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1. Introduction1

Economic crises inflict substantial damage to the economy. Long-term economic costs, measured in terms
of output foregone, are on average 5 percent for balance of payments crises; 10 percent for banking crises,
and 15 percent for twin crises (Cerra and Saxena, 2008). Following a financial crisis, a country needs on
average eight years to return to its pre-crisis level of income (Reinhard and Rogoff, 2014). Societal costs are
also staggering, as average life expectancy declines, primary school enrollment drops, and infant mortality
increases (Alexander et al. 2009; van Dijk, 2013).

Macroprudential policy has an important role in crisis prevention and crisis mitigation. The policy effectiveness,
however, hinges on whether the macroprudential tools can target the root causes of economic crises. Crisis
prediction models, hence, need to support macroprudential policy. By flagging in advance economic and
financial conditions leading to an economic crises, the models can guide policy actions aimed at reducing the
crisis likelihood.

This paper proposes unFEAR, an unsupervised feature extraction clustering method aimed at facilitating
economic crisis prediction. The approach in unFEAR is quite different from that in other machine learning-
based crisis prediction models. The latter adopt a supervised learning framework: at any time period, the
models assign a crisis or no crisis label to a country’s observed economic and financial predictor data based
on whether the observation was followed or not by a crisis n periods ahead.

The reliance on labeled data gives rise to the biased label problem. Briefly, two countries characterized by
similar economic and financial data may receive different labels as only one of them experienced a crisis in
the near term. A supervised learner would try to separate both countries even though from a vulnerability
perspective both countries belong to the same class. We explain the biased label problem in detail below.

unFEAR avoids the biased label problem using unsupervised learning to find clusters using information in the
distribution of the economic and financial data. Rather than working with the raw data unFEAR leverages
on the use of autoencoders to reduce the dimensionality of the original data set and generates time-invariant
clusters using a novel mode contrastive autoencoder. The crisis and non-crisis observations in a cluster do
not correspond to a specific time period, a finding that suggests that a time-invariant economic regime and
crisis generating mechanism characterizes each cluster.

Once the clusters are identified it is possible to assess a country’s crisis vulnerability at a given point in time.
The simplest approach is to assign a country to its closest neighboring cluster. The crisis vulnerability is
then calculated as the empirical crisis frequency in the cluster. A second approach, which is normally used in
applied machine learning work, is to fit separate supervised learning classifiers to each cluster.

Both approaches for measuring crisis vulnerability could help guide macroprudential policy. Analysts could
project the effect of policies on economic and financial fundamentals to determine whether a country may
migrate to a safer or riskier cluster. Even if a country’s cluster assignment does not change a supervised
classifier estimated for the cluster could help to assess whether policies may contribute to reduce or to increase
crisis risk.

The remainder of this paper offers first a brief overview of the literature on early warning and crisis prediction
models and provides the needed background to understand the differences between previous machine learning-
based crisis prediction models and the unFEAR method proposed here. The next section describes unFEAR
in detail both at the conceptual and technical level. To illustrate unFEAR capability we apply it to a group
of advanced economies using a data set of economic and financial variables covering the period 1980 - 2018.
Crisis risk and crisis prediction is examined next, and the concluding section examines possible extensions of
unFEAR.

1The authors thanks seminar participants at the IMF and AMRO-3 for useful discussions; Ziya Gorpe, Chengyu Huang,
Tae-Hwy Lee, James Mongardini, Chris Redl, Ruoyao Shi, Aman Ullah, and Harry Peng Zhao for their comments; and Chuqiao
Bi and Lamya Kejji for preparing the data sets. All omissions and errors are the authors’ sole responsibility. Please address
correspondence to both authors.
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2. Machine Learning-Based Crisis Prediction Models
Work on crisis prediction models have largely side-stepped the use of the standard macroeconomic workhorse,
the dynamic stochastic general equilibrium model (DSGE). While useful for conducting policy experiments
the models do not perform well for forecasting crisis events partly due to the fact that these events are
out-of-equilibrium states.2 Unsurprisingly, most crisis prediction models are formulated as econometric and/or
statistical models where economic theory serves to narrow the selection of predictive variables, or features.

The wave of speculative currency attacks on countries with fixed or pegged exchange rates experienced in
the 1990s prompted the development of a first generation of crisis prediction models, also known as early
warning models. Examples of such models include Frankel and Rose (1996), Kaminsky et al. (1998), and
Berg and Patillo (1999) among others. Research on crisis prediction tapered off in the early 2000s as the
Great Moderation brought a large decline in macroeconomic volatility (Bernanke, 2004).

Research resumed in the aftermath of the Great Recession in 2008, an event not foreseen by central banks,
policy makers, and a majority of market participants. The ensuing studies focus on the reassessment of
existing models and on the development of more accurate early warning systems. Example of such work
include, among others, Babecky et al. (2012), Chamon and Crowe (2013), Christofides et al. (2016), and
Ahuja et al. (2017).

More recently there has been much interest in developing machine learning based models for crisis prediction.
The interest sparks from the success of machine learning models in prediction tasks in a vast range of
knowledge domains outside economics. Recent examples include Alessi et al. (2014), Holpainen and Sarlin
(2017), Beutel et al. (2018), Lang et al. (2018), and a number of studies conducted at the International
Monetary Fund, with models specialized to predict external crises, financial crises, and fiscal crises.

The machine learning models cited above are supervised learning models. First, the set of explanatory
variables (covariates or attributes) include observable economic and financial variables. In some cases,
economic theory guides the selection of variables. In other cases, a large number of variables is included with
the expectation that the machine learning algorithm will sort out what variables matter the most for crisis
prediction. A data point is simply the set of attributes of a country at a given point in time.

Second, since the goal of the models is to predict crisis events, each data point is labeled as a crisis (or
non-crisis) point when a crisis occurs (or does not occur) n periods ahead, that is, data points at time t
serve to predict crisis and non-crisis events at time t+ n. In models developed for policy making purposes, n
typically ranges from one to two years. If the model flags a future crisis such relatively long prediction horizon
leaves time for the authorities to implement preventive or mitigating measures. Finally, crisis definitions and
the timing of the crisis are determined outside the model using expert domain knowledge.

Challenges in supervised learning crisis prediction models

Model estimation presents analysts with several challenges. First, despite the widespread perception in
the popular press that economic crises recur frequently, crises are still rare events. Compared to non-crisis
episodes, the number of non-crisis events largely exceeds that of crisis events, raising the issue of imbalanced
data (Kotsiantis et al. 2006).

Second, the data sample includes as many countries as possible so that the learner algorithm can observe a
non-negligible number of crisis events. Many countries, however, may lack observations for several of the
attributes which raises the issue of missing data. One solution is to include only attributes with complete
observations at the cost of discarding attributes containing useful information. Another solution is to eliminate
observations for which the set of attributes is incomplete, which may drastically reduce the number of crisis
observations and further worsen the imbalanced data problem. The third option, is to use data imputation
methods to complete the data set by assigning values to any missing data observation, which raises the
question on whether the imputed values truly represent the missing data. A final option is to allow the
classifier to learn a set of functions, each one specialized to classify the data points using a subset of covariates.

2See Stiglitz (2017) for a critique, and Christiano et al. (2018) for a rebuttal.
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Third, the set of attributes may include information extraneous for crisis prediction, a likely situation when
the number of covariates is large. Extraneous information represents noise and makes model estimation
more difficult. Adding to the model estimation complications is that two or more covariates may be strongly
dependent. While covariate dependence may not harm the predictive ability of the model, it makes difficult
to evaluate a particular covariate importance to predict an economic crisis.

The biased label problem and its unsupervised learning solution

Last but equally important, the biased label problem, may impair the predictive ability of a supervised
learning model. Figure 1 illustrates this problem.

Figure 1: The biased label problem.

The figure is a simple two-dimensional representation of crisis and non-crisis points where there are only two
features. Each point is represented by its features coordinates. The large circular purple cluster contains
all the non-crisis points and the red elliptical cluster all the crisis points. A supervised learning classifier
generates a separating hyperplane depicted as the the green line. The hyperplane imposes a hard separation
between the crisis and non-crisis points. Ignoring the data points labels would yield a different separating
hyperplane, one that separates the large non-crisis cluster from the crisis cluster and the small non-crisis
cluster. The latter two clusters belong to a same class different from the non-crisis class. This situation
reflects the fact that in this example the information the features convey cannot be used to discriminate
properly between crisis and non-crisis labeled points.

The biased label problem is prevalent in policy crisis prediction models due to their long forecasting horizon.
Two data points sharing the same characteristics, i.e. two different countries with the same economic
fundamentals possibly measured at different times, may suffered a different fate two years ahead as only one
of them would experience a crisis. There might be several explanations on why the countries’ fates were so
different, none of which the features are able to capture. For instance, the lucky country may experience a
favorable commodity price movement that strengthens its fundamentals. Or economic policies may have been
put in place that prevented the crisis.3

This is a situation unsupervised learning could handle adequately. An unsupervised learner, rather than
forcing a hard separation between crisis and non-crisis points, assigns countries with similar features or
economic fundamentals to different clusters. The crisis risk in the cluster corresponds roughly to the frequency
of its crisis observations. Hence, it becomes possible to rank clusters in terms of crisis risk and to assign a
crisis frequency to a data point even if the point label was not used to identify the cluster structure. One

3The biased label problem in crisis prediction is somewhat similar to the problem of label bias and fairness: data points are
falsely attributed to a certain class even if the features may not justify it. See for instance, Jiang and Nachum (2019).
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natural interpretation is that clusters represent different economic regimes, each with a different propensity
to generate an economic crisis.

Mathematically a supervised classifier tries to estimate the conditional probability distribution of the
crisis/non-crisis label, y, conditional on the features, x, i.e. P (y|x). In contrast, the unsupervised classifier
attempts to learn the unconditional probability distribution of the features, P (x). From a computational and
estimation perspective, an added advantage of the unsupervised classifier is that its estimation requires fewer
data points (or examples) than a supervised learner to produce a reliable cluster structure. Also, there is no
need to separate the available data into training, validation, and test sets.

It is also worth noting that adopting an unsupervised approach is consistent with economic intuition since we
expect, given current knowledge of crisis dynamics and the partial information of economic and financial data,
that in a group of countries with similar economic fundamentals some may experience a crisis and others may
not. Hence, on a first pass, it makes sense to identify the clusters first using unsupervised learning and then
to fit a cluster-specific supervised classifiers.

3. unFEAR: Unsupervised Feature Extraction Clustering for Crisis Regimes
Classification
Conceptually, unFEAR is a simple method:

• First, it performs feature engineering (also known as feature learning or representation learning) to
extract relevant information from the raw data set useful for clustering analysis.

• Second, once an appropriate representation is built, unFEAR identifies separate clusters and the
corresponding data point assignments.

At first it may seem odd to perform feature engineering on the raw data since this is not yet usual practice in
econometrics. Figures 2 and 3 illustrate why this step is necessary to obtain a suitable data representation.
Namely:

• Raw data attributes do not generate separable clusters. The left panel in Figure 2 shows clusters
obtained with K-means using annual data on data points comprising 75 attributes collected for 34
countries during the period 1970-2018. The raw data was used without any pre-processing prior to the
application of the clustering algorithm, and the number of clusters was selected with a scree plot. The
two-dimensional representation, generated using the t-SNE algorithm (van der Maaten and Hinton,
2008), shows that raw data attributes do not have enough discriminatory power.

• Raw data capture different time periods rather than different economic fundamentals, i.e. the data
exhibits time trends. The right panel in Figure 2 simply places time labels, corresponding to different
periods, over the data points without any attempt to assign them to clusters. The time labeled data
points overlap substantially with the raw data-based clusters in the left panel of the figure (i.e. cluster
8 corresponds to the most recent data points). Absent feature engineering, an unsupervised learner
may only pick data points in different time periods.
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Figure 2: Raw data clusters: non-separability and time clustering

• Raw data tends to group data points corresponding to the same country. The left panel in Figure 3
shows the data points colored by countries. While the cluster structure remains badly defined, near
neighbor points tend to correspond to the same country. Reliance on the raw attributes may yield
clusters with a majority of data points corresponding to the same country.

Figure 3: Raw data clusters: country bias and imbalanced data

• Raw data is imbalanced, i.e. few crisis observations. The right panel in Figure 3 shows the non-crisis
points (in light blue) and the crisis points, which comprise 90 percent and 10 percent of the observations.
An algorithm may find clusters biased to reflect the distribution of the non-crisis observations.

• Missing data is a big issue. It is not uncommon to find several missing and incomplete data points
when putting together a common data set of economic and financial data for a large panel of countries.
In our data set, for all observed data points only five variables do not have any missing value and for
about two thirds of the variables (58), missing values could be found as in as much as fifty percent of
the data points.

To perform feature engineering step we use autoencoders, which are commonly used in machine learning
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and deep learning, with a suitable loss function designed with the purpose to to address the first three issues
described above, i.e. lack of separability in the data points, time clustering, and country clustering. After
some experimentation, we fall back on the Synthetic Minority Over-sampling Technique (SMOTE) to address
the data imbalance issue (Chawla et al. 2002). The next section describes in detail the technical details of
the method.

Technical details

The main tool in the feature engineering task is the Autoencoder. To understand the logic behind it we
first present its foundation, the multilayered network. Next we examine how Autoencoders work using as
an analogy principal components analysis. Once the intuition is established it becomes straightforward
to understand why autoencoders serve to input missing data, to remove time clusters, and to identify the
different data point clusters.

Multilayer neural networks The multi-layered neural network is the basic workhorse of deep learning
methods (Goodfellow, Bengio, and Courville, 2016). Figure 4 illustrates two neural networks.

Figure 4: Two neural networks

The neural network in the left panel consists of three layers: the input layer, the hidden layer, and the output
layer. From the outside, only the input, x, and the final output, y, are observed. The input layer collects the
input, x, and feeds it to the hidden layer, whose units transform the input into an intermediate output, h,
via a function g1, i.e. h = g1(x). The intermediate output is then fed to the output layer, which processes it
and produces the final output, y, using the function g2, i.e. y = g2(h). Allowing the functions g1 and g2 to be
non-linear allows the neural network to capture nonlinearities present in the data. The number of units in
the hidden layer is a hyperparameter which is tuned (calibrated) using the data points.

It is possible to use multilayer networks, which contain several hidden layers instead of a single hidden layer.
For instance, the right panel shows a three layer network. In this case, the output of the first hidden layer is
the input of the second hidden layer. In turn, its output serves as an input to the third layer, whose output is
then fed to the output layer. More generally, the transforming functions of the hidden layers can be specified
recursively:

hl = gl(hl−1),

where l is the l-th hidden layer, and gl is a nonlinear transformation. Including several layers enables a deep
learning network to captures the dependence between the input data and the output data in complex cases
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(Pascanu et al., 2014; Arora et al., 2018). Autoencoders exploit this property to find data patterns, such as
the joint probability distribution of the attributes, which then serves to input missing data; and the time
clustering information in the data, which then allows removing time effects as explained later.

Understanding autoencoders To understand autoencoders it is useful to examine their conceptual
similarity with principal components analysis (PCA), a standard method for dimensionality reduction widely
applied in statistics as well as in finance and economics. PCA transforms the data input from its original
space into an orthogonal space via a projection matrix, or in other words, it decomposes the data attributes
along vectors (directions) orthogonal to each other (upper panel, Figure 5). It is possible to go from the
orthogonal space to the original space, or reconstruct the inputs, if the projection matrix is known. To reduce
the dimensionality of the original data input, we only keep a few components of the orthogonal space provided
the retained components explain a substantial amount of the data total variance.

Figure 5: The analogy between principal components analysis and the autoencoder

Functionally, the matrix P is an encoder, i.e, it encodes the data using a few components and yields a
low-dimensional representation, h. or the code in the transformed space. The inverse of the matrix P , P−1,
is a decoder, i.e. it decodes the coded, h, and returns an approximation of x, x̃. Ideally, what we want is
to encode the data to obtain a good but simpler data representation while at the same time retain enough
information such that the data approximation in the original space is adequate. The process of encoding and
decoding the data yields the matrix P , which captures the relevant characteristics of the data input.

The autoencoder generalizes the PCA coding and decoding function beyond linear transformations and it
comprises an encoder and a decoder, which are typically specified as multilayer neural networks (bottom
panel, Figure 5). The encoder learns a function, gencoder by projecting the original input x onto h, with h
contained in a lower dimensional space:

h = gencoder(x).

We require the encoder to reduce the dimensionality of the data input in order to simplify any subsequent
classification or learning process applied to the encoded data. In turn, the decoder learns the gdecoder function
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that enables the autoencoder to reconstruct an approximation x̃ of the the original input x from the encoded
representation h:

x̃ = gdecoder(h).

To find the best data representation, it is necessary to specify a loss function associated with the reconstruction
error, Lreconstruct(x, x̃):

Lreconstruct(x, x̃) = L(x, gdecoder(h)) = L(x, gdecoder(gencoder(x))).

Optimization of the loss function yields the optimal encoder function gencoder(x) for the nonlinear trans-
formation. By using multilayer networks, the autoencoder easily performs PCA when nonlinearities are
present in the data. Stacking more layers and introducing noise in the encoder and decoder functions enable
autoencoders to deliver complex but robust data transformations (Vincent et al., 2008 and 2010). We exploit
the autoencoder properties to perform missing data imputation.

Missing data imputation with autoencoders Missing data imputation is often performed using one of
the three following methods: replacing the missing value by a constant value, typically the median (median
imputation) or the mean (mean imputation); resampling from the empirical distribution of the non-missing
values; or exploiting the dependence among variables by regressing observed values on other variables and
replacing the missing data by the predictions of the regression equations, such as done in the multivariate
imputation by chained equations (MICE) method (Raghunathan et al., 2001, Van Buuren, 2007).

unFEAR introduces an autoencoder-based missing data imputation strategy using the Mean Squared Error
loss function (MSE) to measure the reconstruction error (Figure 6).

Figure 6: Missing data imputation using an autoencoder

The use of the autoencoder builds on the assumption that all the attributes (variables) in a high dimensional
data exhibit dependence. The dependence assumption typically holds in reality especially for economic data.
This fact enables the autoencoder strategy to recover missing attribute values using the observed values
of other attributes. It is worth noting that the MICE also exploits the dependence assumption to justify
regressing an attribute on other attributes. Contrary to MICE, the autoenconder does not need to specify
whether an attribute with missing data can or cannot be used as a regressor. The autoencoder automatically
assigns higher weights to attributes with more observations. Hence, the autoencoder method is equivalent to
a data driven MICE method, combining resampling and dependence exploitation.4

The autoencoder missing data imputation method then reduces to:

• First, draw samples randomly from the non-missing data points.

• Second, train an autoencoder on the randomly drawn data sample.
4A related method is the Markov Chain Monte Carlo variational autoencoder-based of Rezende et al. (2015).
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• Third, use the estimated autoencoder to fill the missing data values.5

Removing time trends using autoencoders Data exploration shows that the raw data exhibits time
clusters or time trends, i.e. data points in certain time periods tend to be close to each other. For low
dimensional data sets it is feasible to remove trends using univariate methods but they become burdensome
as the number of attributes increases.

unFEAR uses a Boosted Autoencoder to remove time trends. The procedure is performed in several rounds.
Each round starts with a trained autoencoder which allows us to reconstruct the approximated data input, x̃.
The resulting reconstruction error, ri = xi − x̃i is then fed as an input for training a new autoencoder in the
next round (Figure 7).

Figure 7: A Boosted Autoencoder

Time trends, either linear or non-linear, characterize the variables in the data set. The boosted autoencoder,
in a first pass, learns to project the data input x onto a space containing the time trends. Hence, the
reconstruction error ri = xi − x̃i does not exhibit a time trend but still retains other useful information
contained in the data input. The unsupervised clustering approach we review next exploits this information.

Unsupervised clustering using the mode constrastive autoncoder This section introduces and
explains the mode contrastive autoencoder, which is the key element in the unFEAR. Raw data, as Figures
2 and 3 illustrate, are not suitable for clustering analysis. A proper use of an autoencoder could enable us
to find a feature representation that facilitates separability. The feature representation should meet two
requirements:

• The transformed features should retain a substantial amount of the variation in the original data set to
remain informative.

5The activation function of this autoencoder, as well as the others unFEAR uses, is an exponential linear unit (ELUs)
(Clevert et al., 2016). The convergence speed of ELUs outperforms that of rectified linear units (ReLUs) (Klambauer et al.,
2017).
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• In the transformed space, the data points concentrate in to several separable clusters.

The first requirement is a common one in the construction of multilayer networks. It forces the autoencoder
to learn the best representation of the data that yields a low reconstruction error. The second requirement
is necessary since the first one, by itself, does not ensure the autoencoder learns to separate the data into
clusters.

Enforcing the first requirement needs the autoencoder to minimize a regularized loss function that balances
the reconstruction error and the need to group the data points in the transformed space into separate clusters.
The regularized loss function, LAE , is:

LAE = Lreconstruct(x, x̃) + λLcluster(h, µ), (1)

where x collects all the data points (x1, . . . , xN ), Lreconstruct is the standard reconstruction error, λ is a
weight tuning parameter, and Lcluster is the regularization term forcing the autoencoder to separate the data
into clusters using as inputs the output of the encoder, h = gencoder(x), and the centroids of the clusters,
µ = (µ1, . . . , µK).6

The regularized loss function induces the autoencoder to learn a encoder gencoder(x) such that an original
data point, xi, when transformed into the encoder output, hi = gencoder(xi), can be assigned to a single
cluster with centroid µc.

The specification of the regularization term is the key element in the unFEAR method. To specify it, we
follow an approach similar to the one van der Maaten and Hinton (2008) used to derive their t-Distributed
Stochastic Neighbor Embeddings method (t-SNE). We start by specifying the conditional probability that
the data point xi belongs to the c-th cluster, P (µc|xi) (or equivalently, that the closer neighbor of the data
point xi is the c-th cluster) as:

P (µc|xi) = (1 + ||µc − gencoder(xi)||2)−1∑
j=1,...,K(1 + ||µc − gencoder(xj)||2)−1 , (2)

where K, a hyperparameter, is the number of clusters and ||.||2 is the Euclidean or L2 norm. Ideally, we
want to assign the transformed data point hi = gencoder(xi) to a single cluster to ensure the clusters do not
overlap and are separable. This implies that the conditional probability distribution in equation (2) should
peak at a single value µc and take low values, ideally zero, at other cluster centroids. In other words, we
want P (µc|xi) to be a one-peaked probability distribution as close as possible to a delta distribution.

This is equivalent to perform K-means clustering by maximizing the likelihood function:

L(µ, g;x) =
K∏
c=1

N∏
i=1

P (µc|xi)P (xi ∈ cluster c) (3)

or its log-likelihood. The expectation-maximization algorithm of Dempster et al. (1977) yields the following
iterative procedure to maximize the log-likelihood:

E-step: given the centroids µ = (µ1, . . . , µK) and the encoder g, assign to data point xi the cluster ci with
the maximum log-probability value:

ci = arg max
ci∈(1,...,K)

log(P (µ|xi; g)),

where the conditional probability is given by equation (2) and we have made explicit its dependence on the
encoder g.

6A more complex alternative to the use of a regularized loss function, as done here, is to use a denoising autoencoder
incorporating the cluster requirement into the reconstruction error. On denoising autoencoders, see Alain and Bengio (2014).
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M-step: given the cluster assignments for each data point, find the new centroid µc of cluster c solving the
minimization problem below:

µ, g = arg min
µ,g

(
−
∑
i

labeli � log(P (µ|xi; g))
)
, c = 1, . . . ,K.

where labeli = (I(xi ∈ cluster 1), I(xi ∈ cluster 2), ,̇I(xi ∈ cluster K)) is the one-hot encoded label for xi,
and I(xi ∈ cluster c) is the indicator function.

If follows naturally to set the Lcluster equal to (−
∑
i µc log(P (µc|xi))) since we want the autoencoder to

perform K-means clustering. The autoenconder, hence, is a mode contrastive autoencoder (MCAE) since it
tries to separate the different modes of the clusters.The mode contrastive loss function LMCAE is:

LMCAE = Lreconstruct(xi, x̃i) + λ

(
−

K∑
c=1

N∑
i=1

I(xi ∈ cluster c) log(P (µc|xi; g))
)
. (4)

Figure 8 illustrates the role of the loss function terms in the mode contrastive autoencoder.

Figure 8: The Mode Contrastive Autoencoder

Minimizing the loss function in equation (4) is possible using expectation maximization iteration for a given
encoder g:

E-step: this step is similar to the E-step in the log-likelihood maximization. Given the centroids µc, c =
1, . . .K, and the encoder g, assign each data point xi to a cluster ci with the maximum log-probability value:

ci = arg max
ci∈(1,...,K)

log(P (µc|xi; g)).

M-step: Find the new cluster centroids µc, c = 1, . . . ,K that minimize the loss function LMCAE :
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LMCAE = Lreconstruct(xi, x̃i) + λ

(
−
∑
c

∑
i

I(xi ∈ cluster c) log(P (µc|xi; g))
)
.

4. Application: Identification of Economic Crisis Clusters
This section illustrates the use of unFEAR to identify economic crisis clusters, which in turn, could facilitate
the task of crisis prediction. Predicting an economic crisis in advance matters to policy makers and macro-
strategists. The goal of the former group is to put in place policy measures to prevent the crisis from realizing,
and the goal of the latter is to profit from the event by betting against falling asset prices.

Data

The data in the analysis covers 34 countries during the period 1970 - 2018 (Table 1).

Table 1. Country list

Australia Austria Belgium Canada Cyprus
Czech Republic Denmark Estonia Finland France
Germany Greece Hong Kong S.A.R Iceland Ireland
Israel Italy Japan Korea Luxembourg
Malta Netherlands New Zealand Norway Portugal
San Marino Singapore Slovakia Slovenia Spain
Sweden Switzerland United Kingdom United States

The data comprises 1688 data points where each data point is a country-year observation, with 75 attributes.
The attributes are constructed using levels, differences, and Hodrick-Prescott trends of the following variables:7

Global variables
• Oil prices
• 3-month U.S. Treasury bill rate, constant matu-

rity

• 10-year U.S. real interest rate
• Trade-weighted dollar currency index, major

currencies

Domestic economic variables
• GDP growth
• Output gap
• Inflation
• Reserves
• Total external debt
• Debt revenue
• Exports and Imports
• Capital flows

• Exchange rate against the U.S. dollar
• Purchasing power parity
• Real exchange rate
• Terms of trade
• Fiscal balance
• Fiscal revenue
• Fiscal expenses

Domestic financial variables
• Probability of default, banking sector
• Probability of default, non-financial sector
• Probability of default, non-bank financial sector
• Investment grade securities, share in total stock

of debt securities
• Long-term bond yields

• Stock prices
• Price to income ratio, housing sector
• Price to rent ratio, housing sector
• Aggregate bank capitalization ratio,
• Bank assets to GDP ratio
• Credit to GDP ratio

7A detailed description of the attributes is available upon request from the authors. Most variables are available from
public IMF databases and/or private data providers. Probabilities of default are from the Credit Research Initiative at the
Asian Institute of Digital Finance, National University of Singapore (https://rmicri.org). Researchers can access PD data upon
registration.
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• Loan to deposit ratio, banking sector
• Short-term deposit rates
• Private sector indebtedness to GDP ratio

• Financial access
• Financial efficiency in the financial sector

Other variables
• Natural disasters, material impact on GDP
• Years elapsed since the end of a crisis episode

• Cumulative number of years recorded as a crisis
episode since country entered the database

A data point is labeled as a crisis if an economic crisis affects the country two years after the data point is
observed and recorded. The crisis labels correspond to one of each of the following categories: external crisis,
as defined in Basu et al. (2017); financial crisis, as defined in Laeven and Valencia (2017); fiscal crisis, as
defined in Medas et al. (2018); and real sector crisis, as defined in Basu e et al. (2017). The crisis/no-crisis
labels are not used to find the economic crisis clusters to avoid the biased label problem. The labels are used
ex-post: once the clusters are identified and data points assigned to them, the labels are disclosed to assess a
cluster’s crisis frequency.

Feature representation with autoencoders

As explained earlier in section 2 and illustrated in Figure 2 above, the information conveyed by the data in a
raw form does not generate clearly separable clusters while tending to cluster data points in time periods, a
trivial result. It is possible to achieve a better feature representation using autoencoders, as shown below.

Removing time trends

To remove the time trends or effects we implement a standard autoencoder with five dimensional hidden
vectors h, which is trained using the original raw data input x. The autoencoder residuals are obtained
subtracting the reconstructed data, x̃, from x, i.e. r = x− x̃. K-means clustering serves to assign the data
point residuals, corresponding to country-year observations, to one of ten clusters, where the number of
clusters is determined using a scree plot. Figures 9 and 10 show the results.

Figure 9: Time detrended data clusters: K-mean clusters and time periods

The residuals obtained from the first pass of the autoencoder tend to cluster in groups not clearly separable
(Figure 9, left panel), except for one cluster (cluster 4, bottom center of the figure). However, time clustering
has mostly vanished (Figure 9, right panel). We can also examine whether clusters group data points
corresponding to the same country: the answer is negative as data clusters comprise data points from different
countries (Figure 10, left panel). Similarly, the clusters do not seem to be mainly comprised by data points
corresponding to the same label (Figure 10, right panel).8

8Class 0 corresponds to the no crisis label, class 1 to financial crisis, class 2 to a sudden stop crisis, class 3 to an exchange
rate market pressure index event, class 4 to a real sector crisis, and class 5 to a fiscal crisis.
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Figure 10: Time detrended data clusters: country and crisis presence

Balancing the data using SMOTE

After removing the time trend, it is necessary to address the imbalanced data problem. In supervised learning
imbalanced data could often produce inaccurate predictions. While the problem is less severe in unsupervised
learning since the learner does not use the label information. In our setup, however, it is still the case that
since the number of data points labeled as no-crisis points is large, the learner may be biased to use mostly
these points to identify the clusters.

Figure 11: Time detrended balanced data: clusters and crisis/non-crisis observations

To resolve this issue we implement the SMOTE method to create synthetic crisis data points and to improve
the accuracy of the unsupervised learner when applied to crisis prediction. Using SMOTE assumes that the
feature distribution of data points labeled as crisis, for all crisis labels, is very similar when contrasted with
the features distribution of data points labeled as non-crisis.

Figure 11, left panel, shows the K-means clusters obtained after applying SMOTE to the time-detrended
features, i.e. the residuals after applying the autoencoders to the raw data. The cluster structure still
suggests that there is scope for improving the feature representation. Nevertheless, as the right panel shows,
crisis-labeled data points start to separate from the non-crisis labeled data points.
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Clustering via Mode Contrastive Autoencoder (MCAE)

The standard autoencoder attempts to minimize a loss function proportional to the difference between the
original data points and the reconstructed data points without regard for whether the residuals exhibit
a multicluster structure. The mode contrastive autoencoder presented in section 3 is able to capture the
data structure, by minimizing the residuals, and to assign the data points to unique clusters, thanks to the
inclusion of a negative log-likelihood term associated with cluster assignments as shown in equation (4).

The number of clusters is a hyperparameter in the MCAE. In the absence of specific selection rules in the
clustering literature we apply the elbow method to the scree plot of the mean squared distance between
the data points and their centroid assignment for different number of clusters. Figure 12 shows the scree
plot obtained applying MCAE for a number of clusters ranging from 2 to 20. We base our analysis on nine
clusters since there are no substantial gains by adding more clusters.

Figure 12: Scree plot for cluster selection

Figure 13 illustrates the results obtained applying the 9-cluster MCAE to the residuals obtained by the first
pass of a standard autoencoder. The left panel shows nine well differentiated clusters. Each cluster could
be interpreted as a different economic regime. Under the assumption of ergodicity, i.e. the past economic
regimes are recurrent, we could expect a current or future data point to belong to one of the clusters.

Recall that the MCAE does not use the labels when performing data reconstruction and clustering assignment.
When labels are applied, they reveal that the MCAE clusters contain both crisis and non-crisis points coexist
(Figure 13, right panel). This finding indicates that there are no risk-free clusters but some are safer than
others in terms of crisis frequency. In addition, compared with raw data clusters, the MCAE clusters show a
clear separation between crisis and non-crisis data points.

Before discussing in more detail the crisis prediction task we assess whether some important information may
be missing after applying the MCAE. The assessment is based on the distribution of the MCAE residuals.
When viewed within the cluster structure (Figure 14, left panel), some of the residuals still tend to aggregate
into three small separate clusters, suggesting MCAE may have missed some clustering information. When
viewed from the perspective of crisis and non-crisis labeled data points (Figure 14, right panel), the spatial
distribution of the residuals is very similar for both classes. These results indicate that the unFEAR method
is able to extract an appropriate feature representation useful for identifying recurrent economic regimes and
their crisis generating mechanisms.
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Figure 13: Mode Contrastive Autoencoder: clusters and crisis data points

Figure 14: Mode Contrastive Autoencoder: residuals

Crisis risk measurement and crisis prediction

unFEAR, after learning an appropriate feature representation, produces clear and well separated cluster,
each characterizing one of ten possible crisis clusters (Figure 13, right panel). For instance, the two larger
clusters are safer, from a crisis realization perspective, than the smaller clusters since the number of crisis
points is small relative to the number of non-crisis points. We could consider a country has a low crisis risk if
its data point falls into any of these two clusters.

Table 2 summarizes the crisis frequencies of each cluster using two different measures. The empirical frequency
is the ratio of observed crisis data points to the total number of observed data points. The shadow frequency
is the ratio of observed and synthetically generated crisis data points to the total number of data points.
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Table 2. Crisis clusters: empirical and shadow crisis frequencies

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
Crisis data points 190 307 211 143 168
Non-crisis data points 24 452 14 1003 6
Empirical crisis frequency, in percent 43 6 61 2 71
Shadow crisis frequency, in percent 89 40 94 12 97

Cluster 5 Cluster 6 Cluster 7 Cluster 8
Crisis data points 232 120 94 74
Non-crisis data points 33 5 0 2
Empirical crisis frequency, in percent 30 71 100 85
Shadow crisis frequency, in percent 88 96 100 97

Crisis and non-crisis data points correspond to the number of data points, both observed and synthetic, classified as crisis and
non-crisis respectively. Empirical frequency is the ratio of the number of observed crisis data points to the total number of
observed data points, and the shadow empirical frequency is the ratio of the number of observed crisis data points to the total
number of data points.

From an empirical frequency perspective two clusters, clusters 1 and 3, are low crisis risk clusters, in which 6
percent and 2 percent of the observed data points are crisis observations. From the shadow crisis frequency
perspective only cluster 1 can be characterized as low crisis risk (12 percent). Tables 3 and 4 show the crisis
observations in each cluster and highlight that a country could experience several crisis types in the same
year.

Table 3. Low empirical crisis frequency clusters
Cluster 1: non-crisis observations = 452, crisis observations = 307,

empirical crisis frequency = 6 percent, shadow crisis frequency = 40 percent

Year Country Class Year Country Class Year Country Class
1974 United States 4 1991 Finland 4 1999 Spain 3
1974 Cyprus 4 1991 Iceland 5 2000 Malta 3
1975 Belgium 4 1991 Estonia 5 2000 Iceland 5
1975 Portugal 4 1991 Czech Republic 5 2009 France 4
1976 New Zealand 4 1991 United Kingdom 4 2009 Austria 4
1981 Slovenia 5 1991 Canada 4 2009 Finland 4
1982 United States 4 1992 Estonia 1 2009 Belgium 4
1982 Canada 4 1993 Portugal 3 2010 Estonia 3
1983 Cyprus 5 1995 Malta 3 2011 Italy 3
1993 Slovenia 1 1996 Czech Republic 1
1991 Finland 1 1998 Slovakia 1

Cluster 3: non-crisis observations = 1003, crisis observations = 143,
empirical crisis frequency = 2 percent, shadow crisis frequency = 12 percent

Year Country Class Year Country Class Year Country Class
1975 Switzerland 4 1991 Australia 1 2000 Denmark 3
1981 Netherlands 4 1991 New Zealand 4 2005 Switzerland 3
1982 Germany 4 1991 Switzerland 4 2007 United Kingdom 1
1982 Switzerland 4 1991 Norway 4 2008 Luxembourg 4
1983 Australia 4 1992 Finland 1 2008 Luxembourg 1
1983 Portugal 4 1993 Greece 3 2008 San Marino 4
1983 Iceland 5 1997 Japan 5 2008 Spain 1
1988 United States 4 1998 Hong Kong SAR 4 2009 Switzerland 4

Crisis and non-crisis observations correspond to the number of data points, both observed and synthetic, classified as crisis
and non-crisis respectively. Country names in italic denote countries that experienced multiple crises in the same year. Crises:
financial (1), sudden stop (2), exchange rate market pressure (3), real (4), fiscal (5).
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Table 4. High empirical crisis frequency clusters
Cluster 0: non-crisis observations = 24, crisis observations = 190,

empirical crisis frequency = 43 percent, shadow crisis frequency = 89 percent

Year Country Class Year Country Class Year Country Class
1974 Greece 4 1981 Belgium 4 2008 Denmark 4
1974 Japan 4 1985 New Zealand 5 2008 Denmark 1
1977 Sweden 4 2001 Iceland 3 2008 Estonia 4
1978 Norway 4 2006 Slovenia 3 2008 Sweden 4
1979 New Zealand 4 2008 Sweden 1 2009 Spain 4
1981 Spain 4 2008 Estonia 5 2012 Spain 5

Cluster 2: non-crisis observations = 14, crisis observations = 211,
empirical crisis frequency = 61 percent, shadow crisis frequency = 94 percent

Year Country Class Year Country Class Year Country Class
1980 Korea 4 2002 Israel 3 2008 United States 4
1991 Slovakia 5 2007 United States 1 2009 Iceland 4
1991 Sweden 1 2008 Japan 4 2012 Cyprus 3
1991 Sweden 4 2008 Portugal 1 2012 Cyprus 4
1997 Korea 1 2008 Switzerland 1 2012 Cyprus 5
1997 Korea 3 2008 Netherlands 1 2012 Iceland 3
1997 Korea 5 2008 Germany 1
1998 Korea 4 2008 Belgium 1

Cluster 4: non-crisis observations = 6, crisis observations = 168,
empirical crisis frequency = 71 percent, shadow crisis frequency = 97 percent

Year Country Class Year Country Class Year Country Class
1992 Israel 3 2008 Ireland 1 2011 Portugal 5
1998 Singapore 4 2008 Ireland 4 2011 Spain 3
2001 Singapore 4 2009 Netherlands 4 2011 Spain 4
2008 Iceland 1 2010 Ireland 3 2011 Cyprus 1
2008 Iceland 3 2010 Ireland 5
2008 Iceland 5 2011 Portugal 3

Cluster 5: non-crisis observations = 33, crisis observations = 232,
empirical crisis frequency = 30 percent, shadow crisis frequency = 88 percent

Year Country Class Year Country Class Year Country Class
1974 United Kingdom 4 2008 Greece 1 2009 Slovakia 4
1975 Italy 4 2008 Greece 4 2010 Greece 3
1980 United States 4 2009 Germany 4 2010 Greece 5
1980 United Kingdom 4 2009 Czech Republic 4 2012 Italy 4
1981 Greece 4 2009 Slovakia 4

Cluster 6: non-crisis observations = 5, crisis observations = 120,
empirical crisis frequency = 71 percent, shadow crisis frequency = 96 percent

Year Country Class Year Country Class Year Country Class
1980 Denmark 4 1993 Spain 4 2008 New Zealand 3
1990 Malta 3 1998 New Zealand 3 2008 New Zealand 4
1993 Sweden 3 2008 United Kingdom 3 2008 Korea 3
1993 Spain 3 2008 United Kingdom 4 2013 Japan 3

Crisis and non-crisis observations correspond to the number of data points, both observed and synthetic, classified as crisis
and non-crisis respectively. Country names in italic denote countries that experienced multiple crises in the same year. Crises:
financial (1), sudden stop (2), exchange rate market pressure (3), real (4), fiscal (5).
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Table 4. High empirical crisis frequency clusters (continued)
Cluster 7: non-crisis observations = 0, crisis observations = 94,

empirical crisis frequency = 100 percent, shadow crisis frequency = 100 percent

Year Country Class Year Country Class Year Country Class
1993 Italy 3 2008 France 1 2008 Italy 4
2008 Austria 1 2008 Italy 1

Cluster 8: non-crisis observations = 2, crisis observations = 74,
empirical crisis frequency = 85 percent, shadow crisis frequency = 97 percent

Year Country Class Year Country Class Year Country Class
1986 Norway 5 2008 Slovenia 1 2015 Norway 3
1992 Slovenia 1 2009 Norway 4
1998 Norway 3 2009 Canada 4

Crisis and non-crisis observations correspond to the number of data points, both observed and synthetic, classified as crisis
and non-crisis respectively. Country names in italic denote countries that experienced multiple crises in the same year. Crises:
financial (1), sudden stop (2), exchange rate market pressure (3), real (4), fiscal (5).

The cluster structure identified by unFEAR, and illustrated in Figure 13, serves as the starting point for crisis
risk measurement. Specifically, a country’s economic fundamentals place it in one of the clusters. The crisis
frequency serves as a measure of crisis risk and can be further decomposed by crisis type. As an example,
suppose a country is assigned to cluster 8. In this case, crisis risk is high since the empirical frequency is
85 percent, which can be decomposed into financial crisis risk (24 percent or 2/7 of 85 percent), exchange
market pressure crisis (24 percent), real sector crisis (24 percent) and fiscal sector crisis (13 percent). The
risk of simultaneous crises seems negligible.

We want to point here two other extensions not undertaken in this study. First, the examination of crisis and
non-crisis observations in a cluster could also serve to understand why some countries may not experience a
crisis despite sharing the same economic fundamentals as crisis-affected countries. Second, Figure 13 shows
that fitting supervised classification models for each cluster is relatively straightforward compared with fitting
a global classification model on all the data set. unFEAR hence provides an adequate feature representation
which can improve the precision of the crisis prediction task. In a first stage clusters are identified, and in a
second stage, supervised learning models are fitted to each cluster.

5. Conclusions
Crisis prediction in policy making institutions benefits greatly from the increased adoption of machine
learning-based predictive models. One potential concern in supervised learning-based models is the biased
label problem: countries sharing similar weak economic fundamentals may or may not experience a future
crisis due either to luck or policy actions. The biased label problem is more severe the longer the prediction
horizon is. The more time elapses since when the prediction was made, the likelier that random events or
policies may alter the outcome.

Unsupervised learning methods can avoid the biased label problem and cluster countries based on the
similarity of their economic fundamentals. To this end, we introduced a new unsupervised feature extraction
clustering method, unFEAR, where a novel mode contrastive autoencoder helped to identify observation
clusters. Moreover, unFEAR can handle time effects and missing data efficiently.

To illustrate unFEAR’s usefulness, we applied it to a sample of advanced economies. The data points to the
existence of eight different clusters we associate with economic regimes, only one of which comprising most of
the observations could be considered a low risk. A country cluster assignment serve to assess its crisis risk,
and the cluster per se could serve as building blocks for simpler and more precise supervised learning-based
crisis prediction models.
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