14 (+) 322 47
Total external debt amortization / exports level 26 (+) 135 65
Total external debt amortization / reserves level 25 (+) 19
Total external debt amortization / reserves lag 13 (+) 18 (+) 233 30
Total external debt amortization / reserves 5-year change 5 37
Total external debt amortization / reserves 10-year change 29 (-) 21 (-) 13 33
Total external debt service / reserves level 64 (-) 11 34
Total external debt service / reserves lag 5 (-) 13 (-) 122 53
Total external debt service / GDP level 18 (+) 79 131

Money
Broad money / GDP level 240 21
Broad money / GDP lag 116 18
Broad money / GDP 5-year change 27 (-) 123 298

External assets
External assets / GDP level 1 (-) 32 11
External assets / GDP lag 68 17
External assets / GDP 10-year change 3 (+) 320 190

Quality of governance
Bureaucracy, quality level 4 (-) 4 (-) 17 16
Corruption control level 29 32
Corruption control 10-year change 17 (+) 19 (+) 153 239
Regulatory quality 5-year change 24 (-) 17 (-) 88 233
Absence of violence 5-year change 20 (-) 34 267

Table lists all predictors that are ranked 30th or higher for at least one prediction method. Numbers indicate ranks in 
terms of variable importance (see Section 7)
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Table 7.1. Ranking of predictors by importance (continued) 

 
 
 
 

 

Color coding: = Top 10 = Top 20

logit elastic 
net

XG boost random 
forest

Country characteristics
Island (dummy) 15 (-) 252 244
Currency union member (dummy) 14 (+) 5 (+) 65 188

Global variables
US Treasury bill rate lag 29 (+) 270 364
VIX, end of period 3-year change 23 (+) 539
World average Mineral rents / GDP 5-year change 25 (+) 148 337
World average public external debt / GDP 5-year change 24 (-) 181 384
World nominal GDP (million USD) 5-year change 3 (+) 46 248
World average public debt / GDP lag 9 (-) 309
World average official development assistance / GDP lag 16 (+) 27 (+) 38 322

Table lists all predictors that are ranked 30th or higher for at least one prediction method. Numbers indicate ranks in 
terms of variable importance (see Section 7)



 

 

Annex A: Additional tables 

Annex Table 1. Fiscal Crisis: Definitions and Data Sources 

 

Criterion
Minimum two years gap between 

crises AEs EMEs LIDCs

Default, restructuring, or 
rescheduling

(i) of substantial size (in percent of 
GDP p.a.); AND
(ii) defaulted nominal amount grows 
by a substantial amount (in percent 
p.a)

(i) High-access IMF financial 
arrangement with fiscal adjustment 
objective in place (in percent of quota); 
OR

Baldacci and others 
(2011)

IMF

(ii) EU program

(i) High inflation rate (in pct. of 
growth of annual average CPI p.a.) OR ≥ 35

Baldacci and others 
(2011); Sturzenegger and 
Zettelmeyer (2006); and 
Fisher, Sahya and Vegh 

(2002)

IMF (World Economic Outlook)

(ii) Steep increase in domestic 
arrears (in first difference of the ratio of 
'other account payables (OAP)' to GDP 
in percentage points) 

Checherita-Westphal, 
Klem, and Viefers (2015); 

Reinhart and Rogoff 
(2011a)

Eurostat; OECD (data on other 
accounts payable)

(i) High price of market access (in 
basis points of sovereign spreads or 
CDS spreads) OR

   (a)Level of spreads (bps)                                               
Sy (2004); Baldacci and 

others (2011)

   (b) Annual change in spreads (bps) ≥ 300 ≥ 650 na

(ii) Loss of market access                                                                           
IMF (2015); Kose and 

others (2017)

Guscina, Sheheryar, and 
Papaioannou (2017); Gelos, 
Sahay, and Sandleris (2004); 

Reuters Datastream; Bloomberg

The database  mainly 
containsexternal 
defalts on sovereign 
debt denominated in 
foreign currency

Detragiache and 
Spilimbergo (2001); 

Chakrabarti and Zeaiter 
(2014); Reinhart and 

Rogoff (2011b)

BoC-BoE Sovereign Default 
Database complemented with 
information from IMF desks; 
Cruces and Trebesch (2013); 
World Bank 

Literature Sources Notes
Thresholds

(1) Credit Event
>0.5

≥ 10

Event

(4)
Loss of market 
confidence

≥ 1,000 bps

when market access is lost 
(after maintaining market 

access for a 1/4 of the 
sample time and 2 

consecutive years before the 
loss year)

≥ 100 

(3)
Implicit 
domestic 
public default

≥ 100

≥ 1

(2)
Exceptionally 
large official 

financing

2 
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Annex Table 2. Sample of Countries 
 

 

Advanced Economies
Australia Albania Libya Afghanistan Myanmar
Austria Algeria Malaysia Bangladesh Nepal
Belgium Angola Maldives Benin Nicaragua
Canada Antigua & Barbuda Marshall Islands, Rep. Bhutan Niger
Cyprus Argentina Mauritius Burkina Faso Nigeria

Czech Republic Armenia Mexico Burundi Papua New Guinea
Denmark Azerbaijan Micronesia Cambodia Rwanda
Estonia Bahamas, The Mongolia Cameroon São Tomé and Príncipe
Finland Bahrain Montenegro Central African Republic Senegal
France Barbados Morocco Chad Sierra Leone

Germany Belarus Namibia Comoros Solomon Islands
Greece Belize Oman Congo, Dem. Rep. of Somalia
Iceland Bolivia Pakistan Congo, Republic of South Sudan
Ireland Bosnia and Herzegovina Palau Côte d'Ivoire Sudan
Israel Botswana Panama Djibouti Tajikistan
Italy Brazil Paraguay Eritrea Tanzania

Japan Brunei Darussalam Peru Ethiopia Timor Leste
Korea Bulgaria Philippines Gambia, The Togo
Latvia Cape Verde Poland Ghana Uganda

Lithuania Chile Qatar Guinea Uzbekistan
Luxembourg China Romania Guinea-Bissau Vietnam

Malta Colombia Russia Haiti Yemen, Republic of
Netherlands Costa Rica Samoa Honduras Zambia
New Zealand Croatia Saudi Arabia Kenya Zimbabwe

Norway Dominica Serbia Kiribati
Portugal Dominican Republic Seychelles Kyrgyz Republic

San Marino Ecuador South Africa Lao PDR
Singapore Egypt Sri Lanka Lesotho

Slovak Republic El Salvador St. Kitts and Nevis Liberia
Slovenia Equatorial Guinea St. Lucia Madagascar

Spain Fiji St. Vincent and the Grenadines Malawi
Sweden FYR Macedonia Suriname Mali

Switzerland Gabon Swaziland Mauritania
United Kingdom Georgia Syria Moldova

United States Grenada Thailand Mozambique
Guatemala Tonga

Guyana Trinidad and Tobago
Hungary Tunisia

India Turkey
Indonesia Turkmenistan

Iran Tuvalu
Iraq U.A.E.

Jamaica Ukraine
Jordan Uruguay

Kazakhstan Vanuatu
Kosovo Venezuela
Kuwait Vietnam

Lebanon

Emerging Markets Low Income Developing Countries



 

 

Annex Table 3. Description and sources of data 

Description Source Permutations used 

 Country category variables     

Dummy: Monetary union member IMF WEO t 

Dummy: Island country Wikipedia t 

Dummy: Landlocked country CIA World Factbook t 

Dummy: Small state Authors' calculations, IMF WEO, WB WDI t 

Dummy: Fragile state WB (FY2017 list) t 

Dummy: Commodity exporter IMF WEO t 

      

 Contagion / Crisis history variables     

Contagion: number countries with fiscal crisis start Medas et al (2018)   

All countries   t; current or past year 

Advanced and Emerging Economies   t; current or past year 

Emerging and Low Income Economies   t; current or past year 

Advanced Economies   t; current or past year 

Emerging Economies   t; current or past year 

Low Income Economies   t; current or past year 

Contagion: number of countries currently in fiscal crisis Medas et al (2018)   

All countries   t 

Advanced and Emerging Economies   t 

Emerging and Low Income Economies   t 

Advanced Economies   t 

Emerging Economies   t 

Low Income Economies   t 

2 
 



 

 

Years passed since last fiscal crisis Medas et al (2018) t 

Historical fiscal crisis frequency Medas et al (2018) t 

Dummy: Banking crisis start Laeven and Valencia (2018) t; t-1 

Contagion: number countries with banking crisis start Laeven and Valencia (2018)   

All countries   t 

Advanced and Emerging Economies   t 

Emerging and Low Income Economies   t 

Advanced Economies   t 

Emerging Economies   t 

Low Income Economies   t 

 External sector variables     

Net official development assistance (% of GDP) OECD t; t-1; fd_t; fd_t-1; 3-year change; W 

Current account balance (% of GDP) IMF WEO t; t-1; fd_t; fd_t-1; 3-year change 

Export of goods and services (% of GDP) IMF WEO t; t-1; fd_t; fd_t-1; 3-year change; W 

Import of goods and services (% of GDP) IMF WEO t; t-1; fd_t; fd_t-1; 3-year change; W 

Personal remittances (% of GDP) World Bank staff estimates based on IMF balance of 
payments data. t; t-1; fd_t; fd_t-1; 3-year change; W 

Current account without import IMF WEO t; t-1; fd_t; fd_t-1; 3-year change 

Net foreign direct investment (% of GDP) IMF WEO t; t-1; fd_t; fd_t-1; 3-year change; W 

Other investment, net (loans, deposits, insurance, pensions, trade 
credits, SDR, percent of GDP IMF WEO t; t-1; fd_t; fd_t-1; 3-year change; W 

Portfolio investment, net IMF WEO t; t-1; fd_t; fd_t-1; 3-year change; W 

Annual percentage change of average USD exchange rate IMF WEO t; t-1; fd_t; 3-year average 

Annual percentage change of end-of-period USD exchange rate IMF WEO t; t-1; fd_t; 3-year average 

Openness (10-year average of exports + imports of goods and services 
/ GDP) IMF WEO t; W 
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Percent change in real exchange rate, period average IMF WEO t; t-1; fd_t; 3-year average 

Log of PPP-based real exchange rate IMF WEO, WDI, author's calculation based on Rodrik 
(2008) t; t-1; W 

RER overvaluation IMF WEO, WDI, author's calculation based on Rodrik 
(2008) t; W 

Percent change in total reserve assets, excluding gold (USD) IFS t; t-1; fd_t; pc3_t; W 

Reserves, in months of imports WDI t; t-1; fd_t; fd_t-1; 3-year change; W 

Percent change in terms of trade (of goods and services) Index  IMF WEO t; t-1; fd_t; 3-year average 

Trading partner real GDP growth IMF GEE t; t-1; fd_t; 3-year average 

Trading partner import demand growth IMF GEE t; t-1; fd_t; 3-year average 

External gross financing needs author's calculations; IMF WEO; WDI t; t-1; fd_t; fd_t-1; 3-year change 

Value of oil export, percent of GDP IMF WEO t; t-1; fd_t; fd_t-1; W 

 Fiscal variables     

General government expenditures (% of GDP) IMF WEO; Medas et al. (2018); Abbas et al. (2011) t; t-1; fd_t; fd_t-1; 3-year change; W 

General government primary expenditures (% of GDP) IMF WEO; Medas et al. (2018); Abbas et al. (2011) t; t-1; fd_t; fd_t-1; 3-year change; W 

Overall balance (% of GDP) IMF WEO; Medas et al. (2018); Abbas et al. (2011) t; t-1; fd_t; fd_t-1; 3-year change; W 

General government primary balance, percent of GDP IMF WEO; Medas et al. (2018); Abbas et al. (2011) t; t-1; fd_t; fd_t-1; 3-year change; W 

General government revenues in percent of GDP IMF WEO; Medas et al. (2018); Abbas et al. (2011) t; t-1; fd_t; fd_t-1; 3-year change; W 

Stock and flow adjustments to public debt author's calculations t; t-1; fd_t; fd_t-1; 10-year average; 
W 

 Global variables  
  

Percent change of crude oil price IMF WEO (GAS Live) t; t-1; pc3_t; fd_L 

Percent change of non-fuel commodity price index IMF Primary Commodity Prices; Medas et al (2018) t; t-1; pc3_t; fd_L 

Percent change of global food price index IMF Primary Commodity Prices; Medas et al (2018) t; t-1; pc3_t; fd_L 

US T-Bill rate, Percent  IFS t; t-1; fd_t; fd_L2 

VIX, period average Bloomberg t; L2 
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VIX, period end Bloomberg t; L2 

Percent change of VIX, period average Bloomberg t; t-1; pc3_t; fd_L 

Percent change of VIX, period end Bloomberg t; t-1; pc3_t; fd_L 

US T-Note 5 year rate Percent, Period Average Bloomberg t; t-1; fd_t; fd_L2 

US T-Note 10 year rate Percent, Period Average Bloomberg t; t-1; fd_t; fd_L2 

US T-Note 5 year rate Percent, End of Period Bloomberg t; t-1; fd_t; fd_L2 

US T-Note 10 year rate Percent, End of Period Bloomberg t; t-1; fd_t; fd_L2 

World real GDP growth, in percent IMF WEO t; t-1; fd_t; 3-year average 

 Institutions / elections     

Revised Combined Polity Score (single regime score, runs from 1 (full 
democracy) to -1 (full autocracy)) Center for Systemic Peace t; t-1; fd_t; fd_t-1; 5-year change; 

10-year change; W 

Checks and balances index DPI t; 5-year change; 10-year change; W 

Bureaucracy Quality PRS Group; WB WGI; author's calculations t; 5-year change; 10-year change 

Corruption PRS Group; WB WGI; author's calculations t; 5-year change; 10-year change 

Years remaining in current chief executive's term DPI t 

Legislative election held dummy variable DPI t 

Executive election held dummy variable DPI t 

Political Stability and Absence of Violence/Terrorism: Estimate WB WGI t; 5-year change; 10-year change 

Regulatory Quality: Estimate WB WGI t; 5-year change; 10-year change 

Demographics     

Population ages 15-64, total WDI t; 5-year change; 10-year change; W 

Percent change of population ages 15-64, total WDI t; W 

Urban population (% of total) WDI t; 5-year change; 10-year change; W 

Age Dependency Ratio, % of working-age population WDI t; 5-year change; 10-year change; W 

Population density (people per sq. km of land area) WDI t; W 
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Log of population (relative to US) IMF WEO t; t-1; fd_t; 3-year change; 5-year 
change; 10-year change; W 

 Private debt variables     

(One-sided) credit gap GDD t; t-1; fd_t; fd_t-1; W 

Total Debt, loans and securities, (% of GDP) GDD t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; W 

10-year average credit gap GDD t; W 

Domestic credit to private sector by banks (% of GDP) WDI t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; 3-year change; W 

External debt stocks, private nonguaranteed, percent of GDP WDI t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; W 

WDI Broad Money, % of GDP WDI t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; 3-year change; W 

Public debt variables     

General government short-term external debt (% of GDP) IMF WEO; IMF VEE; BIS t; t-1; fd_t; fd_t-1; W 

General government short-term external debt in percent of reserves IMF WEO; IMF VEE; BIS; IFS t; t-1; fd_t; fd_t-1; W 

Public external debt (% of GDP) 
IMF WEO; WDI; US bureau of economic analysis; Haver 
Analytics;Arslanalp and Tsuda (2012); Quarterly External 
Debt Statistics 

t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; W 

Public debt (% of GDP) GDD t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; W 

Public debt in percent of general government revenue IMF WEO t; t-1; fd_t; fd_t-1; W 

Public external debt, percent of exports 
IMF WEO; WDI; US bureau of economic analysis; Haver 
Analytics;Arslanalp and Tsuda (2012); Quarterly External 
Debt Statistics 

t; t-1; fd_t; fd_t-1; 3-year change; W 

Short-term external debt (% of GDP) IMF WEO; WB WDI t; t-1; fd_t; fd_t-1; W 

Short-term external debt to reserves IMF WEO; WB WDI; IFS t; t-1; fd_t; fd_t-1; W 

Debt service     
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General government interest expenses (% of GDP) IMF WEO; Medas et al. (2018); Abbas et al. (2011) t; t-1; fd_t; fd_t-1; 5yr_t; 3-year 
change; W 

Amortization of external public debt (% of GDP) IMF WEO January 2019; WDI t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; 3-year change; W 

Amortization of external public debt in percent of reserves IMF WEO; WDI; IFS t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; 3-year change; W 

Public debt service to revenue (Approximate), in percent IMF WEO January 2019; WDI t; t-1; fd_t; fd_t-1; 3-year change; W 

Public debt service to export, in percent IMF WEO January 2019; WDI t; t-1; fd_t; fd_t-1; 3-year change; W 

Debt service on total external debt, percent of GDP WDI t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; W 

Debt service on total external debt, percent of export WDI; IMF WEO t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; W 

Debt service on total external debt, percent of reserves WDI; IFS t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; W 

 Real sector variables     

Impact of natural disasters, (% of GDP) CRED's EM-DAT t; t-1 

log(real GDP per capita) (in PPP dollars), relative to US IMF WEO t; t-1; fd_t; 3-year change; 5-year 
change; 10-year change; W 

Percent change of real GDP per capita IMF WEO t; t-1; fd_t; 3-year average 

Percent change of real GDP IMF WEO t; t-1; fd_t; 5-year average; 
deviation from 5-year average 

Percent change of real GDP, deviation from 5-year average IMF WEO; Medas et al (2018) t; W 

Percent change of nominal GDP IMF WEO t; t-1; fd_t; 3-year average 

Percent change of period average consumer price index IMF WEO t; t-1; fd_t; pc3_t; W 

Percent change of end-of-period consumer price index IMF WEO t; t-1; fd_t; pc3_t; W 

interest-growth differential author's calculation t; t-1; fd_t; W 

domestic savings, private (current US$) WDI t; t-1; fd_t; fd_t-1; 3-year change; 
mean_t; W 
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Log of nominal GDP in USD, relative to US IMF WEO t; t-1; fd_t; 3-year change; 5-year 
change; 10-year change; W 

Mineral rents (% of GDP) WDI t; t-1; 5-year change; 10-year 
change; mean_t; W 

oil rent (% of GDP) WDI t; t-1; 5-year change; 10-year 
change; mean_t; W 

Total natural resources rent (% of GDP) WDI t; t-1; 5-year change; 10-year 
change; mean_t; W 

Agriculture, forestry, and fishing, value added (% of GDP) WDI t; W 

 Total debt (public + private)     

Total Debt, in % of GDP GDD t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; W 

Total external debt, % of GDP WDI;  Lane and Milesi-Ferretti (2007) t; t-1; fd_t; fd_t-1; 5-year change; 
10-year change; W 

 Volatility (10-year standard deviations)     

real GDP growth IMF WEO; author's calculations t 

percentage change in terms of trade IMF WEO; author's calculations t 

percentage change in period-average nominal exchange rate IMF WEO; author's calculations t 

period-average CPI inflation IMF WEO; author's calculations t 

percent change in end-of-period exchange rate IMF WEO; author's calculations t 

stock and flow adjustment to public debt IMF WEO; author's calculations t 

 
 

Note: t = current year value; t-1 = past year value; fd_t = first difference; fd_t = lagged of first difference; W = cross sectional weighted average for all the permutations listed. 
WEO = World Economic Outlook; DPI = Cruz et al. (2016); GDD = Mbaye et al. (2018); IFS = International Financial Statistics; WDI = World Development Indicators; WGI = 
Worldwide Governance Indicators.  

64 
 



 
 

65 

Annex B: Cross-validation and hyperparameter tuning 

To select (tune) an algorithm’s hyperparameter values, I search over a grid of candidate 
values and select the value that delivers the smallest average log-likelihood loss when cross-
validated. My cross-validation algorithm is as follows: 

1. From the years included in the training sample, select a year t* that serves as the 
evaluation fold.  

2. For the given hyperparameter value, estimate the model on the training sample after 
dropping observations between years t*-1 and t*+1. 

3. Using the model estimates from step 2, make predictions for year t* and compute the 
log-likelihood loss. 

I repeat these steps for each year in the training sample and then take the average log-
likelihood loss. The procedure is repeated for each candidate hyperparameter value, so that 
each hyperparameter value is associated with a different loss function value.  
I select the hyperparameter value that minimizes the loss function and use that value to re-
estimate the model on the training sample. Note that the hyperparameter tuning and model 
estimation makes no use of the test sample (steps 1-3 above are done within the training 
sample). The resulting model is then used to make predictions for observations in the test 
sample.  

Annex Table 4. Tuning parameter grids 

Method Hyperparameter Tuning grid Selected 
value (in 
Section VII) 

Method 
reference in 
caret package  

# values range 

Logit  - - - - glm, 
glmStepAIC 

Classification 
tree 

- - - - rpart2 

Elastic net α 11 [0, 1] 1 glmnet 

 λ 400 [.003, 10] .0096  

XG boost number of trees 6 [10, 85] 70 xgbTree 

 maximum depth 5 [1, 14] 14  

 η (learning speed) 4 [.05, .6] .05  

 γ (minimum gain 
required for split) 

5 [.005, 6] 1.5  

 minimum child weight 5 [1, 40] 11  

Random forest mtry 15 dynamic 38 rf 
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