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I. INTRODUCTION 

The COVID-19 pandemic has affected – directly or indirectly – all countries and economic sectors. In order to 

contain the spread of the virus, countries adopted a wide range of non-pharmaceutical interventions (NPIs), like 

business stoppages, household lockdowns and travel restrictions. These containment measures were 

accompanied by large monetary and fiscal stimulus aimed at reducing the recessionary impact of the shock. 

Changes in social norms and consumption behavior are likely to persist even as lockdown measures wax and 

wane, and will likely last until proven vaccines and treatment become widely available.  

These evolutions resulted in intricate feedback loops between the disease developments and economic activity, 

sparking a new literature stream attempting to integrate epidemiological and economic models. This new suite 

of models are used to analyze the complex interaction between the virus outbreak and economic activity, 

including to better understand the tradeoffs, explore the role of heterogeneities across various dimensions, 

simulate mitigation policies, and forecast the evolution of infection or macroeconomic variables. 

The COVID-19 shock has generated multiple effects, with implications for different social and economic 

aspects. They include health-sector emergencies, supply-side disruptions, negative demand effects, financial 

turmoil, elevated uncertainty, etc. – making the analysis of the shock unique and unparalleled. In the emerging 

literature, empirical estimations use cross-country as well as regional-level survey-based data and high-

frequency indicators to uncover the relation between business activity, labor markets, lockdown measures, 

population mobility, and the severity of the infection; see Chen et al. (2020), Cox et al. (2020), Deb et al. (2020), 

Goldberg and Reed (2020), Maloney and Taskin (2020) for preliminary results. Conclusions drawn based on 

previous pandemics, like the 1918 flu in Correia et al. (2020), while of limited comparability, are also used to 

understand the medium-to-long-run spillovers among NPIs, labor markets and economic activity. 

The main objective of this paper is to shed light on the tradeoffs between saving lives and preserving economic 

outcomes under various mitigation policies and scenarios calibrated for emerging market and developing 

economies (EMDEs). The model is designed to capture relevant economic conditions and disease patterns 

typical in less developed countries, which have limited healthcare and financial resources, reduced telework 

capacity, insufficient precautionary savings and high levels of informality. We demonstrate that the framework 

can be easily calibrated to match specific country data to analyze a wide variety of scenarios and policies (e.g. 

a second infection wave, discovery of medical solutions, temporary immunity) in order to provide practical 

information for policymakers. The model also lends itself for training and capacity building purposes.  

The main contributions and comparative advantages of our paper are: tractability, straightforward adaptation 

to particular country-cases, implementation of relevant policies and scenarios (including endogenous lockdown 

stringency, second infection wave and temporary immunity considerations), tradeoff assessments, and potential 

for model extensions (e.g. related to sectoral heterogeneity). These defining features of our framework make 

the model also suitable for capacity development – including at the level of authorities and government officials 

– as the model structure can be easily adapted to a specific country. In selecting the key features and 

assumptions of our model, we were guided by the emerging stylized facts and analyses in the literature, 

enumerated as follows: 

The economic effects of the pandemic emerge quickly in EMDEs and their impact is substantial. Early indicators 

of the magnitude of the economic setback in EMDEs point to large output contractions. In addition, the plunge 
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in commodity prices – particularly oil prices – is negatively affecting commodity-dependent countries. The 

durability of the economic downturns across countries remains difficult to assess but is clearly linked to disease 

developments. Even more so, compared to advanced economies (AEs), the EMDEs have underdeveloped 

healthcare systems, limited teleworking possibilities, and constrained ability to mobilize additional monetary 

or fiscal resources and efficiently deploy them. Generally warmer climate and younger population are possible 

epidemiological advantages EMDEs can enjoy. Goldberg and Reed (2020) show that deaths-per-capita depend 

positively on GDP-per-capita and negatively on the share of young population.2 On the other hand, Brussevich 

et al. (2020) estimate that workers in emerging economies have a lower index of feasibility to work from home 

and are at a higher risk of layoff. 

Another relevant aspect is the voluntary behavioral response and the endogenous efficiency of lockdown 

measures in flattening the infection curve through curbing human interaction. The estimated results are 

obscured by the endogenous changes in behavior (e.g. wearing face masks, minimizing time spent outside, 

working from home), that would have surfaced even in the absence of government-mandated restrictions; both 

Chen et al. (2020) and Gupta et al. (2020) show that in many jurisdictions mobility decreased before the 

enactment of official lockdowns. Notwithstanding identification and endogeneity issues, estimations reveal that 

voluntary social distancing (proxied by the number of cases as an indicator of risk awareness, or using mobility 

data) appears to be more important than de jure measures, across both AEs and EMDEs: Chen et al. (2020) 

show that economic activity is driven by observed mobility, not by the imposition of de jure NPIs; Maloney 

and Taskin (2020) reveal that local and nationwide number of cases explain mobility trends better than NPIs; 

Goldberg and Reed (2020) obtain an insignificant correlation between the timing of lockdown measures and 

death rates; Alon et al. (2020) show that lockdowns are less effective in EMDEs, saving fewer lives per unit of 

lost GDP. These results also imply that the economic recovery is likely to be slow – once economies are 

officially open (i.e. de jure measures lifted), it will take time for the public to return to pre-COVID-19 habits.  

A practical and feasible model also needs to account for the critical role of economic policies in managing the 

economic fallout. Economic stimulus deployed by the central banks and fiscal authorities have, at least partially, 

calmed financial markets, avoided credit market disruptions, limited firm exit and provided a safety net for 

affected individuals; their effectiveness in ensuring a sustained recovery and minimizing scarring effects 

remains to be seen. Unlike in AEs, fiscal space limits put a drag on government resource mobilization capacity 

in EMDEs. Higher prevalence of informality makes it harder to identify and provide support to individuals at 

risk; in addition, in such an environment the efficiency and compliance with de jure NPIs is lower, as 

empirically shown by Maloney and Taskin (2020). See also IMF (2020) and Cakmakli et al. (2020) for a 

discussion on policy responses in EMDEs, Loayza (2020) for tradeoffs faced by developing countries, Kalemli-

Ozkan (2020) for measures to support small business, and Brussevich et al. (2020) for demographic-related 

aspects. 

Long-term implications in EMDEs are still too difficult to gauge. Most models have so far abstracted from 

making predictions regarding the long-run effects of the COVID-19 crisis, given the extremely uncertain 

evolution of the disease and of policy effects. Barrero et al. (2020) explore the emerging sectoral economic 

 

2 However, these outcomes are likely to be driven also by the insufficient testing and tracing in developing countries. 
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restructuring and redistribution in terms of reallocation of jobs (e.g. out of high-contact industries, tourism, 

etc.), sales (increase in online commerce), working environment and business practices (toward teleworking), 

consumer spending behavior (out of high-proximity experiences like food away from home). While these shifts 

are mitigating infection risk – at least until a vaccine and an efficient treatment are available – the reallocation 

is not necessarily efficient from an economic perspective. Goldberg and Reed (2020) discuss the possible 

negative long-lasting economic and social effects: shifting toward online commerce can lead to increased 

monopoly power and lower competition; discontinuities in education processes are likely to affect human 

capital development, innovation activities and potential growth; attempts to re-nationalize supply chains can 

result in lower international trade, reversing the secular globalization trends. On the other hand, digitalization 

and higher work flexibility emerge as favorable outcomes of the pandemic. Overall, if these transformations 

materialize, the net negative repercussions are likely to be larger in EMDEs.3 

Based on these considerations, our analytical framework builds on the standard SIR (susceptible, infected, 

recovered) epidemiological model developed by Kermack and McKendrick (1927). We extend it across several 

dimensions, including a two-way feedback loop between epidemiologic and macroeconomic blocks, allowing 

us to analyze a range of relevant mitigation policies. The epidemiological block matches various aspects of the 

disease and features asymptomatic infections and quarantine/isolation capacity. Baqaee et al. (2020) employ a 

similar structure, referring to it as a SEIRQD (susceptible, exposed, infected, recovered, quarantined, dead) 

framework. The economic block is represented by a log-linear production function in labor and total factor 

productivity (TFP), with the latter used to simulate investment in digitalization and teleworking equipment. 

The effect from the epidemiological block to economic activity is represented by the number of workers 

supplying labor services – taking into account potential lockdown restrictions imposed by the government.4 

Similar to Eichenbaum et al. (2020), economic activity is impacting the pandemic progression through 

infections originating through consumption and at workplaces; we allow for the latter channel to be relatively 

more prevalent, matching the widespread informality in EMDEs, lack of precautionary savings for a large 

proportion of the population, and limited teleworking facilities. The parameterization follows the rich strand of 

emerging related literature, recognizing also the uncertainties regarding the biology of the virus and the natural 

history of the disease. Finally, the model does not provide economic predictions for the long-term impact of the 

COVID-19 shock. 

In order to match the recent empirical evidence that the disease progression – as measured by new cases – is 

driving voluntary social distancing behavior and, therefore, economic outcomes, in our model the effective 

transmission rate is endogenous and determined by the current infection rate; equivalently, agents are assumed 

to experience disutility from infection risks. This relationship is also embedded in other theoretical frameworks: 

agents’ health declines with the contact frequency in Gupta et al. (2020); the share of voluntary isolated agents 

depends on the probability of contracting the virus in Chudik et al. (2020); contact frequency is adjusted by the 

 

3 Even if an effective medical solution to COVID-19 is found, the mentioned effects can still persist as a precautionary 

response to possible future epidemics.  

4 We do not explore the optimal lockdown policies, as done in Acemoglu et al. (2020) or Alvarez et al. (2020). This allows 

us to preserve tractability of the analytical tool and avoid the use of controversial assumptions, like the pecuniary “value 

of a statistical life”, necessary to perform such theoretical exercises.   
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current proportion of infected (“short-term awareness”) or cumulative proportion of affected individuals (“long-

term awareness”) in purely-epidemiological simulations of Eksin et al. (2019); and the magnitude of demand-

side shocks is determined by the infection rate in Cakmakli et al. (2020). We also simulate alternative 

endogenous behavioral responses through linking the efficiency of the lockdown measures to the current 

economic developments, such that as the recession becomes more severe, the compliance with the restrictions 

declines; Maloney and Taskin (2020) find that, in low income countries, mobility declines are not significantly 

affected by NPIs, citing low enforcement of and high resistance to the de jure restrictions. 

We simulate a range of mitigation policy scenarios: increased social distancing that reduces effective contact 

frequency (e.g. wearing masks, keeping physical distance, thorough personal hygiene); targeted labor market 

restrictions (widespread testing and better contact tracing allows to identify a larger share of infectious, 

including asymptomatic, restricting their access to workplaces); increased identification and quarantine 

capacity that reduces the average delay between contracting the virus and identification; and investment in 

teleworking capacity. The effectiveness of these measures is also studied in a second infection wave scenario, 

similar to Baqaee et al. (2020). 

We find that all these measures manage to flatten both infection and recessionary curves; however relative 

improvements of health versus economic outcomes vary across policies. Following Acemoglu et al. (2020), we 

represent the mitigation of this tradeoff between lives (death rate) and livelihoods (output drop) using the 

pandemic possibility frontier (PPF). The discovery of effective vaccines or medical treatment, as well as, the 

yet-uncertain possibility of only temporary immunity for the recovered individuals is also discussed. 

Finally, we explore the role of production sector heterogeneities within a multisector extension of the model, 

assuming there are affected/non-essential and unaffected/essential economic activities, in line with the early 

empirical results of Barrero et al. (2020) and following the theoretical framework of Krueger et al. (2020). We 

find that the aggregate impact – both in terms of health and macroeconomic outcomes – depends on the relative 

weight of and the degree of substitutability between sectoral goods. For example, easier substitution allows 

sectoral reallocation and cushions the epidemic shock in aggregate terms, but this buffer can be limited in case 

the affected sector is large. Other important heterogeneities – e.g. age-specific fatality rates and interaction 

patterns, gender-related differences, occupation-specific flexibility and propensity to telework – are left for 

future research; see related modelling frameworks in Acemoglu et al. (2020), Alon et al. (2020), Baqaee et al. 

(2020), Cakmakli et al. (2020), Krueger et al. (2020).5 In the present paper, our contribution refers to developing 

a tractable, yet realistic, framework to simulate the outcomes across stylized representations of the various 

mitigation measures implemented by policymakers. The current structure can be extended to overcome some 

of the listed challenges. 

This paper is organized as follows. Section 2 provides a description of the model and its parameterization. 

Section 3 presents the main results across various mitigation policy scenarios. In Section 4 we present additional 

 

5 Among other relevant limitations of the present framework, especially with respect to the modelled economic structure 

are: abstraction from capital services as a production factor, no explicit household tradeoff between consumption and 

savings or between consumption and labor, no external sector (open economy) considerations, absence of detailed 

monetary and fiscal policy transmission. 
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simulations for the case of the second infection wave, the impact of mitigation policies and the arrival of medical 

treatment or vaccine. Section 5 showcases the multisector extension, while Section 6 concludes. 

 

II. INTEGRATED EPIDEMIOLOGICAL-MACROECONOMIC MODEL 

Our model is an extension of the seminal SIR (susceptible, infected, recovered) framework of Kermack and 

McKendrick (1927). The baseline setting resembles the SEIRQD (susceptible, exposed, infected, recovered, 

quarantined, dead) structure of Baqaee et al. (2020). The time frequency of the model is daily. We differentiate 

between diagnosed and undiagnosed infected individuals. The former comprise reported (positive-tested and 

documented) cases, while the latter represent the unobserved share of the population who is infected but not 

identified; the true extent of the infection is thus likely to be severely underestimated in countries with 

insufficient testing capacity – particularly EMDEs – where the number of undiagnosed individuals is prone to 

be large. The rich epidemiological model allows us to simulate relevant and specific mitigation policies in order 

to uncover the range of health versus economic tradeoffs imposed by the COVID-19 crisis. 

 

A. Epidemiological Block 

The health states in the model are: susceptible (S) – individuals at risk of becoming infected; undiagnosed 

infected latent (UIL) – infected individuals that are not diagnosed yet and do not have enough viral load to 

infect other people (additionally, they do not present symptoms, since the scientific evidence points to the onset 

of symptoms arriving after the onset of infectiousness; see He et al. (2020)); undiagnosed infected infectious 

(UII), who are not identified but have developed enough viral load to infect other persons (while some of these 

present symptoms, others are still asymptomatic, matching the evidence that a significant proportion of 

transmissions is asymptomatic); undiagnosed infected non-infectious (UINI) – individuals at the latter stage of 

the infection where they cannot infect others because of insufficient viral load; diagnosed infected 

quarantined/isolated (Q), consisting of infected individuals (latent, infectious, or non-infectious) who are 

diagnosed via testing and isolated from society;  recovered (R); dead (D). Thus, the total population (T) is: 

𝑇(𝑡) = 𝑆(𝑡) + 𝑈𝐼𝐿(𝑡) + 𝑈𝐼𝐼(𝑡) + 𝑈𝐼𝑁𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) + 𝐷(𝑡)     (1) 

The epidemic dynamics is depicted in Figure 1. Through exposure of susceptible individuals (S) to an infected 

infectious individual (UII) – via work, consumption and/or random meetings, following Eichenbaum et al. 

(2020) – some of them contract the virus and become infected. Infected individuals go through three infection 

stages: latent (and asymptomatic), infectious (a mix of asymptomatic and symptomatic individuals) and non-

infectious. At any of these, if tested positive and diagnosed, the individual is placed into quarantine/isolation 

(Q). Undiagnosed latent (UIL) is the infection stage during which the person cannot infect others yet; its length 

is determined by a specific latency period (or onset of infectiousness). All newly infected individuals will 

transition over time from the undiagnosed latent health state to either undiagnosed infectious (UII), when they 

can spread the infection further; or be diagnosed via testing and isolated from society into quarantine (Q). Over 

time, undiagnosed infectious individuals will either die (D) from the disease, or be diagnosed via testing and 

put into quarantine (Q), or will pass through the undiagnosed non-infectious state (UINI) before surviving the 

virus and fully recover (R). Once diagnosed and quarantined/isolated (Q), one part of individuals will recover 



9 

 

 

 

(R) from the disease, while the rest is expected to die (D) due to infection complications and comorbidities. In 

our model we assume that only undiagnosed infected infectious (UII) transmit the virus; note that given the 

latency period is lower than the incubation period, some of these individuals are asymptomatic. Due to proper 

isolation and compliance to strict rules, diagnosed infectious individuals placed into quarantine do not create 

new infections. The equations that describe the evolution of the population in each health state over time are 

described below.  

 

Figure 1: Epidemiological block  

 

 

There are three possible infection sources: labor (L), consumption (C), and random meetings (RM). Let j denote 

these, i.e. 𝑗 ∈ {𝐿, 𝐶, 𝑅𝑀}. Then, the flow of new infections determines the change in the susceptible pool: 

∆𝑆(𝑡) = −𝛽(𝑡)𝛾(𝑡) ∑ 𝜔𝑗𝛼𝑗(𝑡)𝑗 ∙ [1 − 𝜅 ∙ 𝜏(𝑡)]    (2) 

𝛽 is the probability of infection given a contact between susceptible and infected individuals, while 𝛾 is the 

contact frequency; both are allowed to vary over time, reflecting the imposition of lockdown measures and/or 

changes in individual social distancing behavior. 𝜔𝑗 are used to calibrate the relative shares of infections’ 

originations. 𝛼𝑗 reflects the modality of the contact between infected and susceptible individuals, disaggregated 

across activities: for workplaces (𝑗 = 𝐿) it is determined by the labor fraction of susceptible and undiagnosed 

infectious workers who are allowed to access the labor market, 𝐿𝑆 ∙
𝐿𝑈𝐼𝐼

𝐿𝑇
; for consumption (𝑗 = 𝐶) it is 

proportional to the share of total output (Y) consumed by undiagnosed infectious population, 
𝑈𝐼𝐼

𝑇
∙ 𝑌; for random 

meetings (𝑗 = 𝑅𝑀), similarly to the benchmark SIR model, it is the product of the susceptible pool and the 

population share of undiagnosed infectious individuals, 𝑆 ∙
𝑈𝐼𝐼

𝑇
. Note that we assumed herein that diagnosed 

infected individuals (Q) are fully compliant with strict isolation rules and do not create infections. 

Unlike standard SIR models, in our baseline specification the number of new infections is also determined by 

the behavioral response of the population internalizing the infection risk and the “disutility” it induces. The 
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term [1 − 𝜅 ∙ 𝜏(𝑡)], where 𝜏(𝑡) is the current fraction of infected population, 𝜏(𝑡) =
𝑈𝐼𝐿(𝑡)+𝑈𝐼𝐼(𝑡)+𝑈𝐼𝑁𝐼(𝑡)+𝑄(𝑡)

𝑇(𝑡)
, 

represents the reduction in virus transmission in case of additional voluntary social distancing – possibly in the 

absence of any de jure measures – as determined by the sensitivity parameter 𝜅. This extension of the model is 

in line with the empirically documented relation between the decline in mobility and the number of reported 

COVID-19 cases in Chen et al. (2020) and Maloney and Taskin (2020). Our approach is also isomorphic to 

other similar mechanisms considered in the models of Gupta et al. (2020), Chudik et al. (2020), Eksin et al. 

(2019) or Cakmakli et al. (2020). 

The evolution of undiagnosed infected latent (UIL) is determined by new infections, less the individuals who 

have developed enough viral load to spread the virus further and became infectious, and those who have been 

tested positive and put in isolation:  

∆𝑈𝐼𝐿(𝑡) = 𝛽(𝑡)𝛾(𝑡) ∑ 𝜔𝑗𝛼𝑗(𝑡)𝑗 ∙ [1 − 𝜅 ∙ 𝜏(𝑡)] −
𝑈𝐼𝐿(𝑡)

𝜒
− 𝜙(𝑡)

𝑈𝐼𝐿(𝑡)

𝛿
   (3) 

In equation (3), 𝜒 denotes the latency period (number of days between contracting the virus and becoming 

infectious); 𝛿 represents the isolation delay, i.e. the average period to identify an infected person; 𝜙(𝑡) is the 

time varying quarantine fraction, evolving according to 𝜙(𝑡) = 𝜙0 ∙ [1 − 𝜙1 ∙ 𝜏(𝑡)]. While 𝜒 is a parameter 

specific to the disease biology, 𝛿, 𝜙0 and 𝜙1 are policy parameters reflecting available testing volume, contact 

tracing performance and quarantine/isolation capacity, which are likely to be lower in EMDEs as compared to 

AEs.  

The equation for undiagnosed infected infectious (UII) is: 

∆𝑈𝐼𝐼(𝑡) =
𝑈𝐼𝐿(𝑡)

𝜒
+ 𝑀(𝑡) − 𝜙(𝑡)

𝑈𝐼𝐼(𝑡)

𝛿
−

𝑈𝐼𝐼(𝑡)

𝜎
− 𝜌𝑈𝐼𝐼(𝑡)   (4) 

The inflow (first two terms) reflects individuals transitioning out of latency and possible imported cases M, i.e. 

infected persons arriving from abroad. Outflows (last three terms) consist of individuals who are identified and 

quarantined, infectious becoming non-infectious, and deaths. 𝜎 is a constant parameter reflecting the period of 

infectiousness after which the viral load is insufficient to transmit the virus to others, while 𝜌 is mortality rate.  

Undiagnosed infected non-infectious (UINI) evolve according to: 

∆𝑈𝐼𝑁𝐼(𝑡) =
𝑈𝐼𝐼(𝑡)

𝜎
− 𝜙(𝑡)

𝑈𝐼𝑁𝐼(𝑡)

𝛿
− 𝜓𝑈𝐼𝑁𝐼(𝑡)    (5) 

Equation (5) represents inflows based on infected individuals who are no longer infectious (first term), less the 

identified cases who are put into quarantine (second term) and those who recover (last term), given the recovery 

rate 𝜓.    

The pool of diagnosed quarantined/isolated (Q) reflects new arrivals from unidentified latent, infectious, and 

non-infectious states, less dead and recovered: 

∆𝑄(𝑡) = 𝜙(𝑡)
𝑈𝐼𝐿(𝑡)+𝑈𝐼𝐼(𝑡)+𝑈𝐼𝑁𝐼(𝑡)

𝛿
− 𝜌𝑄(𝑡) − 𝜓𝑄(𝑡)   (6) 

The numbers of recovered (R) and dead (D) individuals are determined as: 
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∆𝑅(𝑡) = 𝜓𝑈𝐼𝑁𝐼(𝑡) + 𝜓𝑄(𝑡)     (7) 

∆𝐷(𝑡) = 𝜌𝑈𝐼𝐼(𝑡) + 𝜌𝑄(𝑡)     (8) 

 

B. Macroeconomic Block 

The spillover from the pandemic to economic activity manifests itself in reductions of labor supply, which lead 

to proportionally lower output (Y) under the assumed log-linear production function technology. Following the 

relevant literature, we abstract from other production factors, like capital services. With this simplification, we 

recognize the primacy of the labor input in determining output under social distancing measures, avoiding also 

modeling intertemporal decisions for the households, which would complicate numerical simulations. Total 

labor input (L) in terms of number of workers (extensive margin) is the sum of labor supplied by each of the 

health groups, 𝑖 ∈ {𝑆, 𝑈𝐼𝐿, 𝑈𝐼𝐼, 𝑈𝐼𝑁𝐼, 𝑄, 𝑅, 𝐷}. The latter is computed as the total group population adjusted 

by: working age population share, 
𝑊𝐴𝑃𝑖

𝑖
= 𝑤𝑎𝑠ℎ𝑎𝑟𝑒𝑖; employment rate, 

𝐿𝑖

𝑊𝐴𝑃𝑖
= 𝑒𝑚𝑝𝑙𝑟𝑎𝑡𝑒𝑖; share of persons 

in group 𝑖 supplying labor services, 𝑠ℎ𝑎𝑟𝑒𝑤𝑜𝑟𝑘𝑖; and the voluntary social distancing response, [1 − 𝜅 ∙ 𝜏(𝑡)]: 

𝑌(𝑡) = 𝑍(𝑡)𝐿(𝑡)   

           = 𝑍(𝑡) ∑ 𝑖(𝑡) ∙
𝑊𝐴𝑃𝑖(𝑡)

𝑖(𝑡)
∙

𝐿𝑖(𝑡)

𝑊𝐴𝑃𝑖(𝑡)
∙ 𝑠ℎ𝑎𝑟𝑒𝑤𝑜𝑟𝑘𝑖(𝑡) ∙ [1 − 𝜅 ∙ 𝜏(𝑡)]

𝑖
 

= 𝑍(𝑡) ∑ 𝑖(𝑡) ∙ 𝑤𝑎𝑠ℎ𝑎𝑟𝑒𝑖(𝑡) ∙ 𝑒𝑚𝑝𝑙𝑟𝑎𝑡𝑒𝑖(𝑡) ∙ 𝑠ℎ𝑎𝑟𝑒𝑤𝑜𝑟𝑘𝑖(𝑡)
𝑖

∙ [1 − 𝜅 ∙ 𝜏(𝑡)] 

(9) 

Production function (9) allows also for the presence of a total factor productivity term, Z, which will be used to 

simulate investment in digital equipment to facilitate teleworking. 𝑠ℎ𝑎𝑟𝑒𝑤𝑜𝑟𝑘𝑖 is used to simulate targeted 

labor market restrictions (“smart containment”); e.g. under more efficient testing and tracing the authorities can 

identify the undiagnosed infectious individuals (UII) and forbid their access to the labor market, thus reducing 

the infection rate at workplaces.  

Government-mandated lockdowns play a critical role in curbing the spread of infections during the epidemic. 

In an alternative formulation, we shut down the voluntary social distancing behavior (𝜅 = 0) and append to the 

new infections term in (1)-(2) and the production function (9) a time-varying indicator approximating the 

impact of de jure restrictions on labor supply, 𝐿𝑜𝑐𝑘𝑑𝑜𝑤𝑛. Similar to Alvarez et al. (2020) and Acemoglu et al. 

(2020), the lockdown is defined as the share of the population that is subject to stay-at-home policy, P, adjusted 

with an efficiency factor θ: 

𝐿𝑜𝑐𝑘𝑑𝑜𝑤𝑛(𝑡) = [1 − 𝜃(𝑡) ∙ 𝑃(𝑡)]    (10) 

A more extensive (higher P) and/or more stringent (higher θ) lockdown reduces the spread of the virus but has 

negative impact on output, creating a tradeoff between saving lives and preserving economic outcomes. Time 

variation in the efficiency parameter θ is used to simulate reduced compliance with the de jure lockdown 

measures as the economic situation worsens, which is especially relevant for EMDEs.   
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C. Model Calibration 

The scientific community is still learning about the biology of SARS-CoV-2, implying large uncertainties 

around model parameters. We follow the literature and consider generic values for most of the parameters. In 

the case of several specific parameters, we use relevant economic and epidemiological data from Malaysia. The 

choice of Malaysia as a representative EMDE is motivated by several relevant structural economic and social 

indicators that are numerically close to the group’s average. Malaysia is a medium-size country in terms of 

population (32.4 million in 2018) and economy (nominal GDP of US$364 billion in 2019), with a development 

level close to the global average (GDP per capita of around US$11 thousand in 2019). It is a very open economy 

(sum of imports and exports exceeds GDP), with the main exporting categories including both electrics and 

electronics (38 percent of total exports in 2018) – which are representative for (mostly Asian) emerging 

economies – and commodities, including petroleum (23 percent) – which are particularly representative for 

developing economies.6 See also the next subsection where we showcase how the model can be used in 

conjunction with the reported COVID-19 cases to estimate some of the parameters.  

Following the structure of the integrated model, parameters can be divided into two groups: those specific to 

the epidemiological block and the economic parameters, respectively. Table 1 displays the calibration of the 

epidemiological block. Most of the parameters are within the range of values used in the relevant literature. 

Based on evidence from He et al. (2020) and NCID (2020), latency period (𝜒) is set to 4 days and duration of 

infectiousness (𝜎) is fixed at 10 days. The transition period from non-infectiousness state to recovery (given by 

the inverse of 𝜓) is calibrated at 21 days.7 Mortality rate (𝜌) is set at a lower range of the values considered in 

the literature, given our mapping to EMDEs; this is in line with the cross-country empirical evidence of positive 

correlation between deaths and income found in Goldberg and Reed (2020). Probability of infection given 

contact (𝛽) is set to 15 percent, while contact frequency (𝛾) is assumed to drop from the average 5 persons per 

day to 2 persons per day once the government declares emergency state (at day 58 in Malaysia), thus reflecting 

the changes in social behavior observed across populations. These values are in line with the contact matrices 

illustrated in Baqaee et al. (2020) before and after the COVID-19 outbreak. 

Isolation/quarantine fraction is assumed to be determined by the initial capacity to quarantine 5 percent of the 

previously undiagnosed infected, taking an average period of 5 days to identify them. Eichenbaum et al. (2020) 

calibrate the shares of infection origins (implied by 𝜔𝑖) for the USA to 1/6 from consumption, 1/6 from work, 

and 4/6 from random interactions. Given our focus on EMDEs – with pervasive labor informality, minimal 

teleworking, and limited precautionary savings – we double the share of the workplace-related infections at the 

expense of the random meetings’ share. 

 

 

6 The availability and reliability of the epidemiological data required for the data matching exercise were also important 

considerations for choosing Malaysia as a representative country. 

7 This implies that it takes on average 35 days (4 days of latency plus 10 days of infectiousness plus 21 days until full 

recovery) between contracting the virus and returning to the labor market. As mentioned in Baqaee et al. (2020), the range 

of values for this parameter is very wide, including because of heterogenous hospital policies across jurisdictions regarding 

the discharge of recovered COVID-19 patients. 
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Table 1: Model calibration: Epidemiological block 

Notation Value Description 

𝜒 4 Latency period  

𝜎 10 Duration of infectiousness 

𝜓 1/21 Recovery rate 

𝜌 0.0025 Mortality rate 

𝛽 0.15 Probability of infection given contact 

𝛾(𝑡|𝑡 < 58) 5 Contact frequency before emergency state declared  

𝛾(𝑡|𝑡 ≥ 58) 2 Contact frequency after emergency state declared  

𝛿 5 Isolation delay 

𝜙0 0.05 Quarantine fraction under no infection 

𝜙1 10 Quarantine fraction sensitivity to infection rate 

𝜔𝐶 0.17 New infections share from consumption activities   

𝜔𝐿 0.33 New infections share from labor activities   

𝜔𝑅𝑀 0.5 New infections share from random meetings   

 

A second group of parameters is related to the macroeconomic block; see Table 2. For simplicity, we assume 

that working age share and employment rate are constant across the health groups and across time. For Malaysia 

these represent 69.6 percent and 66.8 percent in 2018, respectively (based on Department of Statistics Malaysia 

data).8 The proportion of persons across health groups who are assumed to work, 𝑠ℎ𝑎𝑟𝑒𝑤𝑜𝑟𝑘𝑖, can be calibrated 

by approximating sector-specific NPIs, or the social behavior of workers who may decide to isolate (voluntary 

lockdown) and/or work from home. In the baseline setting we assume that (i) all susceptible, unidentified latent, 

and recovered work (because, respectively, they are not sick, they are asymptomatic and not infectious yet, and 

they had already recovered); (ii) only 50 percent of undiagnosed infectious and non-infectious work (i.e., even 

if sick, 50 percent are not identified – including because some of them are asymptomatic – and continue 

supplying labor services); (iii) quarantined are restricted from the labor market.   

 

Table 2: Model calibration: Macroeconomic block 

Notation Value Description 

𝑤𝑎𝑠ℎ𝑎𝑟𝑒𝑖 0.696 Share of working age population 

𝑒𝑚𝑝𝑙𝑟𝑎𝑡𝑒𝑖 0.668 Employment rate 

𝑠ℎ𝑎𝑟𝑒𝑤𝑜𝑟𝑘𝑖 1 Share of workers, 𝑖 ∈ {𝑆, 𝑈𝐼𝐿, 𝑅} 

𝑠ℎ𝑎𝑟𝑒𝑤𝑜𝑟𝑘𝑖 0.5 Share of workers, 𝑖 ∈ {𝑈𝐼𝐼, 𝑈𝐼𝑁𝐼} 

𝑠ℎ𝑎𝑟𝑒𝑤𝑜𝑟𝑘𝑖 0 Share of workers, 𝑖 ∈ {𝑄, 𝐷} 

𝜅 1 / 0 Behavioral response (baseline / if 𝜃 = 0.75) 

𝜃 0 / 0.75 Lockdown efficiency (baseline / if 𝜅 = 0) 

 

 

8 Given the generally younger population of EMDEs and the evidence that COVID-19 has different effects across age 

groups, keeping the working age population share constant in the model is likely to overestimate the prevalence of the 

infections and deaths. 
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The sensitivity of contact frequency to infection risk, 𝜅, is set to 1; given it is a non-standard parameter, we 

perform a sensitivity analysis in the next section. In our baseline calibration, when 𝜅 = 1, we assume no active 

lockdown policy, i.e. 𝜃 = 0, under the assumption that the impact of the government-mandated restrictions is 

already captured by the behavioral changes under 𝜅 = 1. In the alternative calibration, when no such changes 

occur (𝜅 = 0) and the lockdown measures are in place, we assume an efficiency parameter 𝜃 = 0.75, as in 

Acemoglu et al. (2020). This lockdown efficiency is within the range defined by the value of 0.5 used in Alvarez 

et al. (2020) and the “community understanding” parameter of 0.9 computed in the Oxford COVID-19 

Government Response Tracker for the Malaysia Stringency Index. We provide a sensitivity analysis for this 

parameter, assessing the corresponding tradeoff it implies.9 

 

D. Matching Epidemiological Data for Malaysia: An Illustration 

While we use a generic calibration to showcase the main simulation results, the modelling framework can also 

be flexibly used to match specific country data and provide more practical information for policymakers. As an 

application, we use reported epidemiological data for Malaysia between late-January to early-July 2020 (source: 

Malaysia Ministry of Health) – new confirmed and imported cases, recovered individuals and deaths – to 

employ a matching procedure by numerically iterating over the values of several parameters.10 The results are 

presented in Figure 2.  

 

Figure 2: Matching Malaysia data  

 

 

 

9 Both the sensitivity parameter 𝜅 and the lockdown efficiency θ can be anchored to (i) the Oxford COVID-19 Government 

Response Tracker (OxCGRT) “stringency index”, which records the strictness of lockdown policies implemented by the 

governments to contain people’s behavior (e.g. school closures, workplace closures, travel bans); and (ii) population 

mobility data provided by multinational technology companies. 

10 Parameter changes with respect to the baseline calibration in Table 1 are: recovery duration of 18 days, isolation delay 

of 10 days, constant fraction quarantined of 60 percent, (estimated) contact frequency of 4.5069 persons, (estimated) 

probability of infection given contact of 0.1678.  
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The model matches COVID-19 cases remarkably well, especially during the initial period (first three months). 

Given the (seemingly random) one-day spikes in new infections around days 120-130 (late-May to early-June), 

the matching of cumulative measures (cases, recoveries, deaths) worsens around that moment. In order to 

approximate the new slopes better, the matching procedure can be extended to allow for parameter break points 

(more generally, time variation in parameter values), a topic left for future research. 

 

III. MITIGATION POLICIES 

We present our simulation results in terms of the time paths of the infection rate (population share of infected), 

total (cumulative) infection rate, total (cumulative) share of deaths, and output deviation from the pre-pandemic 

value. Our flexible analytical framework encompasses the standard (extended) SIR model, obtained under no 

endogenous behavioral responses and no lockdown policy effects – i.e. by calibrating 𝜅 = 𝜃 = 0. We refer to 

this simulation as “reference epidemiological model”; see Figure 3. By the end of one year, about 1/3 of the 

population is infected, with deaths representing about 0.8 percent of the population.11 The economic costs 

represent an average annual GDP loss of about 2.2 percent.  

 

Figure 3: Reference model (no behavioral response, no lockdown)  

  

 

The results for our baseline model, with behavioral response (𝜅 = 1) but no lockdown policy (𝜃 = 0), are 

presented in Figure 4. We also show the alternative simulations with higher and lower sensitivity of the effective 

contact frequency to the infection risk. Voluntary social distancing reduces the spread of the virus, with less 

infections and deaths as compared to the reference model, but at the cost of steeper output contraction. In 

particular, for the benchmark calibration (𝜅 = 1) the annual average GDP loss amounts to 4.8 percent, with the 

sharpest drop in the third and fourth months after the first COVID-19 case. Note that our calibration implies an 

exponential increase of infections and an abrupt output decrease once the spread of the virus accelerates; then, 

 

11 In line with most of the literature on integrated epidemiological-macroeconomic models, we interpret the health-related 

outcomes in terms of “true” infection prevalence; see Acemoglu et al. (2020), Alvarez et al. (2020), Eichenbaum et al. 

(2020), Krueger et al. (2020). In practice, officially reported data for any country – which is significantly lower than typical 

model-based results – is likely to underestimate the true extent of the pandemic because of insufficient testing. This issue 

is particularly relevant for EMDEs. 
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after peaking at around 15 weeks, both new infections and output slowly return to equilibrium. This outcome 

is in line with the available high frequency statistical data, as documented in the emerging empirical literature; 

see Chen et al. (2020), Cox et al. (2020), Deb et al. (2020), Goldberg and Reed (2020), Maloney and Taskin 

(2020). 

 

Figure 4: Baseline model (behavioral response)  

 

 

A. Lockdown Policy 

The implementation of the lockdown policy simulations in our framework is based on the exogenous path of 

the share of restricted interactions, as specified in equation (10). Following the optimal policy results in 

Acemoglu et al. (2020) and Alvarez et al. (2020), we specify a trajectory for the policy variable 𝑃(𝑡) featuring 

an abrupt increase to about 20 percent of the population, followed by a slow return by the end of the simulation 

interval; see Figure 5. This gradual dynamic is intended to approximate the observed slow recovery in 

population mobility even after some of the de jure restrictions were lifted. 

  

Figure 5: Time path of lockdown policy  

 

 

Simulation results for the alternative model with lockdown policy are presented in Figure 6. In the simulation 

with the efficiency parameter θ = 0.75, the infection prevalence and death rate are reduced to 23 percent and 

0.6 percent, respectively. At the same time, output declines by 9 percent during the year. Sensitivity analysis 

with respect to the lockdown efficiency reflects the tradeoff between health outcomes and economic activity: 
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in case of lower compliance with the lockdown measures (low θ), the recession curve is flatter by about 5 

percentage points at the through, but at the cost of higher prevalence of the disease and morality rate.  

 

Figure 6: Alternative model: lockdown policy  

 

 

A relevant extension of the lockdown model – especially for EMDEs – is related to endogenizing the efficiency 

parameter 𝜃 by linking it to the current economic developments (percent GDP growth relative to pre-pandemic 

value, ∆%𝑌(𝑡) = 𝑌(𝑡)/𝑌(0)  ∙ 100 − 100): 

𝜃(𝑡) = 𝜃 ∙ [1 + 𝜇 ∙ ∆%𝑌(𝑡)] 

This relation reflects how compliance with the lockdown orders decreases proportionally with the severity of 

economic contraction. In EMDEs – with higher labor informality, liquidity-constrained population, limited 

teleworking and insufficient precautionary savings – the sensitivity of lockdown efficiency to output decline is 

likely to be significant (μ high); Alon et al. (2020) consider these particularities in their incomplete-markets 

macroeconomic model with epidemiological dynamics. Figure 7 shows the simulations across different values 

of μ. The relative improvement in economic gains as the sensitivity parameter μ increases is matched by a cost 

in terms of health outcomes. For example, in the simulation with μ = 3, which represents an economy with low 

compliance with the de jure NPIs once the economic crisis arrives, average output loss during the first year is 

about 1 percentage point lower as compared to the simulation with μ = 1, while the population share of deaths 

is 0.03 percentage points higher. Overall, output appears to be relatively more responsive to the lockdown 

sensitivity to infection rate as compared to health sector indicators. Given the simplicity of the macroeconomic 

block, the lockdown policy has a direct impact on production; at the same time, the richer interactions among 

the various health groups within the epidemiological block makes the lockdown impact weaker (e.g. under 

lockdown the pool of susceptible is larger, allowing, ceteris paribus, for a higher probability of infection – 

given the specific value of the partial lockdown sensitivity to current infection rate). Additionally, in the 

simulations with endogenous lockdown efficiency we turn off the voluntary social distancing channel (𝜅 = 0), 

which minimizes the incidence of the disease.   
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Figure 7: Alternative behavior: endogenous lockdown efficiency 

 

 

B. Enhanced Social Distancing  

The first mitigation policy we analyze relates to better social distancing, achieved through specific 

recommendations and measures regarding wearing facemasks, physical distancing, eye protection, restrictions 

on gatherings, identification of risk groups, public disclosure of infected cases, etc. Chu et al. (2020) provide a 

comprehensive meta-analysis on the marginal effects of individual protection measures in preventing person-

to-person transmission of SARS-Cov-2. Since in our model contact frequency and probability of infection given 

contact enter multiplicatively, we perform and interpret the corresponding simulation in terms of reducing direct 

virus transmission rate. Technically, we assume that the additional measures reduce effective contact frequency 

by 15 percent as compared to the baseline calibration (from 2 to 1.7 persons per day for t ≥ 58). Simulation 

results in Figure 8 show the improvements achieved under this policy. The total infection rate reduces to only 

10 percent of the population, death rate accounts for 0.25 percent of the population, while GDP declines by an 

annual average of less than 2 percent. Accordingly, reducing effective contact frequency proves to be an 

efficient policy in mitigating the tradeoffs between economic activity and health outcomes. 

 

Figure 8: Mitigation policy: better social distancing 

 

 

C. Targeted Labor Market Restrictions 

Our second mitigation policy refers to targeted labor market restrictions. More specifically, under the 

assumption of enhanced information – e.g. due to contact tracing, widespread testing, medical checks at 

workplaces, etc. – infected persons are better-identified and restricted to access workplaces. Within this 
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simulation we change the working shares of undiagnosed latent (UIL) from 1 to 0.5 and of undiagnosed 

infectious (UII) and non-infectious (UINI) from 0.5 to 0.25. The results shown in Figure 9 present significant 

gains in terms of both output and health outcomes. The improvements resemble quantitatively those obtained 

under better social distancing measures described above. 

 

Figure 9: Mitigation policy: targeted labor market restrictions 

 

 

D. Improved Quarantine and Isolation  

The third policy refers to increased quarantine and isolation capacity, complemented by more widespread 

testing, contact tracing and identification of positive cases. Cherif and Hasanov (2020) use a workhorse SIR 

model to show that universal testing and isolation is the most efficient policy to address the COVID-19 

pandemic. We simulate an improved quarantine and isolation scenario by doubling the baseline quarantine 

fraction to 𝜙0 = 0.1; see Figure 10. Note that given our formulation of quarantine transition, this simulation is 

equivalent to halving the isolation delay to 𝛿 = 2.5 days. The mitigation policy achieves a flattening of both 

infection and recession curves relative to the baseline model. 

 

Figure 10: Mitigation policy: increased identification and quarantine 

 

 

E. Increasing Telework Capacity  

Finally, we simulate the effects of additional investment in telework capacity – via endowing workers with 

technical equipment, digitalization, etc. Technically, we impose an increase in the TFP term (Z) of 2.5 percent 
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over four months starting from the declaration of emergency. This level of productivity shock is chosen mostly 

for illustrative purposes, but can also be put in perspective by comparing it to the projected fiscal balance 

deterioration and gross government debt increase over 2020 relatively to 2019, assuming that a part of the 

underling fiscal measures will be reflected in better digital infrastructure.12 In addition, given that a proportion 

of workers do not need to access work facilities under this scenario, the contact frequency term in equations 

(2)-(3) is decreased proportionally to the change in TFP. As shown in Figure 11, as compared to the baseline 

simulation this policy results in less steep output decline and quicker recovery, as well as slightly better 

outcomes in terms of infection prevalence and death rates. 

 

Figure 11: Mitigation policy: investment in telework capacity 

 

 

F. Capturing Tradeoffs 

Overall, the simulations for various mitigation policies show how these measures flatten both the epidemic and 

recession curves, improving the “lives versus livelihoods” tradeoff. In order to illustrate this result, Acemoglu 

et al. (2020) simulate the model for different calibrations for the value of statistical life parameter. The plot of 

the resulted death rates and output losses – as proxies for health and economic outcomes, respectively – 

represents the pandemic possibility frontier. In our framework, one parameter that shapes the tradeoff is the 

sensitivity to infection rate, 𝜅. We simulate the baseline model calibration and the increased quarantine capacity 

scenario for a grid of values for 𝜅 between 0 and 5, with a step change of 0.5. The resulted curves represent the 

menus of possible choices for agents/countries, depending on their assessment of the tradeoff; see Figure 12. 

Entities with low death risk tolerance are situated in the north-west region: they are curtailing contacts by a lot, 

managing to preserve more lives but at the cost of larger output drop. Conversely, risk-taking units are situated 

in the south-east region, where the death rate is higher, but the output drop is milder. As shown by the outward 

translation of the curve under increased quarantine capacity, mitigation policies are pushing the pandemic 

possibility frontier towards improved outcomes and alleviate the tradeoffs. 

 

12 According to the June 2020 IMF World Economic Outlook Update, fiscal deficit (GDP share) is projected to increase 

from 4.9 percent in 2019 to 10.6 percent in 2020 in emerging markets economies, and from 4.1 percent to 6.1 percent in 

low-income developing countries. At the same time, gross government debt (GDP share) is projected to increase from 52.4 

percent to 63.1 percent in the former group of countries, and from 43.1 percent to 48.2 percent in the latter. 
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Figure 12: Pandemic possibility frontier 

 

 

Our framework constrains us from ranking the analyzed containment policies since we do not provide a 

quantitative cost-benefit analysis and do not study the potential financing sources and practical implementation 

details. In practice, country authorities have adopted a mix of policies, with the marginal contribution of 

individual measures impossible to isolate. Nevertheless, our simulations provide relevant information on the 

likely effects across a range of stylized representations of the most widely discussed intervention policies. 

 

IV. SECOND INFECTION WAVE, MEDICAL SOLUTIONS AND TEMPORARY IMMUNITY 

In this section we explore relevant scenarios beyond the short-term, such as the emergence of multiple infection 

waves, the discovery of proven medical solutions (treatment or vaccine), and the possibility of temporary (rather 

than permanent) immunity achieved by the recovered individuals. 

 

A. Second Infection Wave and Mitigation Policies 

The second infection wave simulation is generated by increasing the contact frequency to 2.5 (from 2) persons 

starting day 200, which in our timeline corresponds to early-autumn 2020. The results are presented in Figure 

13, alongside the baseline model results from the previous section. Note that the simulation horizon was 

increased from 365 days to 600 days. The resurgence of infections leads to a prevalence of COVID-19 of more 

than 60 percent and a fatality rate amounting to 1.5 percent of the total population.13 The epidemic generates a 

double dip recession, with the average output loss of 8 percent over the first year.  

 

 

 

 

13 The 60 percent prevalence is used in some of the relevant literature, e.g. Eichenbaum et al. (2020), to calibrate SIR-type 

models.  
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Figure 13: Second infection wave 

 

 

Figure 14 displays the simulation results across the four mitigation policies analyzed in the previous section. 

The design and calibration of containment policy scenarios is identical; note that in the case of better social 

distancing measures, the 15 percent reduction in effective contact frequency implies a decrease from 2.5 to 

2.125 persons. Each policy is deployed after day 230, i.e. one month after the second infection wave emerges. 

As mentioned above, the scenarios do not include a proper cost-benefit assessment, so that a relevant ranking 

of the mitigation policies based on the simulations is not applicable. Overall, in relative terms, the more the 

measures flatten the second infection curve, the more these measures are efficient at reducing the severity of 

the economic contraction, reflecting the benefits of containment policies. A related interpretation of these 

outcomes reflects the presence of a learning mechanism taking place, which will likely make the second 

infection wave different from the first one. We (indirectly) consider this accumulated knowledge via the various 

policies being deployed and alleviating the negative outcomes of the shock. In other words, while we first 

present the “Baseline + 2nd wave” simulation in Figure 13, it could well be the case that the actual trajectory 

of the second infection wave will be one (or a combination) of the simulations from Figure 14, i.e. including 

some mitigation policies. 

 

Figure 14: Mitigation policies: second infection wave 

 

 

B. Medical Solutions 

The arrival of proven medical solutions – either in the form of treatment or vaccine – is a much hoped-for 

outcome of the current scientific research efforts. We simulate the corresponding scenarios in our framework 
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as follows. In case of the treatment, the mortality rate is reduced to zero, so that even if the prevalence of the 

disease remains elevated, all infected individuals fully recover. For a vaccine, we assume there are no more 

new infections and the epidemic disappears once the already infected individuals recover or die. Both solutions 

are assumed to arrive at day 300 (late-autumn 2020 in our timeline). The results are presented in Figure 15. 

 

Figure 15: Treatment and vaccine 

 

 

Effective treatment eliminates completely the risk of mortality. Nevertheless, given that the transmission of the 

virus remains, as before, the infection curve and economic outcomes are very similar to the initial scenario. In 

our model formulation, in the treatment scenario, the resulted infection rates are likely to be understated while 

the severity of the economic downturn overstated, given that under a widely available treatment (i) people are 

expected to change their behavior towards more interactions (equivalent to lower 𝜅) and (ii) labor market access 

conditions across different health groups will presumably be relaxed (equivalent to higher 𝑠ℎ𝑎𝑟𝑒𝑤𝑜𝑟𝑘𝑖). These 

changes will result in more infections but less economic damage – which under efficient treatment will not 

represent as stark a tradeoff as in the baseline scenario.  

The discovery of the vaccine will eliminate the infection risk, and only the individuals who are already infected 

face the risk of dying. Once the vaccine is administered across the population and the virus is completely 

eradicated, output quickly rebounds to the pre-pandemic level. Besides the uncertainty related to the moment 

of an efficient vaccine discovery, in practice, once a company/country succeeds in developing the vaccine, it 

will likely take time to administer it to all the population, rendering our simulation results in Figure 15 as 

optimistic. Accordingly, it is important that countries collaborate and prepare efficient protocols to speed-up 

the production and delivery of the vaccine worldwide, once it becomes available. 

 

C. Temporary Immunity Consideration 

In the baseline model, we follow the relevant literature and assume that recovery is an absorbing state, i.e. 

achieved immunity is permanent. However, clinical assessments point to a gradual reduction of antibodies in 

recovered individuals; see Long et al. (2020). Accordingly, we simulate an alternative scenario in which the 

duration of immunity is finite, adjusting the equation for recovered individuals as: 
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𝑅(𝑡) = 𝜓𝑈𝐼𝑁𝐼(𝑡) + 𝜓𝑄(𝑡) −
𝑅(𝑡)

𝜆
     (11) 

where 𝜆 represents the duration of immunity. Furthermore, equation (2) is amended with the same flow of 

individuals who are losing immunity and transition back to the susceptible pool, 
𝑅(𝑡)

𝜆
.  

Figure 16 shows the simulation results for 𝜆 = 90 days, alongside the baseline calibration 𝜆 = ∞. Since the 

pool of susceptible individuals is constantly supplemented by the recovered persons who lose immunity – and 

in the absence of any mitigation policies or medical solutions – the prevalence of the disease is significantly 

higher and continues even in the long run. Accordingly, the output loss is very persistent. The temporary 

immunity simulation underscores the importance of efficient mitigation policies and medical research in order 

to avoid permanent losses in lives and livelihoods.  

 

Figure 16: Temporary immunity 

 

 

V. MULTISECTOR EXTENSION 

Official statistical data and surveys released over the recent period point to highly asymmetric effects of the 

COVID-19 shock and significant reallocation of activity across different economic sectors, as detailed in 

Barrero et al. (2020). This evidence has inspired the development of multisector integrated epidemiological-

macroeconomic models: Baqaee et al. (2020), Cakmakli et al. (2020), Krueger et al. (2020), etc. In this context, 

we exploit a similar extension to our analytical framework, with the final consumption good representing a 

bundle over a range of sectoral intermediate goods. The latter are produced under specific working conditions, 

matching the sectoral-level heterogeneity in terms of social interaction, workers’ proximity and infection risk. 

Let 𝑛 = 1, 2, … , 𝑁 index the intermediate good sectors. We assume the production function for a generic sector 

n is similar to the one in our baseline (homogenous) model, equation (9), but with behavioral response 

sensitivity 𝜅𝑛 representing the sector-specific “infection intensity” or “relative contagiousness”, as in Krueger 

et al. (2020):   

𝑌𝑛(𝑡) = 𝜔𝑛 ∙ 𝑍(𝑡) ∙ [∑ 𝑖(𝑡) ∙
𝑊𝐴𝑃𝑖(𝑡)

𝑖(𝑡)
∙

𝐿𝑖(𝑡)

𝑊𝐴𝑃𝑖(𝑡)
∙ 𝑠ℎ𝑎𝑟𝑒𝑤𝑜𝑟𝑘𝑖(𝑡)𝑖 ] ∙ [1 − 𝜅𝑛 ∙ 𝜏(𝑡)]  (12) 
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where 𝜔𝑛 represents the sector share in aggregate production. For tractability, we assume the labor input is 

homogeneous across the sectors and the only relevant difference refers to the infection intensity 𝜅𝑛. The final 

good is aggregated using a constant elasticity of substitution function: 

𝑌(𝑡) = [∑ 𝜔𝑛

1

𝜂
𝑛 (𝑌𝑛(𝑡))

𝜂−1

𝜂 ]

𝜂

𝜂−1

     (13) 

where 𝜂 represents the elasticity of substitution among the intermediate goods. 

For a simple illustration of the model extension, we assume an economy with two sectors (𝑁 = 2) of equal 

shares (𝜔1 = 𝜔2 = 0.5), but with the first sector twice as contagious (𝜅1 = 5, 𝜅2 = 2.5) and hence affected 

relatively more by the pandemic developments. As shown in Figure 17, the aggregate outcomes depend on the 

degree of substitutability between 𝑌1 and 𝑌2. In particular, total output declines more when the intermediate 

goods are complements (𝜂 = 0.5) as compared to substitutes (𝜂 = 3). This result can be explained as follows: 

when sectoral goods can be easily substituted (higher 𝜂), the loss in production capacity for the more affected 

sector (𝑌1) can be partly compensated by an increase in economic activity in the less affected sector (𝑌2). 

Conversely, if the intermediate goods cannot be easily substituted and need to be consumed together (lower 𝜂), 

activity in both sectors will be declining by relatively more. As such, substitutability of sectoral production acts 

as a shock absorber in terms of aggregate output. However – in line with the outcomes reported in Section III 

– absent mitigation policies, a lower output loss implies more widespread infection and higher fatality rates. 

 

Figure 17: Multisector extension: equal sectoral weights 

 

The results are sensitive to the relative importance of the individual sectors. For example, Figure 18 displays 

the simulation results for an economy with highly concentrated economic activity in the more affected sector 

(𝜔1 = 0.75, 𝜔2 = 0.25). In this case, substitutability provides only a limited buffer, so that total output 

decreases by more than in the equal-weights calibration above, but with small relative gains in terms of lower 

infections and deaths.  
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Figure 18: Multisector extension: affected sector more important 

 

 

The results illustrated above suggest the relevance of sector-specific policies, e.g. lockdown restrictions targeted 

toward more infectious activities/occupations, particularly when there is substitutability in production (or 

consumption) across the sectors; the implementation of these policies in the model is left for future research. 

The analytical framework can be extended further to more than two sectors, e.g. to match actual decomposition 

in terms of primary, secondary and tertiary economic activities. Also, it can allow for a more meaningful 

differentiation in terms of production technologies – e.g. by adjusting upward the shares of individuals across 

health states that have access to the labor market if they are employed in “essential sectors”.  

 

VI. CONCLUSION 

In this paper we develop a flexible analytical framework to analyze the interaction and spillover effects between 

the epidemiological aspects of COVID-19 and macroeconomic outcomes. The model can be calibrated to 

generic EMDEs, which generally have limited healthcare and financial resources, reduced telework capacity, 

limited precautionary savings and high levels of informality. The multiplicity of health states in the model – 

especially the differentiation between latent, infectious, and non-infectious stages for the infected individuals 

– allows simulating epidemiological and economic outcomes related to a variety of representative mitigation 

policies. Accordingly, our results provide a broad assessment of the options to alleviate the tradeoff between 

saving lives and preserving economic outcomes policymakers currently face. 

Our framework encompass relevant attributes and channels: the imposition of government-mandated 

lockdowns and an endogenous mechanism that links population compliance with the lockdown measures to 

current economic conditions – which is likely to be an important channel in the case of EMDEs; voluntary 

changes in population behavior whereby individuals internalize the infection risk; the development of efficient 

medical solutions in the form of treatment or vaccine. We also explore the intersectoral reallocation effects the 

COVID-19 shock is entailing by extending the model to a multisector setting. 

Model simulations provide relevant information for decision-making about the effects across a range of stylized 

representations of the most prominent intervention policies discussed or implemented worldwide. The 

framework can also be a useful tool in teaching and capacity building activities. The results underscore the 

benefits in terms of both minimizing adverse health-related outcomes and improving economic activity. 
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Additional scenarios demonstrate that efficient deployment and propagation of containment policies become 

especially important in the case of repeated infection waves or limited immunity for the recovered patients. 
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