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1 Introduction

In the dozen years since the onset of the Global Financial Crisis, the implementability of finan-

cial regulation has gained increased attention, including in empirical work on the link between

regulation and politics.1 Political motivations can divert policy from a focus on the well-being of

society, and are of particular importance for financial regulators, who often lack operational and

financial independence (Agur and Sharma, 2014; Edge and Liang, 2019). Political pressure can,

for example, lead a regulator to forbear when banks become insolvent. In turn, the foresight of its

own future limitations affects the regulator’s present-day incentives. The regulator thus faces not

only the financial sector but also its own future selves, and must navigate its own changing mirror

images, which can erode the credibility and the potency of current policy.

Two separate strands of the theoretical literature have explored the impact of, respectively, poli-

tics and policy credibility on the design of financial regulation. One strand examines how politi-

cal economy factors bend the incentives of financial regulation.2 The other strand instead consid-

ers how time consistency affects such incentives.3 Both strands are of renewed relevance in light

of the COVID-19 crisis, which has raised the pressure on regulatory policy to give precedence to

the immediate needs of the financial sector and which may lower the priority given to longer term

effects on policy credibility.

This paper brings both strands together, making a first foray into the intersection between the po-

litical economy and time consistency problems of financial regulation. It does so in a multi-stage

game with three players: a policy maker, a bank, and the public. The public suffers from limited

insight into the financial sector’s health, and this forms the crucial information asymmetry in the

model. The public can punish the policy maker, which it does when it learns of bank insolvency,

because public taxes fund the deposit insurance. But because public insight into bank solvency

is impaired, this ability to punish the policy maker is the very factor that pushes the policy maker

away from maximizing the public’s welfare. The policy maker here is the government as, con-

sistent with the literature cited in footnote 2, we do not investigate inter-agency problems within

the public sector.4 The government has an incentive to hide the revelation of bank insolvency, if

there is a chance that the bank can return to health down the road. That is, the political economy

1Several seminal contributions predate the Global Financial Crisis (Brown and Dinç, 2005; Kroszner and Stra-

han, 1999; Nunez and Rosenthal, 2004; Rajan and Zingales, 2003; Romer and Weingast, 1991; Stratmann, 2002).

However, recent years have seen a flurry of empirical research in this field (Agca et al., 2019; Behn et al., 2015; Ben-

melech and Moskowitz, 2010; Dagher, 2018; Dell’Ariccia et al., 2018; Edge and Liang, 2019; Igan and Lambert,

2019; Igan et al., 2017; Igan and Mishra, 2012, 2014; Igan et al., 2012; Liu and Ngo, 2014; Lucca et al., 2014; Mian

et al., 2010, 2013; Müller, 2019; Shive and Forster, 2016; Veltrop and de Haan, 2014).
2See, e.g, Almasi et al. (2018); Bond and Glode (2014); Boot and Thakor (1993); Chang (2007); Gersbach and

Papageorgiou (2019); Hakenes and Schnabel (2014); Herrera et al. (2020); Masciandaro and Passarelli (2013); Rola-

Janicka (2019); Tressel and Verdier (2014).
3See, e.g., Bianchi and Mendoza (2018); Colliard and Gromb (2018); Diamond and Rajan (2012); Ennis and

Keister (2010); Farhi and Tirole (2012); Farhi and Werning (2016); Jeanne and Korinek (2019, 2020); Keister

(2016); Keister and Mitkov (2019); Martynova et al. (2019); Morrison and White (2013); Shapiro and Skeie (2015);

Walther and White (2020).
4Inter-agency and intra-agency problems in the conduct of regulatory policy are considered, for example, in

the literature on whether central banks should have a mandate that encompasses bank regulation and supervision

(Goodhart and Schoenmaker, 1995; Ioannidou, 2005).
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problem here is not an assumed bias, but rather an endogenous response to an information asym-

metry.5

The bank can choose between projects with different risk profiles, and acts like a call option

owner who sees primarily the upside of volatility. Thus, the model focuses on the negative side of

risk-taking behavior, which emanates from the bank’s exploitation of its public safety net. More-

over, if the bank chooses a risky project that initially performs poorly, its insolvency may not be

the last step. The bank can gamble for resurrection by reinvesting funds in its underperforming

but high-volatility project, hoping that a good draw can lead it back to profit.6

The gamble for resurrection is an activity that destroys net present value, and that should be pre-

vented from a welfare perspective. Using a policy measure discussed below, the government can

legislate against gambles ex-ante, before the bank has taken on any risk, and thereby hope to in-

fluence the bank’s initial risk profile, which otherwise becomes tilted towards riskier projects by

the prospect of a future gamble for resurrection. The government may also be able to act a sec-

ond time, after the bank’s initial solvency has already materialized. This second stage occurs with

a certain probability. This represents the uncertainty about the government’s nimbleness in re-

sponse to financial sector developments, including crises, which in reality are fast paced com-

pared to financial regulation.

However, being nimble is a double-edged sword when time consistency matters. If the govern-

ment is certain to get a second decision stage, the government’s initial legislation is cheap talk

that can always be reversed. Instead, if the probability of the second stage is zero, the govern-

ment’s initial legislation is fully credible. By varying this probability, we obtain comparative stat-

ics to the degree of the time consistency problem in the model.

At its initial decision stage, the government essentially plays against two players: the bank and

its own future self. In the play against the bank, the government’s hand is strengthened by a more

time consistent tool, because increased credibility gives it greater influence over the bank’s risk

choice. But, in playing against its future self, the government becomes tougher on initial regula-

tion when its tool is less time consistent, as it wishes to lock itself in. We show that a marginal

increase in time inconsistency can push the politically motivated government in either direction,

making it either more or less inclined to protect public welfare through regulatory action. There-

fore, sometimes policy credibility can backfire and lower welfare due to the interaction between

time inconsistency and political motivations.

In the baseline model, the government’s policy tool takes the form of mark-to-market accounting.

Mandating such accounting causes the bank to directly mark itself down to negative equity when

the risky project fails. Allowing the bank to continue using historical value accounting constitutes

regulatory forbearance here, because it buys the bank time to engage in the gamble for resurrec-

tion. Following on the Global Financial Crisis, there has been an active debate on the relative

5Resolving this information asymmetry by transmitting the government’s knowledge to the public is not com-

patible with the government’s incentives: ex-ante it would like to commit to such revelation, but ex-post (if and when

the bank is insolvent) it does not wish to reveal.
6This is modeled after the evergreening practices (also known as zombie lending) seen in the wakes of various

financial crises. See, e.g, Acharya et al. (2019); Bergant and Kockerols (2020); Bonfim et al. (2020); Caballero et al.

(2008); Peek and Rosengren (2005).
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merits of mark-to-market and historical cost accounting in the financial sector (Ellul et al., 2014).

This comes down to a tradeoff between the risks from worsening regulatory forbearance, which

our framework focuses on, and the risks from exacerbating shortages in liquidity and fire sales,

as covered in, e.g., Adrian and Shin (2010), Allen and Carletti (2008), and Shleifer and Vishny

(2010).

Two extensions consider alternative policy environments. In the first, the government acts only

once, but designs state-contingent regulation, specifying under what conditions the bank may

forgo mark-to-market accounting. In the second, the government can impose regulatory bounds

on the bank’s initial risk profile, but these bind with a probability, as the bank sometimes suc-

ceeds at arbitraging the restrictions. These alternative policy settings do not fundamentally alter

the model’s outcomes, unless success at binding bank risk is a certainty: outcomes are overturned

by an ideal regulatory tool that gives the government complete control over the bank’s risk tak-

ing incentives. However, the notion of an imperfect tool relates closely to the reality of financial

regulation, where various tools affect risk taking incentives, but none achieve perfect control over

them.

Put differently, at the bottom of the time inconsistency problem lies an incomplete set of policy

instruments. The first-best, in which the bank never plays on the public insurance provided on its

deposits, is attainable, but only when regulatory tools enable a perfect mapping from the desires

of the policy maker to the actions of the bank.

Our model points at several elements that can help make financial regulation politically robust.

First, the model formalizes the argument, previously made in policy discussions, that an informed

public is essential for the effective implementation of financial regulation (Myerson, 2014). A

second policy implication concerns the need for increased operational and financial independence

for financial regulation (Fraccaroli et al., 2020; Sharma and Fullenkamp, 2012). In the context

of our model, the notion of independence relates to the pressure that the policy maker feels from

the public. When that pressure is small enough, which could occur if regulatory policy is placed

in the hands of a sufficiently independent regulator instead of the government, the policy maker

becomes untied from the informational problem of the public, and pursues policies that are ulti-

mately in the public’s best interest.

In the wake of the COVID-19 crisis, many policy makers have opted to defer loan loss recogni-

tion to shield banks and their creditors from the impact of the pandemic (International Monetary

Fund, 2020). Indeed, the Basel Committee on Banking Supervision (2020) has provided specific

guidelines for the implementation of measures like loan moratoria during the COVID-19 crisis.

This paper does not necessarily provide ammunition to argue against such steps, which could be

based on valid concerns about countering market dysfunctionality from liquidity shortages or fire

sales. Instead, the paper points to the conditions that are needed for a policy maker to make an

appropriate decision in this regard, particularly independence from pressures that can bias its de-

cision. This is well-recognized as concerns the potential influence of industry lobbies (Igan and

Lambert, 2019), but this paper shows that this also applies in relation to the public itself: its defi-

cient information can be a source of bias.

This paper relates to both the strands of the literature referenced in footnotes 2 and 3, which are

3



too extensive to review here. However, a few papers are most closely related. In Chang (2007),

the government has a biased policy agenda and the public can punish it for this, but at a cost,

which it is more willing to incur when a financial crisis looms. Like in our model, the govern-

ment has an informational advantage relative to the public. However, the analysis of Chang (2007)

centers on multiple equilibria, and the possibility that changes in the expectations of foreign

lenders become self-fulfilling, rather than time consistency. Instead, in Morrison and White (2013)

and Shapiro and Skeie (2015) timing takes center stage, as the regulator faces a repeated bailout

problem and has an informational advantage: the need to build reputation arises endogenously.

While such reputation-building can be seen as a political-economy feature, it is a socially optimal

one. The political motivation that we model is neither a bias nor socially optimal. The sensitivity

of the policy maker is towards the public, which it is supposed to serve, but this sensitivity can be

socially detrimental when the public is poorly informed.

The remainder of this paper is organized as follows. Section 2 and 3 present the setup of the base-

line model and its outcomes. Sections 4 and 5 consider the extensions of the model. Section 6

concludes. All proofs are contained in the appendix.7 A robustness exercise in a separate online

appendix rederives the outcomes of the baseline model and the extensions using an alternative

functional form for the bank’s choice over risk profiles.

2 Model setup

There are three agents in the model: the bank, the government and the public, all of whom are

risk neutral. We first describe their respective objectives and constraints in Sections 2.1-2.3, after

which Section 2.4 lays out the timing of the game, which formalizes the interaction among the

agents.

2.1 The bank

The financial sector is represented by a single bank that is managed by its owners. The bank’s

decisions center on its asset side, while its funding side is fixed and consists entirely of costless

government-insured deposits. Bank owners are thus residual claimants that obtain the full upside

of positive bank returns, and none of the downside in the event of bank insolvency. Furthermore,

bank owners are considered a separate agent class that is not part of the public.8

On its asset side, the bank takes two decisions. First, the bank chooses its initial asset risk profile.

Second, in the event that the bank becomes insolvent, it can choose to engage in a gamble for

resurrection. We describe these choices, in turn.

7The algebraic derivations in the proofs are conducted in a Mathematica file that is available on request.
8Bank profits do not form a part of public welfare (Section 2.2). Implicitly, this can be seen as a Rawlsian rep-

resentation of social welfare, centering on the well-being of the agents that are least well-off, which here are the

members of the public that are not bank owners.
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2.1.1 The bank’s risk profile

The bank starts off with a retail deposit base of size 1. These deposits pay no interest and are

never called (i.e., there are no bank runs). The bank chooses how to invest them, and can choose

from a spectrum of projects. We use a linear functional form for this spectrum, which leads to

tractable expressions and derivations. For robustness, this online appendix rederives the paper’s

results for a different (nonlinear) functional form.

The net return on bank assets, r, is drawn from a uniform distribution with mean µ and width w,

where w is defined such that the distribution ranges from µ−w to µ+w.9 For example, µ = 0.02
and w = 0.05 would mean that the bank’s net return on assets ranges from −3% to +7%. Here,

both µ and w depend on the risk profile (or project), ρ, that the bank chooses. That is, the bank

chooses from a continuum of possible distributions when determining ρ. In particular,

µ (ρ) = m− αρ (1)

w (ρ) = βρ (2)

ρ ∈ [0, 1] (3)

Due to its limited liability, the return structure of a risk-neutral bank bears similarity to that of a

call option owner, who accrues the upside when the option is in-the-money, but has a bounded

downside. Instead of the usual mean-variance tradeoff associated with risk aversion, the risk-

neutral bank trades off a higher variance (w increases as ρ increases) against a higher mean return

(µ decreases as ρ increases). This squarely centers the model on a choice between socially benefi-

cial safer profiles and socially detrimental riskier profiles, which destroy actual project value, but

gain option value for the bank by playing on its public safety net.

We let

β > α > 0 (4)

α + β <
1

2
(5)

α + β > m > 0 (6)

where β > α means that, as ρ rises, the width of the distribution (2) increases faster than the

mean of the distribution declines (1), which opens up the possibility that the bank might prefer a

riskier profile. Furthermore, α + β < 1
2

suffices to ensure that the bank’s overall gross return,

including gambles defined in 2.1.2, is nonnegative (i.e., the bank cannot lose more than its initial

deposit base). Lastly, α + β > m > 0 means that the fixed part of the mean return in (1) is

positive, but not so large that the bank’s tradeoff always tilts towards the safest profile, because its

9Thus, the gross return on bank assets is (1 + r), and the expected gross return on the bank’s investment of size

1 is (1 + µ).
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limited liability option is too unlikely to be used.10

Taking account of its limited liability for r < 0, the bank’s expected profit is

E [Π] = E [max {r, 0}] =

µ+w∫
0

rf (r) dr (7)

where, from the uniform distribution,

f (r) =
1

2βρ
(8)

Lemma 1 solves E [Π] in closed form, and uses this to show that the bank either chooses the

safest project, ρ = 0, or the riskiest project, ρ = 1. Which one it chooses depends on the mean

return parameter m. This emanates from the well-known charter-value effect in bank risk taking

(Keeley, 1990).11 The more skin-in-the-game a limited-liability bank has, the less inclined it is to

take risk, because it has more to lose. In the terminology of option values, a high m means that

the option is deeper in-the-money, so that owning the option becomes more similar to owning the

underlying asset, and there is little to gain from an increase in variance. Instead, a low m means

that high variance is valuable to the owner of the option.

Lemma 1 When considering (7) as the objective function of a one-shot optimization problem,

the bank’s optimal risk choice is given by12

ρ =

{
1 if m < m
0 otherwise

(9)

where

m = α + β − 2
√
αβ (10)

Proof. On page 24.

Given the binary optimal choice implied by Lemma 1 as well as the fact that ρ = 1 is detrimen-

tal from a social perspective (lower mean return, and greater play on the safety net provided by

taxpayers), we now refer to the bank’s optimization as a choice between the good project, ρ = 0,

and the bad project, ρ = 1. The bank chooses the bad project when the bank has relatively little at

10See the proof of Lemma 1. Also note that, without loss of generality, we could further tighten (6) to m > α
instead of m > 0. With m > α, all projects, including the ρ = 1 project, always offer a positive mean return, per

(1). In this case, all projects are value creating in expectation, but higher ρ projects create less value and play more

on the bank’s limited liability. Note that with m > α, conditions (4) and (6) would collapse to a single condition:

β > m > α > 0.
11See also Agur (2014) for further discussion of the charter value effect.
12In this Lemma, and consistently throughout the paper, we ignore knife-edge cases where an agent is indifferent

between outcomes, because these make no qualitative difference to our results. That is, (9) could equivalently be

written with m ≤ m without affecting the rest of the paper’s analysis.
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stake, m < m, so that the bad project offers the bank enough compensation in the form of higher

option value to overcome the decline of µ.

Overall, this setup, as summarized by the threshold condition in (10), allows us not only to con-

sider a choice between a good and a bad project, but also to vary how perverse the bad project is

in relation to the good project. Comparative statics to m, as well as α and β, which parameterize

the bank’s tradeoff, enable a rich analysis within a simple binary optimal choice setting.

Note that m represents the bank’s decision threshold when its only objective is to maximize (7):

other considerations, such as the possibility of gambling for resurrection and the constraints im-

posed by financial regulation, will shift this threshold.

2.1.2 Gambling for resurrection

Once the bank has chosen its project, and the return on that project has materialized, the bank

may face an additional choice. In particular, if the bank has become insolvent, it could choose

to engage in a gamble for resurrection. We model the bank’s gamble for resurrection as a nega-

tive expected return activity. Gambling for resurrection is therefore socially harmful, and would

always be prevented by a government with the policy tools to do so, provided that government

is solely concerned with social welfare. This provides a stark setting in which to investigate the

impact of political incentives.

We envisage the bank’s gamble as zombie lending: a reinvestment in its failed project. With a

probability of g the gamble succeeds and boosts the net return on the bank’s project by (α + β),

which given (1)-(3) always suffices to bring the bank back to positive profit. But with probabil-

ity (1− g) the gamble fails, and the net return on the bank’s project declines by an additional

(α + β). Here, g ∈
(
0, 1

2

)
, which means that the expected return on the gamble is negative. Tak-

ing account of the possibility to gamble when insolvent (but not yet of possible government regu-

lation) the bank maximizes:

E [Π] = E [r| r > 0] + E [g (r + α + β)| r < 0] (11)

Since an insolvent bank only sees an upside to the gamble for resurrection, it will always choose

to engage in the gamble. Moreover, the option to gamble when the bad project fails, makes the

bank more inclined to choose the bad project in the first place. The threshold value of m below

which the bank chooses the bad project becomes higher due to the option to gamble (i.e., there

are more values of m for which the bank chooses the bad project), as recorded in Lemma 2.

Lemma 2 The bank’s solution to (11) in isolation (i.e., absent regulation) is

ρ =

{
1 if m < m
0 otherwise

(12)
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where

m =
α + β − 2

√
αβ (1− g) + 1

4
(α + β)2 g2

1− g (13)

and m > m.

Proof. On page 24.

2.2 The public

The public stands at the receiving end of the bank’s risk taking. It bears the cost of bank insol-

vency, because the government’s payout of deposit insurance is funded with (lump-sum) taxes

levied on the public. From (7) the expected cost to the public from bank insolvency is E [min {r, 0}]
when the bank does not have the option to gamble for resurrection. If the bank does have that

option, then from (11) the expected loss to the public becomes (1− g) (r − α− β) when r is

smaller than zero, and the bank therefore gambles (i.e., the expected loss is E [ (1− g) (r − α− β)| r < 0]).
Instead, when r is greater than zero, the public faces no bank insolvency costs.13,14

Although the public is aware that bank insolvency is costly to it, it is imperfectly informed about

the health of the financial sector. The public does not have insight into the process that deter-

mines bank risk. The only bank variable that is visible to the public, but imperfectly so, is real-

ized bank solvency, r. As long as the bank remains active, the public receives an imperfect signal

about its health. Instead, if the bank is closed and deposit insurance is paid out, its true solvency

position is revealed to the public.

The public’s imperfect information about the bank’s solvency is represented by a signal, θ ∈
(0, 1). This signal is a revelation probability: the public has a θ chance of knowing the bank’s

true solvency, r. This is so, unless the bank is closed, in which case the public always learns the

bank’s solvency, because a transfer of taxpayer money is involved. Therefore, the limit cases of

θ → 1 and θ → 0, respectively, represent the cases of a perfectly informed public and a public

that is completely in the dark as long as the bank is open for business. We assume that the pub-

lic’s prior is that the bank is solvent (r ≥ 0), unless the signal or bank closure reveal otherwise.

If and when the public learns that the bank is insolvent it imposes a punitive cost of x > 0 on

the government, which could be an electoral loss or a mass demonstration, for instance. We do

not explicitly model why the public takes this action against the government. One interpretation

is that when the public feels the financial pain associated with the bank’s insolvency, it obtains

an intrinsic value from punishing the government, to which it had delegated the task of financial

stability.

13The full expression for these expected costs in integral notation can be found in the proof of Lemma 5.
14We do not model here why the bank should exist, from a social perspective. The implicit assumption is that the

bank performs a critical function (e.g., in the payment system or in credit provision). An extension within the online

appendix makes this explicit.
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Examples that financial sector bailouts can impose large tax burdens abound, including for exam-

ple in countries that had pre-funded deposit insurance systems in place before the Global Finan-

cial Crisis (International Association of Deposit Insurers, 2009), but which turned out to be insuf-

ficient when the crisis came. Electoral losses for incumbent governments following on financial

crises are similarly prevalent, including in the aftermath of the Global Financial Crisis. Indeed,

Funke et al. (2016) document 140 years of political turbulence in the aftermath of financial crises.

Overall, the public has a known reaction function rather than an explicit optimization problem in

our model. The bank and the government both solve optimization problems, where they consider

the public’s reaction.

2.3 The government

We consider a single policy maker, the government, which represents the public’s interests. That

is, the government does not suffer from an agency bias that could, for instance, make it suscep-

tible to lobbying by the bank. Indeed, the government does not weigh the bank’s profits at all,

since bank owners are not counted as part of the public. The fact that the government can end up

playing along with the bank even if it cares nothing for the interests of bank owners, is an im-

portant outcome. The public’s blindness about the financial sector drives the distortions to the

government’s decision making, which ultimately harm the public itself. The government could,

in principle, resolve the information asymmetry by revealing r, but when the bank’s solvency

outcome is realized, the government has an incentive to prevent its revelation, if negative. The

government may therefore wish to join the bank’s gamble for resurrection, which, if successful,

ensures that the public never learns about the bank’s insolvency, and therefore does not take puni-

tive action against the government.

The government’s loss function is of the form E [min {Bank returns, 0} − x], where the size of x
determines how sensitive the government is to the whims of a poorly informed public. If x → 0,

then the very inability of the public to punish the government ensures that the government always

maximizes the public’s welfare. It is x > 0 that brings about the connection between the infor-

mational problems of the public and the distorted incentives of the government. Indeed, going

forward, it proves useful to define the term x (1− θ) as "the extent to which the government is

subject to pressure from a poorly informed public".

In the baseline model, the government possesses a single binary tool, l: legislation about gambles

for resurrection by the bank. The government can decide to forbid such gambles, a policy that

can be interpreted as the implementation of mark-to-market accounting. This accounting practice

forces the bank to immediately recognize the losses to its assets, in line with the deterioration of

their market value. Instead, historical cost accounting allows the bank to continue to value assets

according to their book value, unless they are sold. During a period that assets lose market value,

historical cost accounting buys the bank time, which in our setting translates into the possibility

to gamble for resurrection.

Mark-to-market accounting here provides the government with a tool that can prevent gambles

for resurrection, as the insolvent (r < 0) bank is directly recognized as such and forced to shut
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down. However, the government’s desire to veil bank insolvency from the public means that it

could opt for historical cost accounting. We let l = {Allow} represent historical cost account-

ing (which "allows" gambles to occur) and l = {Forbid} represent mark-to-market accounting

(which effectively "forbids" gambles by an insolvent bank). The payoff structure that the govern-

ment maximizes with this policy is shown in Section 2.4, which defines the payoffs to the differ-

ent players at various stages of the game.

The government initially legislates before the bank decides on its risk profile. In addition, the

government has a probability of being able to change its mind (i.e., rescinding mark-to-market

accounting rules in favor of historical cost accounting or vice versa) after bank risk has already

materialized. With probability λ ∈ (0, 1) the government’s second decision stage (i.e., after r is

drawn) exists, and with probability (1− λ) this stage does not exist. This can be seen as uncer-

tainty about how quickly financial sector developments unfold. Legislating is a slow process in

practice, and the government can sometimes find itself behind the curve.

A high λ thus represents agile legislation, but agility is a mixed blessing when time consistency

matters. Agility can help the government at the moment that it wishes to make a change, but as

seen from the government’s initial decision stage, it means a less time consistent tool. In the limit

case of λ → 1, the government’s initial legislation becomes moot, because it can change its mind

later in case the bank becomes insolvent.

The government’s incentive to allow the bank to gamble for resurrection increases when r < 0 is

a reality. Before the bank’s return is drawn, the government sees bank insolvency as only a pos-

sibility. Once that possibility becomes reality, the only way to avoid the imposition of x by the

public is to allow the bank to gamble. Therefore, the government’s legislative incentives suffer

from time inconsistency, and λ parameterizes the degree of this time inconsistency. In the limit

case of λ → 0, once the government makes its initial decision, its hands are fully tied, and the

time consistency problem vanishes.

The government’s tool to contain bank risk is not ideal. Legislating against future gambles does

reduce the bank’s incentive to choose the bad project, because if that project fails and if the gov-

ernment cannot or does not want to change its mind, then the bank gets no second chance to re-

turn to profit. However, an ideal regulatory tool would target the bank’s initial risk choice, ρ, in

such a way that the bank would always choose ρ = 0, and this would overcome the tradeoffs in

the model, as shown in (a limit case of) the extension in Section 5. However, a regulatory tool

that can contain but not fully negate perverse incentives among banks, arguably corresponds well

to the reality of financial stability policy. Alternative, but still imperfect, regulatory tools are con-

sidered in Sections 4 and 5.

2.4 Timing of the game

The actions and the payoffs described in Sections 2.1-2.3 make up a game that consists of seven

stages. Figure 1 provides an overview of these, where uncertain outcomes are represented by a

striped boxes. The formal definition of the stages is:
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Figure 1: The timing of the game

Stage 1 The government determines l.

Stage 2 The bank chooses ρ.

Stage 3 r is drawn. If r > 0: the game ends with payoffs r, 0, 0 for, respectively, the bank, the

public and the government. If r < 0: the game continues.

Stage 4 With probability λ this stage occurs, and the government can once more determine l.

Stage 5 If l = {Forbid}, then the banks shuts down, the public is repaid its deposits, with the gov-

ernment’s deposit insurance covering the shortfall, while the public imposes x on the gov-

ernment. If l = {Allow}, then the game continues.

Stage 6 With probability θ the public learns that r < 0, and imposes x on the government.

Stage 7 The bank gambles. With probability g the gamble succeeds, then payoffs are (r + α + β),

0 for, respectively, the bank and the public, while the government’s payoff is either 0 or

−x, depending on the outcome of Stage 6. If the gamble fails, then payoffs are 0, (r − α− β),

(r − α− β − x) for, respectively, the bank, the public and the government.

3 Outcomes of the baseline model

The decision stages of the game are Stage 4, Stage 2, and Stage 1. We solve these by backward

induction.

11



Lemma 3 If the government gains the opportunity to legislate at Stage 4, then its policy is to set

l = {Forbid} if and only if

x (1− θ) < r + (α + β)
1− g
g

(14)

Proof. On page 25.

From (14) we see that at Stage 4 the government will forbid gambles when x (1− θ) is smaller

than a given threshold, and that threshold is larger than zero.15 This implies that for x → 0, the

government always forbids gambles at this stage. When rid of political pressure, the government

purely weighs the public’s well-being rather than the public’s knowledge, and therefore prevents

the bank from destroying expected project value with its gamble. Similarly, for θ → 1 the gov-

ernment’s incentive to forbear disappears, because there is no scope to keep the public in the dark

about insolvency. Next, we solve for the decisions of the bank at Stage 2 and the government at

Stage 1:

Lemma 4 The bank’s Stage 2 decision depends on the government’s Stage 1 decision. If l =
{Allow} at Stage 1, then the bank’s optimal policy is

ρ =

{
1 if m <mA

0 otherwise
(15)

whereas if l = {Forbid} at Stage 1, then the bank optimally sets

ρ =

{
1 if m <mF

0 otherwise
(16)

where m <mF <mA < m. Expressions formA and mF can be found in (31) and (33).

Proof. On page 25.

Lemma 5 At Stage 1, the government’s optimal policy is l = {Allow} if

m <mF and x (1− θ) > 1

2
m+

(α + β) (2− 3g)

2g
(17)

and l = {Forbid} otherwise. An equivalent way to express (17) is

m < min

{
mF , 3 (α + β) + 2

(
x (1− θ)− α + β

g

)}
(18)

15From (1)-(6), the lower bound on r is − (α+ b) and therefore given g < 1
2 the right-hand side in (14) is posi-

tive.
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Proof. On page 26.

The conditions for government action as expressed in (17) and (18), represent two ways of look-

ing at the government’s optimal policy. The (second) condition in (17) says that the government

allows gambles when it faces too much pressure from a poorly informed public (i.e., x (1− θ)
is large enough). The condition in (18) tells us that at Stage 1 the government fails to act against

gambles when m is too low. Therefore, precisely when the banks’ incentives to engage in detri-

mental risk taking are at their worst, because the bank has little skin in the game, the government

also has the strongest incentives to play along and let the bank get away with a play on the public

safety net.

Lemma 5 gives us the foundation to derive the key result in Proposition 1.

Proposition 1 The time inconsistency of the government’s tool, λ, interacts non-monotonically

with the government’s optimal policy. In (17), both ∂mF

∂λ
< 0 and ∂mF

∂λ
> 0 are possible. The

expression for ∂mF

∂λ
, shown in (38), can be split into two terms: one (39) which is strictly positive,

and derives from the fact that a less time consistent regulatory tool has less effect on the bank’s

risk taking incentives; the other (40) is strictly negative and represents the impact of increased

time inconsistency on the government’s initial desire to tie its own hands. It can be shown numer-

ically that, within the allowed parameter space, either effect can dominate.

Proof. On page 27.

Proposition 1 brings in the government’s time consistency problem. When λ→ 0 and the govern-

ment’s initial legislation can never be changed, the government’s ability to influence the bank’s

behavior is maximized. The government can now decide whether to make the bank face the op-

timization problem in Lemma 1, where gambles never exist, or Lemma 2, where the option to

gamble always exists. Possession of a more effective tool (lower λ) can entice the government to

use it.

However, the government is not only playing against the bank; it is also playing against its future

self. This game between the Stage 1 government and the Stage 4 government emanates from the

evolution of the game tree. If there is a Stage 4 at all, this means that the bank has become insol-

vent, something that was only a possibility at Stage 1. Bank insolvency makes the government

more lenient, as it hopes to hide insolvency from the public’s eye. The government at Stage 1 dis-

likes the prospect of its more lenient future self. Therefore, a less time consistent tool can make

the Stage 1 government more disposed to forbid future gambles, in an attempt to compensate in

the present for the probability that it will be allowed to change its mind in the future.

Overall, Proposition 1 shows that the range of values of m for which the government allows gam-

bles to occur, can either expand or contract when λ increases. That is, the relationship between

time consistency and the incentive of the government to forbear is intricate, and possessing a

more time consistent tool is not a cure-all for socially optimal regulation. Depending on other

parameters, time consistency can "backfire" and make a government less inclined to protect the

public’s interest.
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4 Conditioning policy on bank solvency

In the baseline model the government possesses a binary tool. How are the model’s outcomes

affected when the policy menu becomes more sophisticated, and the government can legislate a

mapping between r and whether or not the bank is allowed to gamble for resurrection? For in-

stance, the government could mandate mark-to-market accounting under normal circumstances,

but with a clause for times of exceptional distress, defined by a threshold of r, during which the

bank may forgo on marking down its assets and recognizing insolvency.

Instead of a two-stage government decision process, this extension models a single decision stage

at which the government determines a policy mapping, l (r), with

l (r) =

{
{Allow} if r ∈ S
{Forbid} if r /∈ S (19)

The government’s task is now to maximize its expected payoff to its choice of S, which is the

set of values of r for which the bank will be allowed to gamble. In the timing of the game shown

in Section 2.4, Stage 1 now becomes: the government determines l (r). Stages 2 and 3 are un-

changed, Stage 4 is cut, and Stages 5, 6, and 7 remain identical but become, respectively, Stages

4, 5, and 6.

The announcement of a policy mapping can affect the imperfect information environment as-

sumed for the public. In the baseline model, the public’s prior is that the bank is solvent (r ≥ 0),

unless the signal or bank closure reveal otherwise. Regulatory policy does not affect this prior,

which we believe finds a counterpart in reality, where usually the public would be oblivious to

accounting methods. More generally, forms of regulatory forbearance have frequently been im-

plemented without causing public concern. But if the policy maker announces that a certain type

of policy will only apply if the bank is insolvent, then the public could make inferences on bank

solvency from observed policy actions, and forbearance ceases to work as the government in-

tended. To address this, we now give the government an additional policy option: over desired

ranges of r, it can play a mixed strategy. For instance, for values of r for which the government is

indifferent about the chosen policy, a coin toss determines whether mark-to-market or historical

cost accounting applies. As seen in Proposition 2, this suffices to prevent the public revelation of

bank solvency based on government actions. Including elements of a mixed strategy is optimal

for the government in this case, because without it, the government could not try and hide bank

insolvency from the public when it wants to.

Proposition 2 When the government is able to condition its legislation on future bank returns, its

optimal policy profile becomes: if r < 0, set

l (r) =

{
{Allow} if r < x (1− θ)− (α + β) 1−g

g

{Forbid} otherwise
(20)

while the government plays a mixed strategy when r ≥ 0.

Proof. On page 27.
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Proposition 2 shows that the government only allows gambles when the bank is sufficiently insol-

vent.16 This result brings together several features of the model. First, when the political pressure

from a poorly informed public becomes small enough, the government always forbids the bank’s

gambles. That is, when either the public is perfectly informed and θ → 1 or when the govern-

ment is indifferent to public pressure and x → 0, we have that x (1− θ) → 0, in which case the

condition in (20) never holds.17

However, when the government feels enough pressure from a poorly informed public, then the

extent of insolvency affects the government’s decision. If the bank is only barely insolvent (r just

below zero) then the full upside of the gamble accrues to the bank only. The worse is the bank’s

position to begin with (the more negative is r), the more upside there is between r and 0, and this

upside accrues to the public and therefore also the government. Of course, the public always

bears the full burden of the downside of the gamble, which is why a government unconcerned

with political pressure would never allow such a gamble. But once political pressure matters, a

greater participation in the upside of the gamble is an additional sweetener, which can tip the bal-

ance.

5 Targeting the bank’s risk profile

Thus far, the analysis has centered on a policy tool that can affect gambles for resurrection, and

thereby also indirectly impact the bank’s initial risk profile choice. But what if, aside from the

choice between mark-to-market and historical value accounting, the government also possessed a

more direct tool to target the bank’s initial risk profile? Would the government optimally use the

different tools as substitutes or as complements? Would the ability to directly target the bank’s

project choice alter Proposition 1?

In this section, in addition to regulatory policy in the form of l, the government also uses a risk

cap, ρ. This can be considered a shorthand form for a risk-weighted capital requirement. That is,

qualitatively, the key is to provide the government with a means to directly target the asset risk

choice, ρ. To retain tractability, we choose to model this in the simplest form, with a cap on the

risk that the bank is allowed to take, rather than adding the layer of bank capital and an optimiza-

tion over the bank’s liability side.

The imposition of the risk cap is subject to two frictions. First, there is a chance that the bank

finds ways to arbitrage the regulation. We model this with a probability, φ ∈ (0, 1), that the reg-

ulation is successful at binding bank risk. That is, with probability φ, ρ binds ρ, whereas with

probability (1− φ) the bank succeeds at arbitraging the risk cap, and is free to set ρ as it pleases.

The baseline model is contained in the case φ → 0, as the risk cap becomes completely ineffec-

16This discussion is for the r < 0 case. The mixed strategy for r ≥ 0 has no effect on gambles, because the bank

does not gamble when it is solvent.
17This is so, because the condition in (20) then becomes r < − (α+ β) 1−gg , while the lower bound on r is

− (α+ β), per (1)-(3) and m > 0. Moreover, by g < 1
2 we have that 1−gg > 1 and therefore − (α+ β) 1−gg <

− (α+ β) and hence below the lower bound on r.
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tive and only legislation l remains as government policy. Instead, φ → 1 represents the case of a

"perfect" regulatory tool, which gives the government full control over the bank’s risk profile.

The second friction is that a forced adjustment of its risk profile is costly to the bank. This relates

to the notion that a bank owns long term assets of limited liquidity, and therefore faces costs as-

sociated with changing its portfolio. When the bank chooses its risk profile, it does not yet know

whether it will succeed at finding opportunities to circumvent ρ. If the bank chooses a value of ρ
above ρ and is subsequently forced to adjust down, then the cost of doing so is η (ρ− ρ), where

η ∈ (0, 1). Absent such a friction (i.e., if η = 0), the bank sees no peril to ignoring the risk cap: it

would first try to set its preferred risk profile, only adjusting to ρ when regulatory arbitrage fails.

The timing of the game is now as follows:

Stage 1 The government chooses both the bank risk cap, ρ, and the legislation on gambles, l.

Stage 2 The bank chooses ρ.

Stage 3 The bank attempts regulatory arbitrage: with probability φ, ρ successfully constrains ρ.

With probability (1− φ), ρ is reset to ρ (i.e., arbitrage is successful and (ρ− ρ) = 0).

Stage 4 r is drawn. If r > 0: the game ends with payoffs r − η (ρ− ρ), 0, 0 for, respectively, the

bank, the public and the government. If r < 0: the game continues.

Stage 5 With probability λ this stage occurs, and the government can once more determine l.

Stage 6 If l = {Forbid}: the game ends with Stage 4 payoffs. If l = {Allow}: the game continues.

Stage 7 With probability θ the public learns that r < 0, and imposes x on the government.

Stage 8 Gamble: Payoffs −η (ρ− ρ), (r − α− β), (r − α− β − x) for, respectively, the bank, the

public and the government if the gamble fails (with probability 1 − g). And (r + α + β) −
η (ρ− ρ), 0, {0,−x} (depending on Stage 7) if the gamble succeeds (with probability g).

Solving by backward induction, the government’s Stage 5 optimization problem is unchanged

compared to (Stage 4 in) the baseline model. Therefore, Lemma 3 continues to describe opti-

mization at this stage. For Stage 2 and Stage 1 optimization we now obtain:

Lemma 6 At Stage 2, the bank’s optimal policy is

ρ =



{
1 if m > m̂A

0 otherwise
if l = {Allow}

{
1 if m > m̂F

0 otherwise
if l = {Forbid}

(21)

where m̂F < m̂A, m̂A < mA and m̂F < mF . Here, m̂A → mA and m̂F → mF (recovering the

baseline model) for φ→ 0. Instead, for φ→ 1 the bad project is never chosen.
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Proof. On page 28.

Lemma 7 At Stage 1, the government’s optimal policy is ρ = 0, combined with l = {Allow} if

m < m̂F and x (1− θ) > 1

2
m+

(α + β) (2− 3g)

2g
(22)

and l = {Forbid} otherwise.

Proof. On page 28.

We first note that possessing a perfect regulatory tool always entails a first-best outcome:

Remark 1 φ → 1 implies ρ = ρ = 0 and therefore the socially optimal outcome with payoffs

(m, 0, 0) for, respectively, the bank, the public and the government.

Moreover, building on these Lemmas, we can derive the key result of this section:

Proposition 3 Proposition 1 remains valid in this extension (i.e., both ∂m̂F

∂λ
< 0 and ∂m̂F

∂λ
> 0 are

possible). Moreover, the government optimally uses its two policy tools, ρ and l, as complements

rather than substitutes: with the risk cap in hand, the government forbids gambles using l over a

larger range of possible values of m than it does without the risk cap.

Proof. On page 29.

The continued prevalence of the time consistency problem is highlighted by the fact that the gov-

ernment uses its two tools as complements. A priori, when a second tool becomes available for

the same target, one might expect a policy maker to optimally use the tools as substitutes, so

that applying more of the one goes together with applying less of the other. But the impact of

time inconsistency runs counter to this intuition. A greater likelihood of being bound by the risk

cap, makes the bank less inclined to take risk and, even if the bank still wants to choose the bad

project, it sometimes cannot do so, because its regulatory arbitrage fails. This means that at Stage

1, the government knows that bank failure happens less often. That, in turn, reduces the attraction

of joining in the bank’s future gamble, because the need to cover up bank insolvency from the

public is less likely to arise. The government therefore becomes more inclined to stop the gam-

bles and opt for mark-to-market regulation.

6 Conclusion

The buffers that the banking sector built up after the Global Financial Crisis have largely held up

during this pandemic, aided by deferred loss recognition in many countries, although significant
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risks and vulnerabilities remain (International Monetary Fund, 2020). If bank insolvencies do

occur, will regulators reveal these?

The incentive to forbear can be powerful when bad news imposes losses on the policy maker,

while there is a chance that muddling through will succeed, and the public never learns of the

bad news. Muddling through does not necessarily mean that the policy maker is indifferent to the

public. Indeed, when information asymmetries abound, caring about what the public thinks can

be the very reason to try and keep it in the dark, as entailed by our model.

In this paper, a microfounded desire to muddle through meets policy credibility. This interaction

between the political economy and time consistency problems of financial regulation, each sep-

arately well-established in the literature, is the paper’s key novelty. We explore this interaction

by modeling probabilistic decision stages, which allow us to vary the degree of time consistency.

The outcome is that in the presence of political motivations, policy credibility is a double-edged

sword.

Which distorted incentives is the policy maker keenest to influence: those of the bank, or its own?

A more credible tool gives the policy maker a stronger ax to wield against the incentives of the

financial sector to take on excessive risk. This added potency can raise the policy maker’s incen-

tive to act. However, a less credible tool increases the urgency for the policy maker to be tough

up front, precisely because the tool is weakened by the policy maker’s own future incentives to

forbear. Overall, time consistency and incentives to regulate are bound by an intricate relation,

and more time consistent policy tools can push those incentives either way, a result that holds up

in various alternative setups considered in extensions.

In our model the pressure that policy makers feel from a public that has only a crude insight into

the financial sector, is the central impediment to welfare maximization. This impediment actually

consists or two separate obstacles, which in the preceding sentence are represented by the words

"pressure" and "crude insight". If the policy maker would focus only on a financial stability tar-

get, come public storm or sunshine, then the public’s informational problems lose their bite. Fi-

nancial regulators could be granted more operational and financial independence, to help detach

their incentives from political cycles.

Alternatively, it is the public’s lack of information about the financial sector that could be tackled

politically (e.g., the electorate putting in place politicians who mandate regulatory transparency

at all times, including when insolvency actually occurs) and possibly through increased financial

literacy. When faced with a well-informed public, muddling through loses its appeal to the policy

maker.

18



References

Acharya, V. V., Eisert, T., Eufinger, C., and Hirsch, C. (2019). Whatever It Takes: The Real Ef-

fects of Unconventional Monetary Policy. Review of Financial Studies, 32(9):3366–3411.

Adrian, T. and Shin, H. S. (2010). Liquidity and Leverage. Journal of Financial Intermediation,

19(3):418 – 437.

Agca, S., Igan, D., Li, F., and Mishra, P. (2019). Doing More for Less? New Evidence on Lobby-

ing and Government Contracts. IMF Working Papers 19/172.

Agur, I. (2014). Bank Risk Within and Across Equilibria. Journal of Banking and Finance,

48:322 – 333.

Agur, I. and Sharma, S. (2014). Rules, Discretion, and Macro-Prudential Policy. In Huang, R. H.

and Schoenmaker, D., editors, Institutional Structure of Financial Regulation: Theories and

International Experiences. Routledge.

Allen, F. and Carletti, E. (2008). Mark-to-Market Accounting and Liquidity Pricing. Journal of

Accounting and Economics, 45(2):358 – 378.

Almasi, P., Dagher, J., and Prato, C. (2018). Regulatory Cycles: A Political Economy Model.

SSRN Electronic Journal.

Basel Committee on Banking Supervision (2020). Measures to Reflect the Impact of COVID-19.

BCBS publication.

Behn, M., Haselmann, R., Kick, T., and Vig, V. (2015). The Political Economy of Bank Bailouts.

IMFS Working Paper Series 86.

Benmelech, E. and Moskowitz, T. J. (2010). The Political Economy of Financial Regulation:

Evidence from U.S. State Usury Laws in the 19th Century. Journal of Finance, 65(3):1029–

1073.

Bergant, K. and Kockerols, T. (2020). Forbearance Patterns in the Post-Crisis Period. IMF Work-

ing Papers 20/140.

Bianchi, J. and Mendoza, E. G. (2018). Optimal Time-Consistent Macroprudential Policy. Jour-

nal of Political Economy, 126(2):588–634.

Bond, P. and Glode, V. (2014). The Labor Market for Bankers and Regulators. Review of Finan-

cial Studies, 27(9):2539–2579.

Bonfim, D., Cerqueiro, G., Degryse, H., and Ongena, S. (2020). On-Site Inspecting Zombie

Lending. CEPR Discussion Papers 14754.

Boot, A. and Thakor, A. (1993). Self-Interested Bank Regulation. American Economic Review,

83(2):206–12.

19



Brown, C. O. and Dinç, I. S. (2005). The Politics of Bank Failures: Evidence from Emerging

Markets. The Quarterly Journal of Economics, 120(4):1413–1444.

Caballero, R. J., Hoshi, T., and Kashyap, A. K. (2008). Zombie Lending and Depressed Restruc-

turing in Japan. American Economic Review, 98(5):1943–77.

Chang, R. (2007). Financial Crises and Political Crises. Journal of Monetary Economics,

54(8):2409 – 2420.

Colliard, J.-E. and Gromb, D. (2018). Financial Restructuring and Resolution of Banks. HAL

Working Papers 01933873.

Dagher, J. (2018). Regulatory Cycles: Revisiting the Political Economy of Financial Crises. IMF

Working Papers 18/8.

Dell’Ariccia, G., Peria, M. S. M., Igan, D. O., Awadzi, E. A., Dobler, M. C., and Sandri, D.

(2018). Trade-offs in Bank Resolution. IMF Staff Discussion Notes 18/02.

Diamond, D. W. and Rajan, R. G. (2012). Illiquid Banks, Financial Stability, and Interest Rate

Policy. Journal of Political Economy, 120(3):552–591.

Edge, R. M. and Liang, J. N. (2019). New Financial Stability Governance Structures and Central

Banks. Federal Reserve Board, Finance and Economics Discussion Series 2019-019.

Ellul, A., Jotikasthira, C., Lundblad, C. T., and Wang, Y. (2014). Mark-to-Market Accounting

and Systemic Risk: Evidence from the Insurance Iindustry. Economic Policy, 29(78):297–341.

Ennis, H. M. and Keister, T. (2010). Banking Panics and Policy Responses. Journal of Monetary

Economics, 57(4):404 – 419.

Farhi, E. and Tirole, J. (2012). Collective Moral Hazard, Maturity Mismatch, and Systemic

Bailouts. American Economic Review, 102(1):60–93.

Farhi, E. and Werning, I. (2016). A Theory of Macroprudential Policies in the Presence of Nomi-

nal Rigidities. Econometrica, 84(5):1645–1704.

Fraccaroli, N., Sowerbutts, R., and Whitworth, A. (2020). Does Regulatory and Supervisory

Independence Affect Financial Stability? Bank of England Staff Working Paper 893.

Funke, M., Schularick, M., and Trebesch, C. (2016). Going to Extremes: Politics after Financial

Crises, 1870 - 2014. European Economic Review, 88:227 – 260.

Gersbach, H. and Papageorgiou, S. (2019). On Banking Regulation and Lobbying. CER-ETH

Working Paper Series 19/308.

Goodhart, C. and Schoenmaker, D. (1995). Should the Functions of Monetary Policy and Bank-

ing Supervision Be Separated? Oxford Economic Papers, 47(4):539–560.

Hakenes, H. and Schnabel, I. (2014). Regulatory Capture by Sophistication. CEPR Discussion

Papers 10100.

20



Herrera, H., Ordonez, G., and Trebesch, C. (2020). Political Booms, Financial Crises. Journal of

Political Economy, 128(2):507–543.

Igan, D. and Lambert, T. (2019). Bank Lobbying: Regulatory Capture and Beyond. IMF Working

Papers 19/171.

Igan, D., Lambert, T., Wagner, W., and Zhang, Q. (2017). Winning Connections? Special Inter-

ests and the Sale of Failed Banks. IMF Working Papers 17/262.

Igan, D. and Mishra, P. (2012). The Power of K: Politically-Targeted Activities, Connections and

the Financial System. Journal of Financial Transformation, 35:147–158.

Igan, D. and Mishra, P. (2014). Wall Street, Capitol Hill, and K Street: Political Influence and

Financial Regulation. Journal of Law and Economics, 57(4):1063–1084.

Igan, D., Mishra, P., and Tressel, T. (2012). A Fistful of Dollars: Lobbying and the Financial

Crisis. NBER Macroeconomics Annual, 26(1):195–230.

International Association of Deposit Insurers (2009). Funding of Deposit Insurance Systems.

Report by by the Research and Guidance Committee of IADI.

International Monetary Fund (2020). Bank Capital: COVID-19 Challenges and Policy Re-

sponses. Oct. 2020 Global Financial Stability Report, Ch. 4.

Ioannidou, V. P. (2005). Does Monetary Policy Affect the Central Bank’s Role in Bank Supervi-

sion? Journal of Financial Intermediation, 14(1):58 – 85.

Jeanne, O. and Korinek, A. (2019). Managing Credit Booms and Busts: A Pigouvian Taxation

Approach. Journal of Monetary Economics, 107:2 – 17.

Jeanne, O. and Korinek, A. (2020). Macroprudential Regulation Versus Mopping up After the

Crash. The Review of Economic Studies, 87(3):1470–1497.

Keeley, M. C. (1990). Deposit Insurance, Risk, and Market Power in Banking. American Eco-

nomic Review, 80(5):1183–1200.

Keister, T. (2016). Bailouts and Financial Fragility. Review of Economic Studies, 83(2):704–736.

Keister, T. and Mitkov, Y. (2019). Bailouts, Bail-ins and Banking Crises. Mimeo.

Kroszner, R. S. and Strahan, P. E. (1999). What Drives Deregulation? Economics and Poli-

tics of the Relaxation of Bank Branching Restrictions. The Quarterly Journal of Economics,

114(4):1437–1467.

Liu, W.-M. and Ngo, P. T. (2014). Elections, Political Competition and Bank Failure. Journal of

Financial Economics, 112(2):251 – 268.

Lucca, D., Seru, A., and Trebbi, F. (2014). The Revolving Door and Worker Flows in Banking

Regulation. Journal of Monetary Economics, 65:17 – 32.

21



Martynova, N., Perotti, E. C., and Suarez, J. (2019). Bank Capital Forbearance. CEPR Discussion

Papers 13617.

Masciandaro, D. and Passarelli, F. (2013). Financial Systemic Risk: Taxation or Regulation?

Journal of Banking and Finance, 37(2):587 – 596.

Mian, A., Sufi, A., and Trebbi, F. (2010). The Political Economy of the US Mortgage Default

Crisis. American Economic Review, 100(5):1967–98.

Mian, A., Sufi, A., and Trebbi, F. (2013). The Political Economy of the Subprime Mortgage

Credit Expansion. Quarterly Journal of Political Science, 8(4):373–408.

Morrison, A. D. and White, L. (2013). Reputational Contagion and Optimal Regulatory Forbear-

ance. Journal of Financial Economics, 110(3):642 – 658.

Müller, K. (2019). Electoral Cycles in Macroprudential Regulation. SSRN Electronic Journal.

Myerson, R. B. (2014). Rethinking the Principles of Bank Regulation: A Review of Admati and

Hellwig’s The Bankers’ New Clothes. Journal of Economic Literature, 52(1):197–210.

Nunez, S. and Rosenthal, H. (2004). Bankruptcy Reform in Congress: Creditors, Committees,

Ideology, and Floor Voting in the Legislative Process. The Journal of Law, Economics, and

Organization, 20(2):527–557.

Peek, J. and Rosengren, E. S. (2005). Unnatural Selection: Perverse Incentives and the Misallo-

cation of Credit in Japan. American Economic Review, 95(4):1144–1166.

Rajan, R. G. and Zingales, L. (2003). The Great Reversals: The Politics of Financial Develop-

ment in the Twentieth Century. Journal of Financial Economics, 69(1):5 – 50.

Rola-Janicka, M. (2019). The Political Economy of Prudential Regulation. Mimeo.

Romer, T. and Weingast, B. R. (1991). Political Foundations of the Thrift Debacle. In Politics

and Economics in the Eighties, NBER Chapters, pages 175–214. NBER.

Shapiro, J. and Skeie, D. (2015). Information Management in Banking Crises. Review of Finan-

cial Studies, 28(8):2322–2363.

Sharma, S. and Fullenkamp, C. (2012). Good Financial Regulation: Changing the Process is

Crucial. SSRN Electronic Journal.

Shive, S. A. and Forster, M. M. (2016). The Revolving Door for Financial Regulators. Review of

Finance, 21(4):1445–1484.

Shleifer, A. and Vishny, R. W. (2010). Unstable Banking. Journal of Financial Economics,

97(3):306 – 318.

Stratmann, T. (2002). Can Special Interests Buy Congressional Votes? Evidence from Financial

Services Legislation. Journal of Law and Economics, 45:345–73.

22



Tressel, T. and Verdier, T. (2014). Optimal Prudential Regulation of Banks and the Political

Economy of Supervision. IMF Working Papers 14/90.

Veltrop, D. and de Haan, J. (2014). I Just Cannot Get You Out of My Head: Regulatory Capture

of Financial Sector Supervisors. Academy of Management Proceedings, 2014(1).

Walther, A. and White, L. (2020). Rules versus Discretion in Bank Resolution. The Review of

Financial Studies, in press: doi.org/10.1093/rfs/hhaa032.

23



Appendix: Proofs

Derivations in these proofs are conducted in a Mathematica file that is available on request.

Proof of Lemma 1. Using (1), (2), and (8), we can solve (7) to18

E [Π] =
(m+ (β − α) ρ)2

4βρ
(23)

The convex form of the expression for E [Π] can be seen directly from (23), given β > α from

(4). We also verify numerically that for all parameter values allowed by (4)-(6), we have
∂2E[Π]
∂ρ2

>
0.

This convexity implies that corners are always optimal, and therefore the bank chooses either the

corner of the safest, ρ = 0 profile or that of the riskiest, ρ = 1. The expected return when ρ = 0 is

m, while from (7) expected return when ρ = 1 is
(m+β−α)2

4β
. Therefore m is the solution to

m =
(m+ β − α)2

4β
(24)

which gives the solution in (10), as well as a second solution, m = α + β + 2
√
αβ, which can

however be excluded by m < α + β from (6).

Proof of Lemma 2. Rewriting from (11), the bank’s optimization problem is given by maxρ {E [Π]} =

max
ρ


µ+w∫
0

rf (r) dr +

0∫
µ−w

g (r + α + β) f (r) dr

 (25)

where expected profit becomes

E [Π] =

{
m if ρ = 0

(m+β−α)2−g(m−α−β)2+2g(α+β)(α+β−m)
4β

if ρ = 1
(26)

and the optimal solution to this is analytically solved to ρ = 1 ⇔ m < m where m is given

by the expression in (13), and ρ = 0 ⇔ m > m.19 Lastly, m > m is found numerically from

18More precisely, the expression in (23) holds when ρ > 0, because for ρ → 0 the width of the uniform dis-

tribution goes to 0 and the integral in (7) is no longer defined. However, from (1) it can be seen directly that in the

limit case of ρ → 0, the mean return goes to m. Simultaneously, the variance goes to 0 for ρ → 0, by (2). With zero

variance, and with a positive mean return (given m > 0), the limited liability option has no value, and therefore the

bank’s expected return equals the project’s mean return, m.

19A second solution is m =
α+β+2

√
αβ(1−g)+ 1

4 (α+β)
2g2

1−g but this solution can be excluded by m < α + β from

(6).
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infα∈(0, 1
2 ],β∈(0, 1

2 ],g∈(0, 1
2 ]

(m−m) > 0 (i.e., for all values allowed within the parameterization,

m−m is positive).20

Proof of Lemma 3. Following the payoffs in the game stages in Section 2.4, if the government

gets to take a second decision at Stage 4, then the government’s expected payoff at that stage is

(1− g) (r − (α + β)− x) + g (0− θx− (1− θ) (0)) = (1− g) (r − α− β)− x (1− g + gθ)
(27)

when it sets l = {Allow}. Instead, if the government sets l = {Forbid} then the bank closes and

the government has an immediate payoff of

r − x (28)

where we recall that, conditional on being at Stage 4, it must be that r < 0 and therefore the

expressions in both (27) and (28) are negative. The government thus chooses the option that min-

imizes its losses, which means it forbids the gamble when

r − x > (1− g) (r − α− β)− x (1− g + gθ) (29)

and this can be solved to (14).

Proof of Lemma 4. At Stage 2, the bank solves maxρ {E [Π]} =

maxρ


∫ m+(β−α)ρ

0
rf (r) dr + (1− λ)

∫ 0

m−(α+β)ρ
g (r + α + β) f (r) dr

+λ
∫ x(1−θ)−(α+β)( 1−gg )
m−(α+β)ρ g (r + α + β) f (r) dr

 if l = {Allow}

maxρ

{ ∫ m+(β−α)ρ

0
rf (r) dr + (1− λ) (0)

+λ
∫ x(1−θ)−(α+β)( 1−gg )
m−(α+β)ρ g (r + α + β) f (r) dr

}
if l = {Forbid}

(30)

where the integrals can be solved given f (r) from (8).21 Following the same steps as in the proofs

of Lemma’s 1 and 2, this gives bank optimal policy as ρ = 1⇔ m < mA and ρ = 0⇔ m > mA

when l = {Allow} at Stage 1, where

mA =
α + β − β

√
ΩA
β2g

1− g (31)

20Note that α ∈
(
0, 12
]
, β ∈

(
0, 12
]

is stronger than strictly needed (i.e., sufficient but not necessary) since β > α.

21Here the term x (1− θ)− (α+ β)
(
1−g
g

)
inside the last integral comes from rewriting the threshold for legisla-

tive action by the government in Stage 4 from (14) to r > x (1− θ)− (α+ β)
(
1−g
g

)
.
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where

ΩA = (α + β)2 (g3 + (1− g)2 (3g − 1)λ
)

+ 4αβg (1− g) (32)

+2λ (α + β)x (1− θ) g (1− g) (1− 2g) + λ (1− g) g2 (1− θ)2 x2

whereas if l = {Forbid} then bank optimal policy is solved to ρ = 1 ⇔ m < mF and ρ = 0 ⇔
m >mF where

mF =
α + β − β

√
ΩF
β2g

1− gλ (33)

where

ΩF = (α + β)2 λ (g (4 + λ− g (4 (1− g)λ+ 3))− 1) + 4αβg (1− λg) (34)

−gλ (1− gλ) (θ − 1)x (2 (α + β) (1− 2g) + g (θ − 1)x)

Lastly, m < mF < mA < m can be directly observed from (30) in relation to (7) and (25).

First, m is derived from maximizing (7). The l = {Forbid} case within (30) converges to (7) in

the limit case λ→ 0. For any λ > 0, (30) has an additional term that is 0 under ρ = 0 but positive

under ρ = 1, and therefore raisesmF above m. The same argument, comparing l = {Allow}
case within (30) to (25) for λ > 0, yieldsmA < m. Similarly,mF < mA can be seen directly

from (30): they converge in the limit case λ → 1 but for any λ < 1, the l = {Allow} case has

an additional term that is 0 under ρ = 0 but positive under ρ = 1, and therefore raisesmA above

mF .

Proof of Lemma 5. The payoff structure of the government at Stage 1, depends on its actions

(rows) and on the bank’s incentives (columns, which follow the thresholds derived in Lemma 4)

as follows:

m >mA m ∈ (mF ,mA) m <mF

Allow 0 < 0 (1− λ)
∫ 0

µ−w ((1− g) (r − α− β − x)− gθx) f (r) dr + Z

Forbid 0 0 (1− λ)
∫ 0

µ−w (r − x) f (r) dr + Z

Here Z is a term starting with λ which represents the expected payoff for the government contin-

gent on being allowed to set policy again at Stage 4. This Z term therefore does not depend on

the Stage 1 action (i.e., it is identical for l = {Allow} and l = {Forbid} in Stage 1), and is solely

determined by the condition in (14). From the matrix above, the only case where l = {Allow}
dominates l = {Forbid} for the government at Stage 1, is when m <mF and

(1− λ)

∫ 0

µ−w
((1− g) (r − α− β − x)− gθx) f (r) dr+Z > (1− λ)

∫ 0

µ−w
(r − x) f (r) dr+Z

(35)
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which can be solved to

x (1− θ) > 1

2
m+

(α + β) (2− 3g)

2g
(36)

where we note that by g < 1
2

we know that (2− 3g) > 0. The above condition can be also written

as

m < 3 (α + β) + 2

(
x (1− θ)− α + β

g

)
(37)

and therefore the combination of this condition and m <mF can be written as in (18).

Proof of Proposition 1. In (17), λ only affectsmF as the second condition in (17) does not in-

clude λ. The expression formF from (33) can now be used to derive ∂mF

∂λ
:

∂mF

∂λ
= −4αβg2 + (α + β)2 (g (4 + λ− g (3 + 4 (1− g)λ)) + (1− 2g)2 gλ− 1

)
(38)

+ (1− 2gλ) g (1− θ)x (2 (α + β) (1− 2g)− g (1− θ)x)

which can be split into one term that is strictly positive (recalling that g ∈
(
0, 1

2

)
):

(α + β)2 (g (4 + λ) + (1− 2g)2 gλ
)

+ 2 (1− 2gλ) g (1− θ)x (α + β) (1− 2g) (39)

and another term that is strictly negative:

− 4αβg2 − (α + β)2 (g2 (3 + 4 (1− g)λ) + 1
)
− (1− 2gλ) g2 (1− θ)2 x2 (40)

Depending on parameter values, either (39) or (40) can dominate, meaning ∂mF

∂λ
can take either

sign. We can verify this using numerical examples (which satisfy the parameters conditions in

(4)-(6)):

1. Setting α = 0.01, β = 0.1, g = 0.4, θ = 0.5, x = 0.1, m = 0.03, and evaluating ∂mF

∂λ
at

λ = 0.5, gives ∂mF

∂λ
= −0.005 < 0.

2. Setting α = 0.01, β = 0.1, g = 0.4, θ = 0.75, x = 0.75, m = 0.03, and evaluating ∂mF

∂λ
at

λ = 0.5, gives ∂mF

∂λ
= 0.047 > 0.

Proof of Proposition 2. The government’s expected payoff conditional on r is identical to (27)

over r ∈ S and to (28) over r /∈ S. Solving r − x < (1− g) (r − α− β) − x (1− g + gθ) to r
gives the expression in (20).

Moreover, the government is a priori indifferent over policy options for r ≥ 0, as gambles for

resurrection only occur when r < 0. It therefore optimally uses a mixed strategy over r ≥
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0 to ensure that its policy profile for r < 0 does not change priors about solvency. The opti-

mal weights on l = {Allow} and l = {Forbid} in the mixed strategy can be any that satisfy

E [r| l = {Allow}] ≥ 0 and E [r| l = {Forbid}] ≥ 0, which are always feasible to find given

E [r] > 0. This means that the public’s initial prior of r ≥ 0 does not change after observing

either policy action.

Proof of Lemma 6. First note that in spite of the addition of the term −φη (ρ− ρ), the bank

continues to optimize over a convex function, because the convex form of (23) is not altered by a

linear addition. Hence, the bank’s optimization continues to boil down to a choose between ρ = 1
and ρ = 0.

Assume that the government sets ρ = 0 at Stage 1, as verified in the proof of Lemma 7. Then the

bank solves maxρ {E [Π]} =

maxρ

(1− φ)


∫ m+(β−α)ρ

0
rf (r) dr+

(1− λ)
∫ 0

m−(α+β)ρ
g (r + α + β) f (r) dr+

λ
∫ x(1−θ)−(α+β)( 1−gg )
m−(α+β)ρ g (r + α + β) f (r) dr

+ φ (m− ηρ)

 if l = {Allow}

maxρ

{
(1− φ)

( ∫ m+(β−α)ρ

0
rf (r) dr + (1− λ) (0) +

λ
∫ x(1−θ)−(α+β)( 1−gg )
m−(α+β)ρ g (r + α + β) f (r) dr

)
+ φ (m− ηρ)

}
if l = {Forbid}

(41)

which means that from this point, the proof is identical to the proof of Lemma 4, except that, irre-

spective of whether l = {Allow} or l = {Forbid}, the term (m− ηρ) makes ρ = 1 less attractive

(i.e., the term is m − η if ρ = 1 and m if ρ = 0) than in the baseline model, which implies that

m̂A <mA and m̂F <mF .22

Turning to the limit cases relative to φ, we note that m̂A →mA and m̂F →mF for φ→ 0 follow

directly from the equivalence between (41) and (30) when φ → 0. Moreover, when φ → 1, we

have that the bank optimizes only the term (1− ηρ), which implies it always chooses ρ = 0.

Proof of Lemma 7. When ρ is not binding, the government is ex-post indifferent about the cho-

sen value of ρ. Instead, when ρ is binding at Stage 3 then: with ρ = 0, the government has a

certain payoff of 0, which is the highest attainable. Hence, with φ probability of preferring ρ = 0
and (1− φ) probability of indifference at Stage 3, the government chooses ρ = 0 at Stage 1.

For l, the steps of the proof are identical to those in the proof of Lemma 5. The payoff structure

for the government (as seen from the stages of the game) in Section 5 is identical to that in Sec-

tion 2.4, except for Stage 3 in Section 5. However, l is optimally set as if the bank’s arbitrage

attempt is always successful and ρ is irrelevant, because when the bank’s arbitrage fails and ρ = 0

22The term φ (m− ηρ) comes from the fact that when the bank cannot arbitrage the risk cap (with probability φ),

its risk profile is forced down to ρ = 0 with certain payoff m, while it pays the portfolio adjustment cost η (ρ− ρ)
where ρ = 0.
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binds ρ, then gambles can never occur (r > 0 is assured) and therefore l is irrelevant (i.e., policy l
only applies when the bank’s arbitrage succeeds).

Proof of Proposition 3. The continued validity of Proposition 1 follows directly from the equiv-

alence between Lemmas 4 and 5, and, respectively, Lemmas 6 and 7, where the only differences

are the replacements ofmA by m̂A andmF by m̂F .

The statement in the second sentence of Proposition 3 follows directly from (22) in comparison

to (17): given m̂F < mF from Lemma 6, the government chooses l = {Allow} for a smaller

subset of possible values of m > 0 in Lemma 7 than in Lemma 5. Equivalently, the government

chooses l = {Forbid} for a larger subset of possible values of m in Lemma 7 than in Lemma 5.
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