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In memory of Greg Kaser 

I. INTRODUCTION 

 

While the ongoing coronavirus pandemic continues to threaten millions of lives around the 

world, the first half of 2020 saw an unprecedented decline in CO2 emissions—larger than 

during the financial crisis of 2008, the oil crisis of the 1979, or even World War II. Research 

shows that in the first six months of 2020, 6.4 percent less carbon dioxide was emitted than 

in the same period in 2019 (Liu et al., 2021).  

 The 2020 climate jackpot, however, offers little to celebrate, for four distinct reasons. 

First, it is linked to a world health emergency of biblical proportions that, by the end of 2020, 

had infected over 90 million people globally and killed almost 2 million, causing factories to 

close down, massive job losses and the paralysis of large swathes of economic activity. These 

makes the recent climate gains clearly unsustainable. Second, recent UN reports indicate that 

global emissions would need to drop by the same exaggerated rate seen during the pandemic 

(7.6 percent per year) in every year for the next few decades, to ensure that global 

temperatures do not increase more than 1.5°C relative to the pre-industrial era, a necessary 

target to stave off the worst effects of climate change (IPCC, 2019). Third, the severe 

economic shock triggered by the pandemic has generated an outpouring of public policy 

action around the world and the rapid crafting of trillion-dollar stimulus packages, but 

some of this action actually risks to hamper progress on mitigating climate change because 

it is predicated on supporting non-eco-friendly industries—the same industries that need to 

be drastically reformed to meet the climate goals (Hepburn et al. 2020; Carney, 2021). 

Finally, virtually none of the measures taken so far to sustain activity have been directly 

targeted at mitigating emissions via fostering conservation—a necessary condition for 

meeting the 1.5°C target, which would also help shelter humanity from the spread of new, 

deadly zoonotic diseases (OECD, 2020). 

 Global Earth champions argue that fixing the twin climate and biodiversity crises 

that affect our planet is still possible, but it requires to ‘build back better’, stewarding the 

global economy within limits set by nature (Rockström et al., 2017; Attenborough, 2020; 

Georgieva, 2020; Stiglitz, 2020; Gates, 2021; Carney, 2021).2  Often, however, cutting 

emissions and protecting wildlife and natural resources has been portrayed at odds with 

creating jobs and fostering economic growth (see, for example, Walley and Whitehead, 

1994; NERA, 2017; and Christian, 2021). In contrast, a recent paper based on a global 

survey of experts including senior officials from finance ministries and central banks, 

found that green projects are widely perceived capable to create more jobs, deliver higher 

short-term returns per dollar spent, and lead to increased long-term cost savings, by 

comparison with traditional fiscal stimulus (Hepburn et al., 2020).  

 
2 See also Helm (2020) and Agrawal et al., (2020). 
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 This paper contributes to this debate. To our knowledge, it is the first study 

estimating directly the effect on GDP of money spent to foster the transition to a zero-

carbon, nature-friendly world for a variety of green expenditure typologies. Although 

‘green’ expenditure has historically tended to be defined as spending that helps reduce 

greenhouse gas emissions, we expand the definition to include examples of nature-based 

negative emissions technologies (“nature-based solutions” or NBSs) in the form of 

expenditure on biodiversity conservation and rewilding.3 These are increasingly regarded 

by science as solutions that support the Earth’s natural capabilities to sequester carbon and 

mitigate climate change. Moreover, these measures have been shown to be a vital 

complement of planetary climate and global temperature stabilization strategies (IPCC 

2019; IPBES, 2019; Foley et al., 2020; Dasgupta et al., 2021).  

 Using a new international dataset, part of which was especially assembled for this 

analysis, we find that every dollar (private and public) spent on key carbon-neutral or 

carbon-sink activities—from zero-emission power plants to the protection of wildlife and 

ecosystems—can generate more than a dollar’s worth of economic activity: the total 

increase in GDP is greater than the original increase in green spending. These economic 

effects appear significantly bigger and more long-lasting than ‘non-eco-friendly’ spending 

in alternative energy technologies or land/sea uses. Although green and non-ecofriendly 

expenditures are not always strictly comparable due to data limitations, the estimated 

multipliers associated with green spending are found to be generally larger than those 

associated with non-eco-friendly expenditure. In the case of renewable versus fossil fuel 

energy investments, where country and time samples are homogeneous and allow a formal 

statistical comparison, the difference between the associated multipliers emerge as non-

zero with very high probability. The point estimates of the multipliers are 1.1-1.5 for 

renewable energy investment and 0.5-0.6 for fossil fuel energy investment, depending on 

horizon and specification.  

These findings survive several robustness checks and lend support to existing 

bottom-up analyses (documented in the paper) that have found that, in general, stabilizing 

climate and reversing biodiversity loss are compatible with continuing economic 

advances. They also suggest that in crafting a post-COVID-19 recovery, investments in 

energy and land/sea use transitions are likely economically superior to those offered by 

supporting economic activities involving unsustainable ways to produce energy and food: 

the economy can recover more rapidly by building back better, while keeping many of the 

ecological improvements attained in 2020. 

 The empirical analysis borrows the concept of investment multiplier from the 

traditional macroeconomic literature to quantify the impact on GDP of green investment 

expenditures. The calculations are based on the estimates of factor-augmented panel 

vector-autoregressive models that deal with well-known technical issues in the recent 

 
3 See Seddon et al. (2020) for a definition of NBSs. 
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literature on fiscal multipliers (along similar lines of Fragetta and Gasteiger, 2014; 

Caggiano et al., 2015; 2017; Amendola et al., 2020, among many others). First, the panel 

dimension allows exploiting data of many countries of which green and non-ecofriendly 

spending estimates are available. Second, augmenting the specification with factors 

extracted from many macroeconomic variables mitigates limited information concerns. 

This helps correct for the fact that there is likely important information that we do not 

explicitly include in our model, but that might have been used by economic agents in 

making their choices (see, e.g., Bernanke et al., 2005; Fragetta and Gasteiger, 2014; and 

Stock, Watson, 2005). Third, most specifications include forecasts of investments formed 

over the past year as an exogenous variable, to purge green and non-eco-friendly spending 

shocks from their anticipated component and mitigate the issue of shock foresight 

highlighted in the macro-fiscal literature (see, e.g., Forni and Gambetti, 2010, among 

others). The need of dealing with the issues of limited information and shock foresight 

stems from the problem of ‘non-fundamentalness,’ a potential source of bias deriving 

essentially from a misalignment between the information sets of economic agents  and the 

econometrician. 

 The paper is organized as follows. Section II reviews current spending on clean 

energy and sustainable land uses and why a transition to net-zero emissions calls for more 

spending in these areas. Section III describes the data used in the estimation. Section IV 

presents the methodology employed to estimate spending multipliers. Section V reports 

the empirical results. Section VI illustrates the outcomes of robustness checks. Finally, 

Section VI draws policy implications and concludes. 

 

 

II. WHY MORE IS NEEDED ON CLEAN ENERGY AND CONSERVATION 

 

To date, world governments’ collective US$14 trillion fiscal response to the 

economic damage of the COVID-19 pandemic has concentrated on measures to address the 

health emergency and support household and firms stranded by the lockdowns (IMF, 2021). 

As the immediate health crisis recedes, however, attention and funding will turn toward 

economic recovery, creating more opportunities to build back better. Accordingly, 

governments have been urged to make the post-coronavirus stimulus “green” to ensure that 

climate change agendas do not get sidetracked (Bozuwa et al. 2020; UN, 2020a; IMF, 2020). 

However, few governments have yet heeded this advice (VividEconomics, 2020), a decision 

likely driven, at least in part, by ongoing uncertainty about the jobs and growth implications 

of investing in more sustainable economies. In this context, a deeper understanding of the 

growth implications of green spending can help policymakers and advocates of a green 

recovery capitalize on opportunities where they exist.   
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This paper contributes to this debate by using, for the first time in the empirical 

economics literature, standard methods traditionally employed to estimate investment 

multipliers in order to quantify the impact on GDP of green stimulus measures.  The analysis 

focuses on areas of economic activity which science identifies as having a high impact on 

sustainability and where spending on phasing-out of polluting processes and unsustainable 

practices is falling dramatically short relative to targets: (i) reducing emissions by increasing 

the use of clean energy; and (ii) supporting nature’s carbon sinks by enhancing the quality 

and quantity of biodiversity conservation. Below we briefly discuss the importance of 

buttressing expenditure in these areas to enable green transitions. 

 

Clean energy 

Energy consumption contributes to around ¾ of all anthropogenic greenhouse gas emissions, 

as today energy enters virtually every sector of production from electricity, to agriculture, to 

transportation, to industry (WRI, 2020a). Cleaning energy consumption is thus considered 

key to reaching net-zero emissions by 2050 under most science-driven plans for climate 

stabilization (see, for example, Foley et al., 2020).  

There are two categories of clean energy: renewable and non-renewable. Renewable 

energy is energy that is collected from renewable fuel resources, which are naturally 

replenished on a human timescale, including carbon-neutral sources like sunlight, wind, rain, 

tides, waves, and geothermal heat. The term often also encompasses biomass, but its carbon-

neutral status is under debate. Nuclear energy—considered a “non-renewable” energy source 

because the material (uranium) used in nuclear power plants is not renewable on a human 

timescale—is another form of clean energy (see, e.g., IMF, 2019).4 Indeed, nuclear energy 

ranks among the lowest carbon forms of energy generation, considering both direct emissions 

and its lifecycle impacts (IPCC, 2018) and has emerged as a credible cost competitor of both 

renewable and non-eco-friendly nonrenewable energy (IEA-OECD NEA, 2020). Reflecting 

these characteristics, research by both the Intergovernmental Panel on Climate Change and 

the International Energy Agency lists nuclear power among the key technologies capable and 

necessary to mitigate carbon emissions (IPCC, 2018; IEA, 2019b and 2020a).  

Today, countries with the lowest carbon intensities like France and Sweden rely 

heavily on nuclear and/or hydroelectric energy as low-carbon sources for either baseload or 

flexible power. In fact, producing electricity exclusively with renewable sources under 

current technologies presents several significant technological challenges, since these sources 

 
4 Some have argued that because it produces radioactive waste, nuclear power should be excluded from any 

green spending concept. However, past IMF studies on green energy, including the recent 2019 Fiscal Monitor 

have included investment in nuclear power among sources of green energy because, like here, the definition of 

what constitutes ‘green’ energy has been based on the impact of the investment on gas emissions. See also 

Eyraud et al. (2011). 
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are intermittent, variable and unpredictable, depending on the weather and consequently 

having limited capacity factors (IEA, 2021). At the scale needed, storage of renewable 

energy is also currently not a viable option as the necessary technology is expensive and still 

developing although prices are falling fast (see Goldstein and Qvist, 2019; and, for recent 

storage cost estimates, Lazard Asset Management, 2020).  Similarly, producing and adapting 

energy from hydrogen using renewables is not an immediate option. Although the idea of a 

future full of clean hydrogen is enjoying unprecedented political and business momentum, 

hydrogen continues to be used in the production of energy by burning fossil fuels with 

emissions equivalent to the CO2 emissions of the United Kingdom and Indonesia combined 

(IEA, 2019).  

In 2019, renewables (excluding large hydro) accounted for about one seventh of the 

share of global generation while nuclear energy accounted for about one-tenth (IRENA, 

2019; IEA, 2019a). The overall share of clean energy is increasing slowly because of the 

large, established fossil fuel fleet and the decline in net terms of nuclear installed capacity.  

Reflecting this, there is currently a big gulf between current green spending in these 

areas and what the science suggests as the target for global emissions by 2030: according to 

the base-case scenario in BloombergNEF’s New Energy Outlook 2019, even limiting the 

increase in global temperatures this century to 2 degrees Celsius (as opposed to the IPCC, 

2019-recommended 1.5°C)5 would require the gross addition of some 2,836GW of new non-

hydro renewable energy capacity by 2030—double of what is envisaged under current public 

and private sector targets—at an estimated cost of US$3.1 trillion over the decade. At the 

same time, nuclear capacity globally is estimated to have shrunk by a net 5GW in 2019, 

receiving an investment of a mere US$15 billion versus an investment of around US$282 

billion for renewables over the same year (IEA, 2020a). 

 

Ecosystem conservation  

Concerted efforts to mitigate greenhouse gas emissions from production in agriculture, 

fishery, and forestry are as important as clean energy in the quest for limiting increases in 

global temperatures. The IPCC’s 2019 Special Report on Climate Change and Land 

estimates that the agri-food sector emits between 21-37 percent of greenhouse gases—a share 

expected to raise to 50 percent of all global emissions by 2050 absent policy action (IPCC, 

2019; Willett et al., 2019). The sector is also widely indicated as the first cause of natural 

resources and biodiversity degradation, including its leading role as a driver of deforestation, 

 
5 As part of the Paris Agreement in 2015 countries agreed to a common goal of limiting the rise in global 

temperatures this century to “well below” 2 degrees Celsius, with an aim of keeping the increase at 1.5 degrees. 

https://www.technologyreview.com/s/611683/the-25-trillion-reason-we-cant-rely-on-batteries-to-clean-up-the-grid/?utm_campaign=owned_social&utm_medium=social&utm_source=facebook.com&fbclid=IwAR3KHgutj8Lblpbx6hvgg89dmDhsOAo2S4NLx-yC_Z2RPvK_vJK6lY9mHxA
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with large associated carbon releases (IPCC, 2019; IPBES, 2019; Willett et al., 2019; Batini, 

2019; McElwee et al., 2020; Clark et al., 2020).6  

The drivers behind such high emission record lie in developments in the agri-food 

sector of the past five or six decades, a sector that has become heavily industrialized and 

reliant on synthetic chemical applications, genetic modification, and deforestation to produce 

growing amounts of meat, dairy, and eggs, as well as fiber, timber, and biofuels (UNEP, 

2020). At sea, high-tech techniques like sonar and equipment like supertrawlers with 

mechanized nets make it possible to exploit deeper waters at farther-flung locations and 

capture fish faster than they can reproduce, harming the oceans’ ability to absorb carbon and 

destroying biodiversity (Batini, 2019 and 2021; FAO, 2020). 

As in the case of energy, making food systems sustainable for a growing global 

population is technologically possible but involves a fundamental reconsideration of 

production and consumption. A more sustainable use of farmed land and fished sea allows to 

produce food without large-scale habitat disruption and loss of biological diversity, thereby 

protecting natural cycles on which food production itself relies. It also enables a more 

efficient use of land and seas, in a world where these serve both to produce food and 

sequester carbon, as less land and sea are needed if farming and fishing are repurposed away 

from the production of animal-based food which tends to be land-and sea-intensive and 

greenhouse gas emissions-intensive toward more plant-based food that allows to feed many 

more people with less resources and a fraction of greenhouse gas emissions. (FAO, 2017; 

Batini, 2019 and 2021; UNEP, 2020). 

Nature conservation, through actions to protect, sustainably manage, and restore 

natural or modified ecosystems have emerged as “nature-based solutions” (NBS) to carbon 

sequestration. In addition, NBS are increasingly seen to hold the key to address the twin 

problems of climate change and biodiversity loss, if they are based on biodiverse ecosystems, 

and can also deliver broader societal and economic goals, such as improving health, 

providing jobs and reducing poverty (UN, 2020b; Waldron et al., 2020; McKinsey and Co., 

2020a; Dasgupta et al., 2021). Crucially, NBS are widely indicated as the most effective and 

cheapest insurance against the emergence of new zoonotic diseases, like COVID-19, which 

have been associated primarily to human encroachment of wild habitats and the 

industrialization of animal farming for food (FAO, 2017; Andersen et al., 2020; OECD, 

2020).  

Like in the case of clean energy, the urgent need for action in this area has failed to 

generate a momentum and both government and private spending on agriculture remains 

heavily concentrated on promoting industrial agricultural methods; while spending on 

protecting land and sea remains minuscular and well below announced targets. A recent 

report by the World Bank, for example, indicates that countries producing two-thirds of the 

 
6 Estimates by the IPCC indicate that when all is accounted for, the agri-food sector is potentially responsible 

for well over a third of greenhouse gas emissions (IPCC, 2019). 
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world's agricultural output spent US$600 billion per year in agricultural financial support on 

average from 2014 to 2016 (Searchinger et al., 2020; UNEP-UNDP-FAO, 2021). Only a 

modest portion of programs support environmental objectives, and even fewer support the 

mitigation of climate change. Out of US$300 billion in direct spending, only 9 percent 

explicitly supports conservation, while another 12 percent supports research and technical 

assistance.  

World financial efforts to conserve and restore nature fall correspondingly short of 

what is needed to protect nature supply at the global level (Dasgupta et al., 2021). Given that 

over half of 2019 global GDP was estimated to depend highly or moderately on ecosystems 

health (WEF, 2020), estimated financial flows into global biodiversity conservation are 

surprisingly small and inadequate. 

A recent study (Paulson Institute-The Nature Conservancy-Cornell University, 2020) 

suggest that spending on a wide range of biodiversity-associated goods is currently (2019) 

between US$124 and US$143 billion, compared to a need of US$722-967 billion. Although 

the Paulson estimates represent only 0.1-0.2 percent of 2019 global GDP, it may still be a 

high-side estimate because much of the ‘biodiversity-focused’ spending analyzed in the study 

comes from countries who report the entirety of their environmental and agricultural budgets, 

and even their health budgets, as “biodiversity expenditure” (OECD, 2020a).7 However, links 

between agricultural spending and biodiversity conservation are often tenuous and may even 

indicate investment in land use practices that are negative for biodiversity. An alternative is 

to take a more focused approach and address spending and spending needs only on items that 

have a strong and direct link with biodiversity conservation (Waldron et al., 2017). An 

example is the study of Waldron et al. (2020) into the policy proposal to expand protected 

areas to 30 percent of the Earth’s surface. This study finds that the cost may be between 

US$103 billion and US$178 billion per year, depending on how the proposal is implemented, 

which represents 4-7 times more than the current level of investment of US$24.3 billion in 

protected areas. 

 

 

III. DATA ON GREEN AND NON-ECO-FRIENDLY SPENDING 

 

Data on greenhouse gas emissions and climate change, on installed renewable energy plants 

capacity, on levelized cost of energy (LCOE), and on levelized cost of electricity have 

 
7Most biodiversity is found in lower-income tropical countries where international aid, given almost entirely by 

OECD countries, forms the majority of funding for biodiversity conservation. Average aid to biodiversity for 

2013-17 was US$6.3 billion per year, representing just 0.01% of the OECD’s GDP of US$47 billion (Turnhout 

et al., 2021).  
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become widely available through open sources. Conversely, data on investments in green or 

non-eco-friendly energy are not easy to come by as much of it relates to private finance. 

Similarly, data on spending on biodiversity conservation (a key indicator of green land use 

spending) and subsidies to non-eco-friendly agricultural practices are not readily available 

and need considerable manipulation of existing datasets. As a result, the datasets used in this 

paper have been assembled specifically for this project thanks to the help of various 

international energy agencies, universities, NGOs and multilateral development 

organizations. We discuss each set of data used below.  For convenience we report data 

description distinguishing between ‘green’ and ‘non-eco-friendly’ spending and between 

‘energy’ and ‘land use’ spending, in the following order: green energy spending data, 

including spending on supply and power investments on both renewables and non-

renewables (subsection III.A); non-eco-friendly energy spending data including capital 

expenditure on the supply of fossil fuel and non-eco-friendly energy power investment  

(subsection III.B); green land use spending, mainly including spending on biodiversity 

conservation (subsection III.C); non-eco-friendly land use spending, mainly including 

subsidies to conventional industrial agriculture excluding green spending (subsection III.D).8  

 

 

A. Green Energy Spending Data 

 

Data on capital expenditure on clean renewable energy  

Contrary to fossil fuels, most renewable energy (solar, wind, hydropower and other 

renewables, notably geothermal and marine power, biofuels and biogases) is directly 

obtained from readily available natural sources—solar, wind, geothermal9 and marine10 

energy. In this sense, there is no such thing as investment in the ‘supply’ of these sources, 

contrary to fossil fuels which need to be detected (via exploration) dug up from underground 

deposits (via drilling either on land or on the seabed) and often refined involving substantial 

 
8 Note that spending on energy and land use differ because the former involves considerably more infrastructure 

spending, whereas the latter relies almost entirely on operational capital and smaller infrastructure/machinery 

investment, generally. Subsidies to land use/agriculture involve some support to the purchase of investment 

goods but also other categories of spending like price support, support for the purchase of seeds, insurance, etc. 

In addition, subsidies to land use (green or brown) tend to be spent by the public sector, which is not the case 

for spending on green or brown energy which is largely private.  
9 Geothermal energy is heat derived within the sub-surface of the earth. Water and/or steam carry 

the geothermal energy to the Earth's surface. Depending on its characteristics, geothermal energy can be used 

for heating and cooling purposes or be harnessed to generate clean electricity. 
10 Marine energy or marine power (also sometimes referred to as ocean energy, ocean power, or marine and 

hydrokinetic energy) refers to the energy carried by ocean waves, tides, salinity, and ocean temperature 

differences. 
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‘supply’ investments prior to being burnt for power generation. As a result, the investment 

made to generate clean renewable energy is all virtually directed at building (and operating) 

the infrastructure to transform the Earth’s natural energy into electricity. Some investment in 

renewables relates to repowering, that is spending for the refurbishment or upgrading of 

existing turbine system components with the latest and more advanced equipment.11  

Our data on clean renewable energy comes from the IEA and consists of IEA 

estimates of capital spending on power generation using renewable sources by 11 countries 

or groups (Oceania Group merging Australia and New Zealand; Brazil; Canada; China; EA 

Group merging France, Germany and Italy; Indonesia; Japan; Korea; Mexico; Russia; and 

the USA)  over the period 2000-2020. The investment data represent the total amount of 

investment costs in power generation incurred in any given year through the setup of solar 

wind, and other energy ‘farms’, as well as in networks for the transmission of electricity 

generated this way.12 Investment in electricity networks includes investment in new 

infrastructure to accommodate new demand (increased connections and consumption), 

investment to replace ageing infrastructure and the investment required to integrate 

renewables in the power system and includes both transmission and distribution, and 

expenditure on digital equipment for the smart monitoring and operation of the grid (e.g. 

smart meters, automation and EV fast charging stations).13 All these data exclude both 

financing and operational costs like for non-renewable clean energy below. 

 

Data on capital expenditure in clean non-renewable energy (nuclear energy) 

Data on capital expenditure on nuclear energy are rather homogenous and potentially 

go back several decades, as the world’s first nuclear power plant to produce usable electricity 

through atomic fission was built in the early 1950s.  Despite this, up until a few years ago, 

the literature on the construction costs of nuclear power reactors looked solely to the 

development between 1970 and the end of the 1980s in the costs of construction in two 

countries (France and the United States), leaving out about three quarters of reactors built 

globally between 1960 and 2010 (see for example Grubler, 2010, and Berthélemy and 

 
11 The IEA indicates for example, in the case of wind farms, that by leveraging upon latest technological 

advances, repowering allows not only to “increment the nameplate capacity of an existing wind farm, but also 

to enhance load factors and to reduce operation and maintenance costs. This is mainly driven by larger turbines 

and increased hub heights that allow production of a greater amount of power with a smaller number of 

turbines” (IEA, 2020b). 
12 Investment estimates draw on IEA analysis on annual capacity additions and unit investment costs, partly 

derived from surveys with industry, IEA (2019a), S&P Global Platts (2020), BNEF (2020), IRENA (2020) and 

other organizations. More details can be found in IEA’s methodological annex to the IEA’s 2020 World Energy 

Report. 
13 Where possible, past investments in transmission and distribution assets, are based in publicly available data 

from utilities, regulators and other domestic entities. 
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Escobar-Rangel, 2015). More recently, data has been produced to map historical reactor-

specific overnight construction cost (OCC) data covering the full cost history for existing 

reactors in the Canada, France, Germany, Japan, India, South Korea and the United States, 

encompassing about two-thirds of all reactors built globally (Lovering, Yip and Nordhaus, 

2016).14 

The data used here extends the Lovering et al. (2016) dataset to 2017 and to include 

China. It was assembled specifically for this project by the OECD’s Nuclear Energy Agency 

in collaboration with the World Nuclear Association and the International Atomic Energy 

Agency. Like in Lovering et al (2016), the data is measured looking at the real OCC of 

completed plants because it is both the dominant component of lifetime costs for nuclear 

power, and the cost component that varies most over time and between countries. The metric 

OCC includes the costs of the direct engineering, procurement, and construction (EPC) 

services that the vendors and the architect-engineer team are contracted to provide, as well as 

the indirect owner’s costs, which include land, site preparation, project management, 

training, contingencies, and commissioning costs. The OCC excludes financing charges 

known as ‘interest during construction.’  The data, originally compiled in local currency 

units, have been converted to constant 2010 US dollars, using the nominal average market 

exchange rate of the year 2010 for comparability. Cost data are adjusted for inflation to 

constant 2010 values using the GDP deflator for each country. Lastly, the plant level data are 

aggregated at the country/year level based on the construction duration and assuming costs 

are spread homogenously across this construction period. 

 

 

B. Non-Eco-Friendly Energy Spending Data 

 

Like for green spending on energy (Subsection III.A), for non-eco-friendly spending on 

energy we use data from the IEA. The data record annual total capital spending on fossil 

fuels by 11 countries or groups (Oceania Group merging Australia and New Zealand; Brazil; 

Canada; China; EA Group merging France, Germany and Italy; Indonesia; Japan; Korea; 

Mexico; Russia; and the USA) over the period 2000-2020. Like for green energy spending 

 
14 OCC should not be confused with another popular measure of “cost” namely the Levelized Cost of Electricity 

(LCOE). It is the total cost to build and operate a power plant over its lifetime divided by the total electricity 

output dispatched from the plant over that period, hence typically cost per megawatt hour. It takes into account 

the financing costs of the capital component (not just the 'overnight' cost). This other metric reflects the ‘total 

average cost per KWh’ but does not reflect the total cost of electricity/services provided. Importantly, note that 

when comparing nuclear and renewables such as solar and wind, system costs should also be considered, as 

discussed in recent studies from the OECD-NEA (2019) and MITEI (2018) because when the share of 

wind/solar grows above approximately 1/3 of the electricity mix, the system costs grows exponentially and 

outweigh the advantage of cheap solar/wind. 
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sectors, the investment data for oil, gas and coal represent the total amount of investment 

costs incurred in any given year.15  

In the case of upstream oil and gas investment, global spending estimates are based 

on announced investment activities of companies representing over three-quarters of global 

oil and gas production. Data on spending estimates for the oil refining sector are calculated 

based on project-level information on new refineries and upgrading projects in over 100 

countries. Data on  investment estimates for the midstream sectors such as oil and gas 

pipelines and shipping transport correspond to data by the IEA for demand, supply and trade 

for oil and gas products in line with the new methodology of the World Energy Model, used 

to produce the projections in the IEA’s annual World Energy Outlook (IEA, 2020).  

For the power generation sectors, this investment is allocated evenly between the year 

in which the project for a new plant reaches financial close, or begins construction, to the 

year in which it starts producing. For upstream oil and gas, and liquefied natural gas (LNG) 

projects, data on investment mirrors capital expenditure sustained over time as production 

from a new source increases, or expenditure made to ensure that energy production from an 

existing asset is sustained (IEA, 2020b).  

Data on investment in electricity reflect annual capital expenditure to replace old 

assets or on new power plants and network assets. Here as well, expenditure is apportioned 

evenly to every year from the year that a final investment decision is made on an asset until 

the year the asset turns operational. In this sense, 2019 capital expenditure embeds also 

spending on assets that may not yet be operational but that will become operational in the 

future.16  Like for spending on clean energy, investment in electricity networks includes 

transmission and distribution. Similarly to data on clean energy, these data exclude both 

financing and operational costs. 

 

 

C. Green Land Use Spending Data 

 

Ideally, an analysis on the economic impact of spending on green land use activities should 

encompass spending on sustainable agriculture and spending on ecosystem conservation. If 

 
15 Investment estimates reflect IEA analysis on annual capacity additions and unit investment costs, derived in 

part from surveys with industry, IEA (2019), S&P Global Platts (2020), BNEF (2020), IRENA (2019) and other 

organizations.  
16 The way the IEA measures investment across various energy sectors varies reflecting differences in the 

availability of data and the nature of expenditures. More details can be found in the World Energy Investment 

2020 Methodology Annex. 
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possible, both should cover activities at sea, beyond terrestrial ones. In practice, (public and 

private) spending on sustainable farming remains negligible relative to spending on 

conventional (i.e. industrially mechanized, fossil fuel-energized and chemically driven) 

agriculture: in 2019, conventional agriculture still dominated 98 percent of food production 

globally (Batini, 2021). In addition, although sustainable farming has traditionally 

characterized all farming prior to the introduction of industrial farming methods following 

WWII, public subsidies to farming have actually coincided with the post-WWII industrial 

revolution of agriculture and are aimed primarily at sustaining industrial unsustainable 

practices by prizing productivity and profitability with little or no consideration for quality or 

human, animal or planetary health. On the contrary, efforts to redirect public agricultural 

support toward sustainable, regenerative farming—like organic farming—are very recent and 

in best cases extremely timid (Batini 2019 and 2021). It follows that data on spending on 

sustainable agriculture, when they exist and are not insignificant, do not go back much in 

time. The brevity of time series also affects potentially useful sources like green financing by 

the International Fund for Agricultural Development, which, potentially interest many 

countries but has started to be classified based on its ‘greenness’ only since 2018 (see IFAD, 

2019).  Data on spending on sustainable fishing activities, like regenerative ocean farming 

does not go far either, even if these activities go back for hundreds of years or even 

millennia, implying that this area of spending is equally impossible to analyze empirically 

(Batini and Smith, 2021).  

  Reflecting these constraints, we focus on what we consider to be the most reliable set 

of available data on spending in green (aka sustainable) land use activity, namely data on 

spending on biodiversity conservation. There is no standardized definition of what constitutes 

“biodiversity spending,” a situation that has led countries to report, under the ‘biodiversity’ 

flag, a heterogeneous mix of items that can include the entire government budgets for 

agriculture, health, and environmental control including urban waste disposal. However, 

Miller et al. (2012) and Waldron et al (2013, 2017) define a subset of “strict” spending that 

directly conserves biodiversity (e.g. funding for a nature reserve). They then compiled the 

most complete and consistent long time series of biodiversity spending produced to date, 

applying a forensic examination of data from the four main sources of funding from 1992 to 

2008: domestic governments, international aid (including donations from private 

foundations), long-term endowment-based systems such as conservation trust funds, and self-

funding arrangements such as when tourism revenue to a national park is recycled to 

subsidize the park’s running costs. Simultaneously, they used their definitions to extract this 

strict spending from biodiversity expenditure totals. The advantages of the “strict” dataset are 

that it has a consistent definition, greatly reducing the heterogeneity in what might be 

reported as “biodiversity spending”, and that it avoids an inherent contradiction in the more 

loosely defined spending data—that spending on agriculture, for example, will often fund 

processes hostile to the conservation of biodiversity, as well as a subset of initiatives that aim 

to mitigate those processes. For these reasons, we focused on the strict dataset. 
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The specific data requirement for the multiplier calculation is that there should be a 

reasonably accurate year-by-year record of spending in each country. Data on aid-based 

expenditure is usually available for each individual year, but precise annual time series are 

far more difficult to assemble for the other sources of spending. We therefore focused on 

assembling a dataset of countries where reasonable annual expenditure estimates of total 

strict-sense expenditure could be sourced. In practice, this usually meant focusing on a 

number of countries where the relatively accurate data on aid was the dominant source of 

funding. The final sample of 16 countries for biodiversity-spending multiplier analysis is 

Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Ghana, 

Guatemala, Malawi, Mozambique, Niger, Senegal, Sierra Leone, Madagascar, Tanzania and 

Uganda. The final time period over which a time series was compiled was 1994-2008 

(omitting 1992 and 1993 because of zeroes in those years for some countries). 

 

 

D.    Non-Eco-Friendly Land Use Spending Data 

 

For non-eco-friendly spending, we focus on agricultural subsidies to conventional agriculture 

based on an elaboration of OECD producer support estimates (PSE) data assembled by 

Searchinger et al. in 2020 for the World Bank Group. In particular, we focus on the 

difference between all subsidies and the small percent of these that can be classified as 

‘green’ in that is earmarked as explicitly supporting conservation and/or research and 

technical assistance items that tend to be weakly associated with sustainability priorities. This 

means that we consider ‘non-eco-friendly’ land use spending, spending via agricultural 

support directed at increasing the quantity and productivity via use of chemical inputs, 

greater mechanization or greater reliance on fossil fuels. These subsidies typically include (i) 

input subsidies—payments made to reduce the costs mostly of physical inputs such as 

chemicals, fertilizer, and machinery, although the OECD also applies the term to transfers 

reducing the cost of various on-farm services and capital investments; (ii) market price 

support, that is support which increases gross revenue to farmers as a result of higher prices 

due to market barriers created by government policies (that in turn require price-fixing 

strategies and import barriers); (iii) production payments, namely forms of agricultural 

support that are paid directly to farmers and can take many different forms; (iv) coupled 

payments, i.e. payments that are based in some way on the type, quantity, or amount of 

production, which typically is not related nor conditioned to sustainability goals; and also (v) 

decoupled payments, that is payments to farmers that do not depend on current or future 

production. For example, they can be payments based on past production.  
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The data are in current prices and have been converted to US$ using OECD average 

yearly exchange rates. They cover 20 countries17—responsible for 2/3 of global agricultural 

production—for 22 years going back (1995-2016).18 

 

 

IV.   METHODOLOGY 

 

A.   Empirical Model 

 

To compute multipliers for the various spending categories presented in Section III, we use 

panel vector-autoregressive (VAR) models.  

The models take the following reduced form: 

𝑦𝑖,𝑡 = 𝜌𝑖 + 𝛾𝑡 + 𝐴1𝑦𝑖,𝑡−1 + ⋯ + 𝐴𝑝𝑦𝑖,𝑡−𝑝 + 𝐵𝑖𝑥𝑖,𝑡 + 𝜀𝑖,𝑡,  (1) 

where t denotes the time dimension, i denotes the country dimension and p the lag structure. 

The vector of endogenous variables is denoted by  𝑦𝑖,𝑡; while 𝑥𝑖,𝑡 denotes an exogenous 

variable included in some of the specifications (both are discussed in Subsection IV.B). 

Furthermore, 𝐴1,…,𝐴𝑝 are the dynamic coefficients attached to the endogenous variables, 𝐵𝑖 

are the coefficients attached to the exogenous variable, 𝜌𝑖 are country fixed effects, 𝛾𝑡 are 

time fixed effects and 𝜀𝑖,𝑡 is a vector of normally distributed residuals with mean zero and 

covariance matrix 𝛴𝑐. 

Reformulating the model in vectorized form (ignoring country and time fixed effects 

and exogenous variables for simplicity) yields: 

𝑦 = �́�𝛽 + 𝜀. (2) 

To estimate the coefficients 𝛽 and the residual variance covariance matrix 𝛴, we adopt a 

Bayesian approach utilizing a traditional Normal-Wishart identification strategy that belongs 

to the families of conjugate priors, characterized by the fact that they produce distributions of 

the same families for the posterior. 

We adopt Minnesota-type priors in line with a wide literature. The prior for 𝛽 is 

assumed to be multivariate normal: 

 
17 These countries include Australia, Canada, Chile, China, Colombia, Iceland, Indonesia, Israel, Japan, 

Kazakhstan, Korea, Mexico, New Zealand, Norway, Russia, South Africa, Switzerland, Turkey, Ukraine, and 

the United States. 
18 More details on the methodology employed by the OECD to produce PSE data can be found here: 

http://www.oecd.org/agriculture/topics/agricultural-policy-monitoring-and-evaluation/documents/producer-

support-estimates-manual.pdf 

http://www.oecd.org/agriculture/topics/agricultural-policy-monitoring-and-evaluation/documents/producer-support-estimates-manual.pdf
http://www.oecd.org/agriculture/topics/agricultural-policy-monitoring-and-evaluation/documents/producer-support-estimates-manual.pdf
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𝛽~ 𝑁(𝛽0, 𝛴𝑐 ⊗ 𝛷0).  (3) 

For 𝛽0 we set values around 1 for own first lag coefficients, and 0 for further lags, cross-

variable and exogenous coefficients. 𝛷0 represents the variance for the parameters of one 

single equation in the panel VAR. Each of this variance is then scaled by the variable-

specific variance contained in 𝛴𝑐. The prior variance on the coefficients assumes that the 

variance should be smaller on further lags. Such idea is extended to coefficients relating 

variables to past values of other variables. Given that little is known about exogenous 

variables, the variance on these terms is large. 

The prior for 𝛴𝑐 is an inverse Wishart:  

𝛴𝑐~𝐼𝑊(𝑆0, 𝛼0),  (4) 

where 𝑆0 is a diagonal scale matrix for the prior with residual variance defined over the 

pooled sample of variables, 𝛼0 is prior degrees of freedom defined as the minimum possible 

to obtain well-defined mean and variance. The posterior is represented by the kernel of a 

multivariate normal distribution for 𝛽 (conditional on 𝛴𝑐) and an inverse Wishart distribution 

for 𝛴𝑐. Then, the joint posterior is used to derive the marginal distributions for 𝛽 and 𝛴𝑐.  

To recover structural shocks from estimated residuals, we apply a Cholesky 

identification scheme, assuming that the spending variables under investigation react with a 

lag to GDP, and that the latter reacts contemporaneously to each spending variable shock. In 

other words, we consider each spending variable under investigation as more exogenous than 

GDP. This choice is dictated by the fact that both types of green and non-eco-friendly 

spending examined in this paper are driven by multi-year strategies, and thus do not react 

mechanically to swings in the economic cycle within the same year. This feature contrasts 

with public spending items that may be strongly influenced by GDP and are the subject of 

classic empirical studies on fiscal multipliers. In fact, spending for the construction and 

installation of energy power-generating stations is mostly privately financed and tends to be 

preceded by years of feasibility studies, conditions monitoring and lengthy permit 

applications. Likewise, although often publicly financed, money spent on conservation or 

industrial agriculture follows arrangements dictated by long-term oriented donor strategies or 

structural agricultural policies. Hence, in none of these cases, contemporaneous output 

fluctuations are likely to be strong determinants of spending decisions.  

For each of 10,000 draws from the posterior distribution,19 we derive impulse 

responses for a time horizon of 5 years, saving the median response and the 16th and 84th 

percentile of their distribution as confidence bands. Given that the model requires the 

estimation of many parameters, for the sake of parsimony, we produce the baseline results 

 
19 Since we cannot derive analytical solutions for the impulse responses, we perform Monte Carlo simulation 

considering 20,000 parameters draw and discarding the first 10000 draw as burn-in. 
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with a uniform lag structure of one year and conduct robustness checks with a lag structure of 

two years in Section VI. 

 

 

B.   Data Coverage and Specification 

 

Details on green and non-eco-friendly spending data are provided in Section III, while details 

on macroeconomic data are provided in the Appendix.  Availability of green and non-eco-

friendly spending data, as well as the rest of macroeconomic data dictates the year and 

country coverage ultimately used in the estimation, which requires balanced panel datasets. 

Table 1 summarizes the data coverage and sources. Annual data span over sample periods 

ranging from 1991 to 2019, depending on the spending component analyzed. Nuclear energy 

spending has the largest time coverage (27 years), while spending on green land use the 

shortest one (15 years). 

At a minimum, the computation of the spending multipliers requires the inclusion of 

the relevant spending variable, Si,t, and of GDP, GDPi,t, in the vector of endogenous 

variables. To these two variables, we add a 1 × 4 vector of common factors, Fi,t, (as 

explained below) to control for a wide range of economic forces that may affect GDP. For 

the specifications related to investments in energy sources, we include also total investments 

net of energy investments, Ii,t, given that this is the direct non-energy counterpart of 

investment in the economy. In the specifications related to green and non-eco-friendly land 

use, we do not include total investments explicitly (but only as part of the extraction of 

common factors) because these two spending categories have a negligible investment 

component. In addition, their more limited coverage calls for an even more parsimonious 

specification. Therefore, the vector of endogenous variables reads as 

yi,t = [Si,t, Ii,t, GDPi,t, Fi,t],  (5) 

except for the cases of green and non-eco-friendly land use, which exclude Ii,t. 

To simplify the procedure related to the computation of spending multipliers, we 

divide all endogenous variables by the real potential GDP of the corresponding country. This 

way there is no need to take the logarithm of the variables and perform ex-post conversions 

of the estimated elasticities to dollar equivalents, avoiding potential biases. In fact, ex-post 

conversion requires the use of constant sample averages of the ratios of spending variables to 

GDP, which may instead vary over time, potentially biasing the size of the multipliers (for 

more details on this issue see, e.g., Gordon and Krenn, 2010 and Ramey and Zubairy, 2018, 

among others). For the baseline results we compute real potential GDP using the 

conventional HP filter, while in Section VI we present robustness checks with an alternative 

filter. 
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Table 1. Summary of Data Coverage and Sources  

 

Spending Type Time period # of 

countries 

Country list Data 

sources 

Renewable energy 2003-2019 9 + 2 

groups 

China, Japan, Korea, Canada, 

United States, Brazil, Indonesia, 

Mexico, Russia, Oceania group 

[Australia and New Zeland], EA 

group [France Germany and Italy] 

IEA, IMF’s 

WEO, 
Thomson 

Reuters 

Datastream 

Nuclear energy 1991-2017 6 China, France, Japan, Korea, 

Canada, Usa 

OECD-

NEA, IMF’s 

WEO, 
Thomson 

Reuters 

Datastream 

Fossil fuel energy 2003-2019 9 + 2 

groups 

China, Japan, Korea, Canada, 

United States, Brazil, Indonesia, 

Mexico, Russia, Oceania group 

[Australia and New Zeland], EA 

group [France Germany and Italy] 

IEA, IMF’s 

WEO, 
Thomson 

Reuters 

Datastream 

Green land use 1994-2008 16 BurkinaFaso, Burundi, Cambodia, 

Cameroon, Central African 

Republic, Chad, Ghana, 

Guatemala, Malawi, Mozambique, 

Niger, Senegal, Sierra Leone, 

Madagascar, Tanzania, Uganda 

Waldron et 

al. 2018, 

IMF’s 

WEO, 
Thomson 

Reuters 

Datastream 

Non-eco-friendly 

land use 

1997-2016 20 China, Japan, Korea, Canada, 

United States, Australia, Chile, 

Indonesia, Mexico, New Zealand, 

Russia, South Africa, Colombia, 

Iceland, Israel, Kazakhstan, 

Norway, Switzerland, Turkey, 

Ukraine 

Searchinger 

et al. 2020, 

IMF’s 

WEO, 
Thomson 

Reuters 

Datastream 

As anticipated, to the basic set of endogenous variables, we add common factors, via 

principal components extracted from many macroeconomic times series. In fact, VAR 

models are characterized by a trade-off between parsimony and omission of relevant 

variables, which can give rise to “non-fundamentalness” of the identified shocks (see, e.g., 

Forni et al., 2009). “Non-fundamentalness” arises when current and past values of the 

observables do not contain enough information to recover structural vector autoregressive 

(SVAR) disturbances. In a nonfundamental system, structural shocks obtained via standard 

identification procedures may have little to do with the true disturbances, making SVAR 

evidence unreliable (see, e.g. Canova and Sahneh, 2018). Extracting information from a large 

set of macroeconomic variables mitigates the limited information problem because the 

principal components proxy the unobserved factors affecting most macroeconomic variables 
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(see Fragetta and Gasteiger, 2014 for further details). Like Bernanke et al. (2005), we 

implement a two-step estimation procedure. As a first step, we extract four common factors. 

The Bai and Ng (2007) ICp2 information criterion selects 2 to 4 factors, depending on the 

country. Given that our approach constraints the number of factors to be the same for all 

countries in the panel, we utilize 4 factors uniformly for all countries. Depending on the 

country, factors explain between the 65,84% and the 89,95% of the informational dataset 

variance. The second step is adding the factors to our vector of endogenous variables. 

Except for the specifications on green and non-eco-friendly land use, where the 

investment component is small, we add the forecast of total investments as an exogenous 

variable. Namely, this is the forecast of time-t total investment (gross capital formation), 

developed by the IMF’s World Economic Outlook (for the renewable and non-eco-friendly 

energy spending specifications) a year before. The addition of this variable represents a way 

to purge the investment shocks from the change in the total investments already anticipated 

by economic agents in the past year, mitigating the problem of shock foresight, well known 

in the fiscal literature. Here, clearly the expectations refer not only to government, but also to 

private spending. The choice of controlling for total investments is dictated by the absence of 

comprehensive vintages of forecasts of investment in energy sources. 

 

 

V.   RESULTS 

 

This section reports our baseline results. We discuss results by sector, starting with energy to 

then move to land use, and comparing output effects of green and non-eco-friendly spending. 

Two sets of results are shown in each case: the impulse response functions (IRFs) of 

spending (in alternative forms of energy or land use) on GDP, and the associated cumulated 

spending multipliers defined as the cumulative change in GDP divided by the cumulative 

change in spending on energy or land use, at various time horizons, following the approach 

proposed by Gordon and Krenn (2010) and Ramey and Zubairy (2018). As discussed in the 

previous section, having normalized the variables of interest by real potential GDP 

circumvents any concerns related to ex-post conversion. Thus, cumulated multipliers are 

computed simply as the ratio of discrete approximations of the integral of the median IRFs of 

real output and government purchases over a given time horizon. 

Multiplier values should be interpreted in the standard way. For example, a value of  

the cumulated spending multiplier equal to 1.5 in the third year would indicate that, after 

three years from the occurrence of the spending shock, the cumulative increase in output, in 

dollar terms, is one and a half the size of the cumulative increase in green (or non-eco-

friendly) expenditure. In this case, then, a change of, for example, US$100 in public or 
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private investment in clean energy infrastructure or power generation will have an effect of 

more than US$100 (and precisely US$150) on the level of real GDP.  

As first proposed by Keynes, the multiplier may be greater than one because a change 

in aggregate expenditures circles through the economy: firms investing in renewables pay 

workers and suppliers, workers and suppliers buy goods from other firms, those firms pay 

their workers and suppliers, workers spend on consumer goods generating further streams of 

income, and so on (Keynes, 1936). In this way, the original change in aggregate expenditures 

spurred by an increase in, say, private investment in clean energy is actually spent more than 

once. Note that Keynes’ investment multiplier related interchangeably to public or private 

spending or the sum of these, and thus our multipliers are not fiscal spending multipliers but 

Keynesian investment multipliers, lato sensu. 

 

 

A.    Green Energy Versus Non-Eco-Friendly Energy Spending Multipliers 

 

In this subsection we report impulse response functions (IRFs) and cumulated multipliers of 

spending on clean energy (renewable and non-renewable) versus spending on non-eco-

friendly energy (fossil fuel energy generation). It is worth noting upfront that multipliers 

related to fossil fuel and renewable energy generation are fully comparable because their 

underlying data cover the same country and time sample. The data on nuclear energy 

spending cover a smaller set of countries and a larger number of years, therefore they are not 

strictly comparable.  

Figure 1 shows the impulse response of GDP to a 1 percent shock to spending in 

renewable clean energy versus a similar shock in non-eco-friendly energy; the upper and 

lower borders of the pink area around the median (blue) line indicate the 16th and 84th 

credible intervals, as customary with Bayesian inference. The figure shows that a shock to 

spending on green renewable energy is more persistent than an equal-sized shock to fossil 

fuel energy spending, and the output response is much more persistent, hovering well above 

zero beyond the medium term (5 years), while the output response to a non-eco-friendly 

energy spending shock dies off completely after 5 years. Both shocks, in the transition, 

crowd out other investments to an extent. 
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Figure 1. Impulse Responses to Green (Renewable) and Non-Eco-Friendly (Non-

Renewable) Energy Investment Spending 

 

Note: Blue bold lines represent median responses. Shaded areas represent credible intervals delimited by the 

16th and the 84th percentiles.  

 

Based on the impulse response depicted in Figure 1, we can compute the 

corresponding multipliers (Table 2). Both at short and longer horizons the green renewable 

energy spending multiplier is systematically higher than the non-eco-friendly energy 

multiplier. Specifically, the impact multiplier for green renewable energy is 1.19.  For non-

eco-friendly energy, the impact multiplier is 0.65, suggesting that these kinds of expenditures 

tend to crowd out private investment or consumer spending that would have otherwise taken 

place to a larger extent.  
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Table 2. Cumulated Multipliers associated to Green (Renewable) and Non-Eco-Friendly 

(Non-Renewable) Energy Investment Spending  

Horizon Green (Renewable) 

Energy Investments 

Multiplier 

Non-Eco-Friendly 

Energy Investments 

Multiplier 

Impact 1.19* 0.65* 

1 Year 1.20* 0.64* 

2 Years 1.19* 0.62* 

3 Years 1.17* 0.59* 

4 Years 1.14* 0.55 

5 Years 1.11 0.52 

Note: * denotes multipliers with credible intervals, delimited by the 16th and the 84th percentiles, that exclude 

zero. 

 

Focusing on the impact multiplier, however, may be misleading because investments in 

energy can only be implemented over time and the economy may only respond gradually. 

The cumulative multiplier for green renewable energy spending falls only marginally over 

the years and plateaus to a 5-year value of 1.11, very close to the first-year effect. This may 

reflect the fact that renewables are built sequentially and the persistence of the multiplier as 

well as the fact that the composition of their investment vector typically includes different 

types of activities (construction itself, networks for transmission and distribution, smart 

meters, etc.). For non-eco-friendly energy spending, however, the multiplier becomes even 

smaller at year 5 (0.52). In other words, when an additional dollar of public or private money 

is spent to build more fossil fuel energy infrastructure and power generation plants, this 

expenditure crowds out some other component of GDP (investment, consumption, or net 

exports) by 48 cents in the medium run. When the same dollar is spent on solar, wind or 

geothermal, 11 cents are instead crowded in. In addition, while the green multiplier is 

statistically significant up until 4 years after the shock occurrence, the non-eco-friendly 

multiplier loses its significance after 3 years.20 

A fair question is whether the difference between the two multipliers is statistically 

significant. Bayesian inference does not allow us to construct a test as in the frequentist 

approach. Therefore, we follow an approach compatible with Bayesian inference, in line with 

Caggiano et al. (2015) and Amendola et al. (2020). This approach, however, requires the 

multipliers to be computed within the same specification, which is feasible given the 

homogenous coverage for green (renewable) and non-eco-friendly (fossil fuel) investment 

data. Therefore, we re-estimate a VAR containing both investments in the vector of 

endogenous variable, with green investment ordered first and non-eco-friendly investment 

 
20 For the sake of simplicity, we prefer to use the terminology of statistical significance, in analogy to the 

frequentist approach to inference. However, the Bayesian approach formally leads to credible intervals around 

the estimates. We consider “significant” those multipliers with credible intervals, delimited by the 16th and the 

84th percentiles, that exclude zero. 
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ordered second (the opposite ordering yield very similar results, reported in Section VI). 

Exploiting the 10,000 parameter draws from the posterior distribution, we compute empirical 

distributions of the differences between green and non-eco-friendly energy investment 

multipliers. This procedure allows us to compute the probability that the difference is greater 

than zero (Table 3). It turns out that, at all horizons, more than 90 percent of the distribution 

is located above zero, indicating that the difference between the two multipliers is positive 

with high probability. In addition, the merged specification yields higher median green 

energy investments multipliers, and lower median green energy investments multipliers, than 

the two separate specifications, making the point estimate of the difference between the two 

even higher. 

 

Table 3. Cumulated Multipliers associated to Green (Renewable) and Non-Eco-Friendly 

(Non-Renewable) Energy Investment Spending—Merged specification 

Horizon [A] Green (Renewable) Energy 

Investments Multiplier 

[B] Non-Eco-

Friendly Energy 

Investments 

Multiplier 

Prob 

[A]>[B] 

Impact 1.40* 0.62* 0.92 

1 Year 1.46* 0.58* 0.94 

2 Years 1.49* 0.54* 0.94 

3 Years 1.51* 0.51 0.93 

4 Years 1.53* 0.48 0.92 

5 Years 1.54 0.47 0.91 

Note: * denotes multipliers with credible intervals, delimited by the 16th and the 84th percentiles, that exclude 

zero. 

 

These results are intuitive on three grounds. First, clean energy is more labor 

intensive than carbon-based fuels spending. In relation to spending within the fossil fuel 

industries, spending on clean energy—including the direct spending on specific projects plus 

the indirect spending of purchasing supplies—uses far more of its overall investment budget 

on hiring people, and relatively less on acquiring land (either on- or offshore), machines, and 

supplies and energy itself (Wiser et al., 2011; IRENA, 2016; Garrett-Peltier, 2017; WRI, 

2020b). In addition to the jobs directly created in the renewable energy industry, growth in 

clean energy can create positive economic “ripple” effects. For example, both industries in 

the renewable energy supply chain and unrelated local businesses will benefit from increased 

household and business incomes (EPA, 2020; IEA, 2020c). Second, clean energy implies a 

higher domestic content. Considering direct plus indirect spending—clean energy spending 

relies much more on economic activities taking place within the domestic economy—such as 

retrofitting homes or upgrading the electrical grid system locally—and less on imports than 

spending within conventional fossil fuel sectors (IRENA, 2016; EPA, 2020). Third, clean-
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energy investments produce far more jobs at all pay levels—higher as well as lower-paying 

jobs—than the fossil fuel industry (E2-ACORE-CELI, 2020).  For the United States, for 

example, Muro et al., (2019) find that workers in clean energy earn mean hourly wages that 

are between 10 and 20 percent above the national average; and their wages are more 

equitable, with workers at lower ends of the income spectrum earning up to US$10 more per 

hour than other jobs. At the same time, clean-energy investments also produce more jobs for 

a given dollar of expenditure due to the larger number of entry-level jobs relative to the fossil 

fuel industry. Jobs spread across three major industrial sectors (clean energy production, 

energy efficiency, and environmental management) and include all levels of skills including 

many electricians, carpenters, and plumbers. These considerations help rationalize the much 

stronger multiplier effect of clean spending than that of non-eco-friendly spending on the 

larger economy.  

Figure 2 shows the impulse response of GDP to a 1 percent shock to spending in non-

renewable clean energy (nuclear energy). The figure indicates that also in the case of nuclear 

energy, spending is more persistent than investment in non-eco-friendly energy. In addition, 

it has a crowding-in effect on other investments. This finding is consistent with the notion 

that nuclear investment tends to generate considerable employment at the local level (WNA, 

2020). Table 4, reporting cumulated spending multipliers, indicates that spending on nuclear 

energy has a large output effect, about six times larger than the output effect associated with 

spending on fossil fuel energy. However, nuclear spending multipliers lose statistical 

significance after two years from the occurrence of the shocks.  

Although nuclear spending multipliers are not strictly comparable to the other two 

sets of multipliers, its initially larger values may be linked to their nature. Relative to other 

forms of clean energy (e.g. solar and wind) investments in nuclear energy may lead to larger 

employment of both high- and lower-skilled resources for the construction of nuclear reactors 

relative to lighter energy producing infrastructure. In addition, while building and operating 

nuclear reactors tends to take time (5.1 years on average for large reactors of recent 

construction) spending is not sequential like in the case of renewables and tends to be more 

frontloaded, which could explain the stronger near-term impact and subsequent loss of 

statistical significance.  This intuition is corroborated by findings in studies comparing a 

steady-state employment estimate for the generation of electricity using nuclear versus wind 

power, which indicate that investment in nuclear power produces about 25 percent more 

employment per unit of electricity than wind power (WNA, 2020). Moreover, research 

comparing pay across nuclear, wind and solar direct workforces in the United States in 2017 

indicates that pay of nuclear workers is one-third higher than that in the wind and solar 

sectors, and that they were paid more than twice the mean for power sector workers (Oxford 

Economics, 2019). In the medium term, the nuclear energy spending multiplier is still larger 

than the renewable energy counterpart but, being not statistically significant, does not allow a 

clean-cut statistical comparison vis-à-vis multipliers from investment in other types of 

energy.  



 27 

 

Figure 2. Impulse Responses to Nuclear Energy Investment Spending 

 

Note: Blue bold lines represent median responses. Shaded areas represent credible intervals delimited by the 

16th and the 84th percentiles. 

 

Table 4. Cumulated Multipliers associated to Nuclear Energy Investment Spending  

Horizon Nuclear Energy Investments 

Multiplier 

Impact 4.11* 

1 Year 3.97* 

2 Years 3.88 

3 Years 3.83 

4 Years 3.80 

5 Years 3.78 

Note: * denotes multipliers with credible intervals, delimited by the 16th and the 84th percentiles, that exclude 

zero. 

 

 

 

. 
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B.    Green Land Use Versus Non-Eco-Friendly Land Use Multipliers 

 

Figure 3 plots the impulse response of GDP to a 1 percent shock to spending on ecosystem 

conservation (green land use spending) versus a shock of the same size to spending on 

subsidies to conventional agriculture (non-eco-friendly land use spending).  

Interpreting differences in multipliers and impulse responses from spending in these 

two land use categories requires caution for two reasons. First the IRFs and associated 

multipliers have been estimated over different country and time samples, and in two separate 

econometric specifications, because of data coverage and availability constraints explained in 

Section 3. This is also the reason why a statistical test on their difference cannot be 

constructed. In addition, spending in conservation reflects a mix of public spending in wages, 

education, training and recreational programming (which are thus part of public 

consumption) and some public investment,21 whereas spending on conventional agriculture 

here reflects primarily public transfers and subsidies to crop and animal producers in 

industrial farm systems. However, even coarse comparisons of average output effects of 

spending on sustainable versus unsustainable land uses can be informative, as a consensus is 

emerging that subsidies to unsustainable land use and conventional agriculture should be 

quickly redirected toward sustainable uses (see for example UNEP-UNDP-FAO, 2021). 

Getting a sense of the potential economic gains (or losses) of redressing land use subsidies to 

sustainable and land regenerative goals is key for policymaking and budgetary decisions.    

The impulse responses in Figure 3 indicate that the effect of a shock to conservation 

spending is long-lasting, similarly to the shock to green spending in the energy sector, 

implying that for this sector too, the economic contribution of a stimulus can generate 

durable economic benefits, in addition to the mitigation and carbon-sink gains from 

preserving wildlife. By contrast, the effect of a spending shock to support industrial farming 

activities is considerably shorter-lived and completely dissipates after 5 years. 

Table 5 reporting cumulated spending multipliers on green versus non-eco-friendly 

land use shows that, while green land use spending multipliers are not significantly different 

from zero on impact and over the first year’s horizon, cumulated multipliers at horizons 

greater than one year are large and grow over time. This suggests that spending to sustain 

natural ecosystems exerts powerful positive ripple effects on the economies that practice it: 

for every dollar spent in conservation, almost  seven more are generated in the larger 

economy in the medium term, a result in line with findings in bottom-up analyses of local 

and regional impacts (see Sub-Section V.C).  

 
21For example this includes the construction and the maintenance of infrastructure such as fences, boardwalks, 

observation platforms, and other durable machinery such as communication equipment and optical devices for 

distant viewing, vehicles or satellite monitoring and GPS tracking devices necessary to perform conservation 

services. 
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Figure 3. Impulse Responses to Green and Non-Eco-Friendly Spending for Land Use  

 

Note: Blue bold lines represent median responses. Shaded areas represent credible intervals delimited by the 

16th and the 84th percentiles.  

 

Table 5. Cumulated Multipliers associated to Green and Non-Eco-Friendly Spending 

for Land Use  

Horizon Green Land Use Multiplier Non-Eco-Friendly Land Use 

Multiplier 

Impact -5.36 0.55* 

1 Year -1.60 0.85* 

2 Years 1.45* 0.95* 

3 Years 3.75* 0.96* 

4 Years 5.45* 0.95 

5 Years 6.67* 0.94 

Note: * denotes multipliers with credible intervals, delimited by the 16th and the 84th percentiles, that exclude 

zero. 

These high multipliers associated to green land use are expected and can be ascribed 

to three main determinants. First, the estimates are conducted on data from developing 

countries, which typically capture spending programs financed by donors. Given that these 

programs do not crowd out nor absorb, but rather supplement, domestic resources, they are 
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naturally characterized by high multipliers. Second, as documented by Waldron et al. (2020) 

the conservation activity has a strong labor intensity.  Much of the economic impact of 

conservation is in driving a visitor economy, with associated creation of opportunity and 

income in sectors such as hospitality and tourism in rural and coastal communities which, in 

developing countries, tend to have below average income and thus are more likely to have 

higher propensities to spend. Third, by limiting land available for agricultural expansion, 

conservation spending lifts the prices paid to rural producers (Waldron et al., 2020). More 

generally, protecting biodiversity helps underpin the ecosystem services upon which 

economic activity and lives depend like food production, fresh water, natural resources, the 

protection from extreme weather events. These activities all create jobs and an inspiration for 

innovation through biomimicry (Kennedy and Marting, 2016; OECD, 2020). 

By contrast, the multipliers of spending to support industrial agricultural production 

are below one at every horizon. This reflects the high mechanization of industrial agriculture, 

the typically low value added associated with high costs of machinery, fossil fuel energy, and 

imported chemical inputs and foreign-patented GMO seeds, all of which tend to have low 

domestic content, given the high global market concentration of suppliers of all these inputs 

(FOLU, 2019; UNEP, 2020; UNEP-UNDP-FAO, 2021). While keeping in mind the caution 

on comparability made above, this finding is a potential indication that repurposing spending 

from unsustainable land uses toward more labor intensive and high-domestic content 

sustainable land uses may promise important economic gains and may hold the keys to a 

successful green recovery.  

 

C.   Comparison of Green Spending Multipliers to Sectoral Impact Studies 

It is difficult to contextualize our novel multiplier estimates in pre-existing empirical 

literature. The most proximate comparators are input-output and bottom-up studies on the 

impact of spending on GDP or GVA in some of the energy and land use spending 

categories22  examined here.23 However, clean categories do not yet exist in input-output 

tables, and most available studies are based on ad-hoc assembled “synthetic” industries. This 

approach allows researchers to evaluate public and private spending in clean energy and 

 
22 Input/output models link various sectors of the economy—agriculture, construction, government, households, 

manufacturing, services and trade—and trace how spending flows among those various sectors. An input/output 

model also includes geographic linkages, and shows how spending flows at national, state and county levels. 
23 GDP and GVA multipliers differ in derivation. The GDP multiplier describes the total output generated as a 

result of $1 of output in the target industry; the GVA multipliers instead describes the additional value added 

generated in the economy by spending $1 of direct value added. Gross value added provides a dollar value for 

the amount of goods and services that have been produced in a country, minus the cost of all inputs and raw 

materials that are directly attributable to that production. It thus corresponds to the difference between gross and 

net output. 
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compare it to the effects of spending on fossil fuels, for example. Also, some of the available 

studies only focus on employment creation, glossing over GDP impacts altogether. 

Existing bottom-up and input-output analyses reaffirm significant economic benefits of green 

spending: 

• Clean (renewable) energy. Estimates of the job impact of spending in clean energy 

indicate that this may beat job creations from spending on fossil fuels by a ratio of 3:1 

(Pollin et al., 2009; Garrett-Peltier, 2017; WRI, 2020b). Forecasts of the growth 

impact for the United States of the American Clean Energy and Security Act 

(ACESA) performed employing different macro econometric models confirmed 

conclusions from other models that a transition to a lower-carbon economy would 

have no significant effect on the U.S. economy’s long-term growth trajectory (Pollin 

et al., 2009). These findings are even more notable given that all these models did 

leave out positive effects of higher employment, the economic benefits of a higher 

level of domestic content (and thus a reduced trade deficit), the possibilities for major 

technological breakthroughs and the economic benefits of reducing greenhouse gas 

emissions. Globally, a 2016 report by IRENA calculates that doubling the share of 

renewables in the global energy mix by 2030 would increase global GDP by up to 1.1 

percent or US$ 1.3 trillion compared to business as usual. Most of these positive 

impacts on GDP are driven by the increased investment in renewable energy 

deployment, which triggers ripple effects throughout the economy (IRENA, 2016). 

More recently, research by McKinsey (2020b) focusing on a typical European 

country of 50 million to 70 million people found that every €1 spent in clean energy 

could generate some €2 to €3 of GVA.24 This research indicates that the employment 

boost from this stimulus package would also be substantial: 1.1 million to 3.0 million 

new “job years” of employment. 

• Clean (non-renewable) energy. In the case of nuclear energy spending, NEI (2014) 

calculated economic benefits associated with the construction of 23 nuclear plants 

(comprising 41 reactors) in the United States using IMPLAN’s input/output model, 

widely used by U.S. government agencies. The data collected for these studies 

provide a snapshot of the economic impact of an average nuclear power plant, 

including economic value or output (based on the plant’s electricity sales), jobs 

provided, and labor income.25 “Multipliers” can be developed for any 

industry/business sector or geographic area in the model, and capture the ratio of the 

 
24 The analysis focuses on four broad categories of clean energy spending, namely: Industry (improve industrial 

energy efficiency; build carbon-capture-and-storage infrastructure); Buildings (retrofit houses for energy 

efficiency; install smart-building systems; Energy (reinforce the electricity-distribution grid; expand energy 

storage; accelerate build-out of wind and solar power; accelerate rollout of LED street lighting); Transport 

(expand electric-vehicle charging networks; create bus rapid transit and urban rail schemes; scale up electric-

vehicle manufacturing; develop active-transport infrastructure). 
25 Labor income is a subset of the total economic value or output. 
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facility’s total economic output or value to its direct economic output or value.  

Multipliers for a county are typically found to be smaller than for a larger area, such 

as the state in which the county is located, because some spending associated with an 

economic activity migrates from the small area into the larger area. At the local area 

level, multipliers are larger if the local area tends to produce the types of goods and 

services that the plant requires.  Estimates from the analysis based on normalized 

averages from analyses of the economic and employment impact show that every 

dollar spent by the average reactor results in the creation of US$1.04 in the local 

community, US$1.18 in the state economy and US$1.87 in the U.S. economy.26 These 

results are corroborated by findings in country case studies on nuclear investment 

indicating that nuclear spending has added more value in GVA terms than the value 

associated by similar expenditure in non-eco-friendly energy (see for example IAEA, 

2009).   

• Green land use. In line with findings reported here, the most comprehensive global 

assessment of the financial and economic impacts of conservation ever completed 

looks at the impacts of six different combined terrestrial and marine scenarios with 

varying tradeoffs between biodiversity protection and extractive uses. It found that 

protecting 30 percent of the world’s land and ocean provides greater benefits than the 

status quo, both in terms of financial outcomes and non-monetary measures like 

ecosystem services (Waldron et al., 2020). The revenues associated with protected 

areas outweighed the costs by a factor of at least 5:1, a multiplier close to our 

aggregate top-down estimates. This is a conservative ratio because it does not include 

non-monetary economic benefits from ecosystem services such as climate change 

mitigation, food protection, clean water provision and soil conservation. The study 

also found that land use patterns that prioritize biodiversity more strongly require 

higher public expenditure, as expected, but they also yield greater financial and 

economic benefits, with the scale of the rewards being directly linked to the level of 

financial ambition.  

VI.   ROBUSTNESS ANALYSIS 

 

In this section we present the results of robustness checks addressing issues commonly 

discussed in the fiscal multipliers literature, which may be applicable also to the analysis 

presented in this paper. 

First, given that, relative to the number of observations available, the panel VAR 

model requires the estimation of a large number of parameters, we produce the baseline 

 
26 The estimates are calculated per megawatt of installed capacity and reflect a nominal 1,000-megawatt plant 

size. In practice, new nuclear plants are larger than 1,000 megawatts, so the economic benefits understate the 

benefits that new nuclear plants will produce. 
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results with a uniform lag structure of one year. Bearing in mind that the use of a long lag 

structure would not be feasible, as we would run out of degrees of freedom, we check 

whether results are robust to the use of a lag structure of two years. 

Second, to facilitate the computation of the baseline multipliers, we divide the 

endogenous variables by the real potential GDP of the corresponding country. This avoids 

potential biases that could arise from using constant sample averages of the ratios of fiscal 

variables to GDP in the ex-post conversion of the estimated elasticities to dollar equivalents 

(see, e.g., Gordon and Krenn, 2010; and Ramey and Zubairy, 2018). In our baseline 

estimates, we compute real potential GDP using the conventional HP filter. However, given 

the uncertainty around estimates of a latent variable such as potential GDP, we check 

whether results are robust to the use of the filter by Mohr (2005), which virtually removes the 

pro-cyclical bias in end-of-sample trend estimates that may arise with the use of the HP filter. 

 Tables 6-8 report the green and non-eco-friendly multipliers obtained by making 

these modifications to the baseline estimation procedure. All conclusions drawn from the 

baseline estimates survive the changes. While green (renewable) energy investment 

multipliers are slightly higher under the alternative specifications, non-eco-friendly energy 

investment multipliers are virtually unaffected (Table 6).  

 

Table 6. Robustness Checks on Cumulated Multipliers Associated to Green 

(Renewable) and Non-Eco-Friendly (Non-Renewable) Energy Investment Spending  

Lag structure of 2 years 
Horizon Green Energy Investments 

Multiplier 

Non-Eco-Friendly Energy 

Investments Multiplier 

Impact 1.28* 0.66* 

1 Year 1.43* 0.66* 

2 Years 1.48* 0.65* 

3 Years 1.46* 0.62 

4 Years 1.41 0.60 

5 Years 1.35 0.58 

Alternative measure of potential GDP 

Horizon Green Energy Investments 

Multiplier 

Non-Eco-Friendly Energy 

Investments Multiplier 

Impact 1.73* 0.65* 

1 Year 1.68* 0.65* 

2 Years 1.61* 0.64* 

3 Years 1.53* 0.61 

4 Years 1.45 0.58 

5 Years 1.39 0.55 

Note: * denotes multipliers with credible intervals, delimited by the 16th and the 84th percentiles, that exclude 

zero. 
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Table 7. Robustness Checks on Cumulated Multipliers Associated to Nuclear Energy 

Investment Spending  

Lag structure of 2 years 
Horizon Nuclear Energy Investments 

Multiplier 

Impact 4.38* 

1 Year 4.23* 

2 Years 4.10 

3 Years 4.01 

4 Years 3.95 

5 Years 3.92 

Alternative measure of potential GDP 

Horizon Nuclear Energy Investments 

Multiplier 

Impact 3.26* 

1 Year 3.17* 

2 Years 3.12 

3 Years 3.09 

4 Years 3.07 

5 Years 3.06 

Note: * denotes multipliers with credible intervals, delimited by the 16th and the 84th percentiles, that exclude 

zero. 

Table 8. Robustness Checks on Cumulated Multipliers Associated to Green and Non-

Eco-Friendly Spending for Land Use  

Lag structure of 2 years 
Horizon Green Land Use Multiplier Non-Eco-Friendly Land Use 

Multiplier 

Impact -3.38 0.19* 

1 Year -1.77 0.22 

2 Years 0.93 0.25 

3 Years 3.59* 0.27 

4 Years 5.60* 0.28 

5 Years 6.85* 0.30 

Alternative measure of potential GDP 
Horizon Green Land Use Multiplier Non-Eco-Friendly Land Use 

Multiplier 
Impact -5.18 0.42* 

1 Year -1.97 0.55* 

2 Years 0.81 0.62* 

3 Years 3.02* 0.66* 

4 Years 4.70* 0.67 

5 Years 5.98* 0.67 

Note: * denotes multipliers with credible intervals, delimited by the 16th and the 84th percentiles, that exclude 

zero. 
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Relative to the baseline results, nuclear energy investment multipliers are somewhat higher 

with a lag structure of two years and slightly lower with the alternative measure of potential 

GDP, but the overall dynamic and statistical significance is very similar (Table 7). Finally, 

the multipliers associated with green spending for land use under the alternative 

specifications are comparable to those obtained under the baseline model. In contrast, non-

eco-friendly land use spending multiplier become smaller and quickly lose statistical 

significance with a lag structure of two years (Table 8). 

In Subsection V.A, we also reported multipliers of green (renewable) and non-eco-

friendly (fossil fuel) investment computed within the same specification, to calculate the 

probability that their difference is greater than zero. This implied estimating a VAR 

containing both investments in the vector of endogenous variables and the order used was 

green investment first and non-eco-friendly investment second. Therefore, it seems worth 

checking whether inverting the order of the two investments in the vector of endogenous 

variables changes the results significantly. It turns out that it does not (Table 9). In this case, 

the probability of green energy investments multipliers being larger than non-eco-friendly 

investments multipliers is somewhat lower, but still ranges between about 80 and 90 percent, 

depending on the horizon, leaving the bottom line of the analysis unaltered. 

 

Table 9. Robustness Check on Cumulated Multipliers associated to Green (Renewable) 

and Non-Eco-Friendly (Non-Renewable) Energy Investment Spending—Merged 

Specification and Alternative Variables Ordering 

Horizon [A] Green (Renewable) Energy 

Investments Multiplier 

[B] Non-Eco-

Friendly Energy 

Investments 

Multiplier 

Prob 

[A]>[B] 

Impact 1.12* 0.68* 0.79 

1 Year 1.23* 0.65* 0.84 

2 Years 1.31* 0.62* 0.87 

3 Years 1.36* 0.59 0.87 

4 Years 1.40* 0.57 0.86 

5 Years 1.44 0.55 0.86 

Note: * denotes multipliers with credible intervals, delimited by the 16th and the 84th percentiles, that exclude 

zero. 
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VII.   CONCLUSIONS AND POLICY IMPLICATIONS 

 

The post-COVID-19 economic recovery stimulus packages provide a unique opportunity to 

build a more resilient and sustainable future and advance the much-needed transition. 

Building back better, many argue, promises recovery results in economic growth, while at the 

same time strengthening resilience against future climate related shocks and mitigating 

climate change itself. 

In this paper we have assembled a new international dataset documenting expenditure 

in green and non-eco-friendly energy and land use—the two main sources of anthropogenic 

pressure on Earth’s planetary boundaries—from a variety of institutional and academic 

sources. We used these data to estimate spending multipliers by employing a well-known 

estimation methods. To our knowledge this is the first study to estimate output multipliers of 

renewable and non-renewable (nuclear) energy investments, and on those associated with 

fossil fuel energy, conservation and industrial agriculture.  

We find that investing on clean energy, like solar, wind or nuclear ends up producing 

more GDP than it initially demands. By contrast, spending on non-eco-friendly energy 

generation, is found to crowd out other forms of domestic spending to a larger extent. These 

findings can be rationalized by noting that, compared with fossil fuel technologies, which are 

typically mechanized and capital intensive, the renewable energy industry is more labor 

intensive. This feature is highlighted in sector studies documented in the paper, showing that 

more jobs are created for each unit of electricity generated from renewable sources than from 

fossil fuels.  

Similarly, our findings on ecosystem conservation spending show that it is associated 

to large economic gains. In contrast, spending to support unsustainable land uses—in our 

case highly mechanized and imported-input-dependent industrial crop and animal 

agriculture—returns less than the initial expenditure.  

All our estimates are robust to different econometric specifications and may 

underestimate the economic gains from investing in green energy and land use. In fact, they 

do not account for the current or future GDP impact of climate change and biodiversity loss, 

nor for the public health implications of non-ecofriendly spending, both of which are non-

negligible and are on the rise globally (see, for example, Burke, Hsiang and Miguel, 2015; 

OECD, 2020). 

The overarching conclusion from this study is that gearing post-COVID economic 

stimuli to investments that favor decarbonization and carbon-capture through nature-based 

solutions is not just good for the planet: it also promises to be the cheapest and shortest route 

back to a prosperous global economy.   
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APPENDIX 

A.   Data 

A.1 Endogenous Variables 

 

Our variables of interest are gross domestic product and, depending on the specification, total 

investments, renewable energy investments, non-eco-friendly energy investments, nuclear 

energy investments, green land use spending, non-eco-friendly land use spending. 

 

Data on clean renewable energy and non-eco-friendly energy investments come from the 

International Energy Agency. Data on nuclear energy investments were assembled 

specifically for this project by the OECD’s Nuclear Energy Agency in collaboration with the 

World Nuclear Association and the International Atomic Energy Agency. Green land use 

spending data were updated starting from the work of Waldron et al (2013, 2017). Non-eco-

friendly land use spending data are based on an elaboration of OECD producer support 

estimates (PSE) and assembled by Searchinger et al. in 2020 for the World Bank Group.  

Gross domestic product and total investments are downloaded from the IMF’s World 

Economic Outlook database. 

 

All series are transformed in real terms using the implicit GDP price deflator. Then, they are 

normalized by diving by real potential GDP. 

 

The time span and the set of countries included in the analysis depend on the availability of 

data. Specifically: 

 

• for clean renewable energy and non-eco-friendly energy investments specifications, 

dataset includes China, Japan, Korea, Canada, United States, Brazil, Indonesia, 

Mexico, Russia, Oceania group (Australia and New Zealand) and EA group (France, 

Germany and Italy), for a time span that goes from 2003 to 2019; 

• for nuclear energy investments specification dataset includes China, France, Japan, 

Korea, Canada and United States, for a time span that goes from 1991 to 2017; 

• for green land use spending specification dataset includes Burkina Faso, Burundi, 

Cambodia, Cameroon, Central African Republic, Chad, Ghana, Guatemala, Malawi, 

Mozambique, Niger, Senegal, Sierra Leone, Madagascar, Tanzania and Uganda, for a 

time span that goes from 1994 to 2008; 

• for non-eco-friendly land use spending specification dataset includes China, Japan, 

Korea, Canada, United States, Australia, Chile, Indonesia, Mexico, New Zealand, 

Russia, South Africa, Colombia, Iceland, Israel, Kazakhstan, Norway, Switzerland, 

Turkey and Ukraine, for a time span that goes from 1997 to 2016. 
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A.2 Exogenous Variables 

 

Regarding specifications that include clean renewable energy investments, non-eco-friendly 

energy investments and nuclear energy investments, we use as exogenous variables the 

forecast of the total investments made at time t-1 for time t, provided by IMF’s World 

Economic Outlook. 

 

A.3. Informational Dataset 

 

The informational dataset used to extract common factors consists of 12 series for each 

country downloaded from IMF’s World Economic Outlook and Thomson Reuters 

Datastream Economics databases. The choice of the time series to include in the 

informational dataset is dictated by their availability for all countries and for all periods 

included in the analysis. 

 

The following variables were downloaded for each country considered: 

 

• National Account: Government Consumption Expenditure; Total Government 

Revenue; Export of Goods and Services; Imports of Goods and Services; Final 

Consumption Expenditure of Households; Gross National Saving.  

• Output: Industrial Production Index (not available for Green Land Use Dataset); 

Change in Inventories. 

• Employment: Employees Domestic Concept. 

• Exchange rates: Real Effective Exchange Rates (not available for Green Land Use 

Dataset).  

• Money and credit quantity aggregates: Broad Money or Money Supply M0, M1, M2, 

M3 (depending on the availability). 

• Price indexes: Consumer Price Index. 

Where appropriate we transform variables to guarantee stationarity tested by the Phillips and 

Perron (1986) and Kwiatkowski et al. (1992) tests. 

 

 




