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1 Introduction

In response to the COVID-19 pandemic, most economies have implemented large fiscal stimu-

lus programs that pushed public debt to their historical highest levels, as illustrated in Figure

1. These developments have brought the need to plan for future deleveraging strategies to the

forefront of policy debates.1 Fiscal rules that constrain authorities are often at the center of

deleveraging debates and debt sustainability analyzes have been useful in gauging the magni-

tudes of fiscal consolidations needed to stabilize debt ratios.2 Yet, there is little formal analysis

regarding desirable debt paths during deleveraging. In this paper, we show how to compute

constrained efficient borrowing paths for governments facing default risk. We thus provide a

benchmark to inform the design of deleveraging plans for highly indebted countries, and against

which to compare simpler policies to enhance fiscal discipline.

Figure 1: Update of World Economic Outlook, June 2020

Formally, we study a standard quantitative sovereign default framework à la Eaton and

Gersovitz (1981) with long-term debt. The Eaton-Gersovitz model has been widely used in
1See, for instance, Reinhart and Rogoff (2020) and Gelpern et al. (2020). These debates are not novel. Abbas

et al. (2011) study public debt cycles since 1880.
2As defined by the IMF (2017), “A fiscal rule is a long-lasting constraint on fiscal policy through numerical

limits on budgetary aggregates.” Hall and Sargent (2015) study the effectiveness of federal debt limits in the U.S.
Poterba and Rueben (1999) study the effectiveness of fiscal rules in U.S. states and Thornton and Vasilakis (2017)
study the effectiveness across countries. D’Erasmo et al. (2016) summarize work on debt sustainability.
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studies of fiscal policy for countries with default risk. At the beginning of each period, the

government first observes the aggregate endowment and the continuation value under defaulting,

which are both stochastic. Then, the government decides whether to default on its debt. If the

government repays, it can issue bonds priced by competitive risk-neutral foreign investors.

We solve the model using two equilibrium concepts. In the Markov Perfect Equilibrium

(MPE), the government optimally chooses its default and borrowing actions each period taking

as given future default and borrowing strategies. This is the equilibrium concept that the quan-

titative sovereign default literature has focused on.3 In the Ramsey equilibrium, in period zero

or in the first period after a default, the government commits to an income-history-contingent

borrowing path, taking as given ex-post optimal default decisions.

The “Ramsey government” improves upon the “Markov government” because the Ramsey

government takes into account how borrowing decisions in period t affect the borrowing sets

prior to t. If borrowing more in t raises default risk after t, it lowers the price of bonds issued

prior to t, thus shrinking the borrowing sets in those periods. The Ramsey government takes these

borrowing costs into account when choosing its borrowing plan, while the Markov government

does not. By internalizing this intertemporal price effect, the Ramsey planner implements the

constrained efficient borrowing path.

Our contribution is to show the effect of borrowing decisions in period-t on welfare prior

to t can be encapsulated by two single dimensional variables (which under conditions verified

in our numerical implementation, can be collapsed into one variable). This result enables us

to propose an algorithm to solve for the Ramsey government’s borrowing plan.4 Using the

optimality condition for the Ramsey government, we show it is optimal to distort the Markov

government’s borrowing decisions more in states where: i) bond prices are more sensitive to

borrowing and ii) changes in bond prices have a larger effect on past welfare.

We impose discipline to our quantitative exercise by calibrating the MPE to match data from
3Aguiar and Amador (2020) show that in an Eaton-Gersovitz model with long-term debt, there may be multiple

MPE equilibria. We rule out this possibility by focusing on the equilibrium that is the limit of the equilibrium of
the finite-horizon economy.

4We cannot show the problem faced by the Ramsey government is convex, but by being able to compute the
first-order derivative, we can numerically back out the shape of the Ramsey government’s objective function. We
use this information to verify numerically the optimal borrowing we find is indeed a global maximum.
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Mexico, a representative economy with sovereign risk and a standard reference in the literature.

We also verify that the model’s key testable implications for the relationship between the spread,

income, and debt are aligned with the ones estimated for a sample of emerging economies. The

overall match between the simulations for the Markov government and the data makes the model

a plausible laboratory for the quantitative exercises we conduct in this paper. We measure the

effects of commitment to future borrowing by comparing simulations between the Markov and

Ramsey governments.

We find the welfare gain from permanently switching to an economy with a Ramsey gov-

ernment ranges from 0.3% to 0.7%, with larger gains for lower income. The average spread is

0.5% in the economy with the Ramsey government and 3.3% in the economy with the Markov

government. The Ramsey government achieves this significant reduction in default risk not by

lowering average borrowing but by fanning out its borrowing: it reduces borrowing in later pe-

riods and in states where default risk is most affected by borrowing, and it expands borrowing

in the remaining states. Since default risk is more sensitive to borrowing in low income states,

the Ramsey government conducts a more procyclical fiscal policy than the Markov government.

More dispersed borrowing even leads the Ramsey government to buy back debt in some low-

income states because it internalizes that an increase in bond prices in period t may allow it to

issue debt at better prices prior to t. In contrast, the Markov government never buys back debt

because it does not benefit from the increase in bond prices implied by a buyback, as shown by

Aguiar et al., 2019 and Bulow and Rogoff, 1988, 1991.

We also show that starting from a state with high debt, the Ramsey government has a

higher probability of completing a successful deleveraging (without defaults) than the Markov

government. In addition, the Ramsey government can afford to smooth out the initial adjustment

during the deleveraging path by effectively reducing future default risk. Commitment to a simpler

policy plan implemented through the optimal sequence of debt limits imposes harsher initial

austerity and delivers 60% of the welfare gains achieved by the Ramsey government. Overall,

these results are indicative of the quantitative importance of enhancing long-term fiscal discipline

to reduce sovereign risk and for the success of fiscal programs aiming at reducing debt levels.

We find that if the Markov government could choose the optimal ex-ante debt duration, i.e.,

5



if it could choose the debt duration in the initial period and commit to that duration thereof,

it would want to issue debt with a duration of 2.3 years (vs. 4.8 years in our calibration). We

find qualitatively similar results to the ones in our benchmark when the Ramsey government

is assumed to issue debt with a duration equal to the optimal ex-ante duration for the Markov

government. We also find the optimal ex-ante duration is much higher (over 30 years) for the

Ramsey government.

1.1 Related literature

While some studies of inefficient borrowing with default risk have been able to characterize the

constrained efficient allocation using tractable two-period models (see, for example, Bizer and

DeMarzo, 1992 or Bolton and Jeanne, 2009), quantitative work has circumscribed to relatively

simple policies that limit borrowing incentives: Hatchondo et al. (2016) and Chatterjee and

Eyigungor (2015) consider alternative debt contracts, and Aguiar et al. (2020) and Hatchondo

et al. (2015) consider simple borrowing constraints. This paper computes the constrained efficient

borrowing path in a quantitative sovereign default model with inefficient borrowing.

Aguiar et al. (2019) characterize efficient deleveraging in an Eaton-Gersovitz model without

income uncertainty and with endogenous maturity. They show the MPE is constrained efficient

and thus implements the borrowing plan a Ramsey government would choose–conditional on

ex-post optimal defaults. This is so because a Markov government has no incentive to actively

trade long-term bonds and only rebalances its stock of one-period bonds during the deleverage

process. Relatedly, Aguiar and Amador (2019) shows that borrowing is constrained efficient

in an Eaton-Gersovitz model with one-period bonds and income uncertainty. We consider an

environment with income uncertainty and long-term bonds in which there is a hedging benefit

of actively trading long-term bonds in the MPE.5 Because of that, the MPE is not constrained

efficient and there is a role for constraining borrowing by future governments.6

5Arellano and Ramanarayanan (2012) discuss the hedging benefits of issuing long-term debt.
6Unlike Aguiar et al. (2019), we assume an exogenous maturity structure. However, we do not see this as an

important limitation for studying gains from committing to the constrained efficient borrowing plan. Hatchondo
et al. (2016) shows the possibility for welfare enhancing policies that reduce borrowing in a model with endogenous
maturity. We show that even for the Markov government’s optimal ex-ante maturity, there are gains from
constraining future borrowing.
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Mateos-Planas and Ríos-Rull (2016) derive a generalized Euler equation for borrowing in

long-term bonds that isolates how the default and borrowing decisions in the next period affect

the current bond price and current utility. They further show that when the government can

commit to default and borrowing policy rules one period in advance, there is no difference between

issuing one-period or long-term bonds. We study the case with commitment to borrowing in every

future period but not to future default decisions. We show that issuing long-term bonds with

commitment is different from issuing one-period bonds.

Adam and Grill (2017) and Rottger (2019) study the effects of committing to the next-period

default rule in an environment with one-period debt. Our focus on commitment to the future

borrowing path is motivated by discussions of how to design debt reduction programs and policies

that weaken governments’ incentives to borrow, either through fiscal rules or through changes in

debt instruments (Chatterjee and Eyigungor, 2015; Hatchondo et al., 2016).7 Hatchondo et al.

(2015) show that, for empirically plausible values, commitment to repayment yields welfare gains

orders of magnitude larger than commitment to restricting future borrowing. They also show

that a rule which eliminates defaults could be too costly to enforce to be credible, which may

explain why in practice fiscal rules do not restrict defaulting (see IMF, 2017 for a description of

existing fiscal rules).

Bianchi et al. (2019) study an Eaton-Gersovitz model with production, nominal rigidities and

a fiscal sector richer than the one we consider. Their setup features a trade-off between the role

for expansionary fiscal policies when nominal rigidities bind and the cost of expansionary fiscal

policies in terms of higher default risk. They show that when the government can commit to

the spending level one period in advance, an austerity program can be beneficial. We analyze

long-lasting fiscal consolidations plans with commitment but abstract from the multiplier effects

considered by Bianchi et al. (2019).

Our approach need not be the only one that can be used to compute the constrained efficient

borrowing path. We study an optimization problem with forward-looking constraints, where

actions in periods t + s > t constrain the feasible set at t (in our case, borrowing at t + s > t

7The enforcement for debt reduction programs can be partially, albeit imperfectly, provided by institutions
like the IMF or Eurozone partners in the case of European countries, for example.
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affect the price of bonds issued at t and thus the feasible set at t). The seminal work by Marcet

and Marimon (2019) elaborates a recursive formulation for this class of problems that has been

used in several applications. The application closest to our work is the paper by Faraglia et al.

(2016, 2019), who present recursive formulations for models with bonds that mature M periods

ahead. They show that using the formulation by Marcet and Marimon (2019) requires keeping

track ofM additional co-state variables. Since we assume that the government issues perpetuities,

a literal extrapolation of their approach would not be feasible for us. Our contribution is to show

that for the perpetuities commonly assumed in quantitative work with default risk, the combined

effects of borrowing in period-t on utility flows in periods prior to t can be summarized by two

state variables, allowing for a tractable algorithm for solving the Ramsey problem.

The rest of the article proceeds as follows. Section 2 introduces the environment. Section 3

characterizes the optimality conditions in an economy with a Markov government and in one with

a Ramsey government. Section 4 discusses the calibration. Section 5 presents the quantitative

results. Section 6 concludes.

2 The environment

We study an infinite-horizon small open economy that receives a stochastic endowment stream

{yt}∞t=0 of a single tradable good. The endowment process yt takes values in the set Y =

{y1, ..., yJ} and follows a Markov process with probabilities Pr(yt+1 = yj | yt = yi) > 0 for

all i, j = 1, ..., J .

Preferences over consumption streams are characterized by

E

∞∑
t=0

βtu(ct),

where β ∈ (0, 1), and u is defined over the non-negative reals and characterized by u′ > 0 and

u′′ < 0.

If the government defaults, it writes off its entire debt obligations and, as in Aguiar et al.

(2019), the economy receives a continuation value Ut. The continuation value under default

follows a stochastic process with support (−∞,∞) and may be correlated with the endowment.

8



That is, after an endowment realization yt = yj, the random variable Ut is drawn from a proba-

bility distribution with a continuous p.d.f. fj and c.d.f. Fj.8 We further assume that∫ ∞

x

Uf(U)dU <∞ for all x ∈ (−∞,∞),

which implies finite expected continuation values under default.

As long as the government has not defaulted, it borrows by issuing long-term bonds as in

Hatchondo and Martinez (2009). A bond issued at t pays a coupon stream δ {(1− δ)s−1}∞s=1

in period t + s until the government defaults. Thus, the parameter δ ∈ [0, 1] determines the

exogenous debt duration. Bonds are priced by competitive risk-neutral lenders that discount

future payoffs at the rate r.

Timing At the beginning of period t, the government observes the endowment yt and the

continuation value under defaulting Ut, and chooses whether to default. If the government repays,

it can issue bonds or save by buying back outstanding bonds. The government announces an

issuance volume and is committed to this announcement. Bonds are sold at the price offered by

risk-neutral competitive lenders. These standard timing assumptions rule out multiplicity a là

Calvo (Lorenzoni and Werning, 2019 and Navarro et al., 2018). We also rule out self-fulfilling

crises a là Cole-Kehoe (Conesa and Kehoe, 2017, Bocola and Dovis, 2019).

The government makes economic decisions on behalf of the small open economy and its

objective is to maximize consumers’ welfare. We study two economies depending on when the

government chooses the number of bonds issued in each period: (i) the Markov government

chooses its borrowing sequentially, and (ii) the Ramsey government chooses in period 0 the

borrowing path contingent on future income histories.
8The main role for the random variable U is to smooth out the Ramsey government’s objective function, so

we can exploit first-order conditions to compute the constrained efficient borrowing path. The dependance of
the probability distribution of Ut on the income realization in the period is used in the quantitative application,
where we assume the expected continuation value under default coincides with the continuation value implied by
stochastic exclusion from debt markets and an endowment loss (as usually assumed in the quantitative default
literature).
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2.1 Markov government

As long as it has not defaulted, the Markov government acting in period t chooses how many

bonds to issue in t. The only payoff-relevant state variables at the borrowing stage are the income

realization yt and the number of bonds outstanding at the beginning of the period, which we

denote by bt. The continuation value under default Ut carries no additional information about

the probability distributions of {Ut+s}∞s=1 and thus is not payoff-relevant after the government

has decided to repay. The government acting in t chooses its borrowing to maximize

Et

∞∑
s=t

βs−tu (cs) .

The government acting in t cannot commit to future default and borrowing decisions. Instead,

it takes into account the strategies followed by future governments to evaluate how current

borrowing decisions will affect the future consumption stream.

We use V to denote the continuation value under repayment, x′ to denote the next-period

value of variable x, πj(y) = Pr (y′ = yj | y), and q denotes the bond price function. It is optimal

for the government to repay only when the realization of the continuation value under defaulting

U is below the continuation value under repayment V . Given this, we compute the MPE by

solving the following Bellman equation:

V (b, y) =Max
b′


u(c) + β

J∑
j=1

πj(y)



Repayment prob
for y′=yj︷ ︸︸ ︷

Fj (V (b′, yj))V (b′, yj)+∫ ∞

V (b′,yj)

U fj(U)dU︸ ︷︷ ︸
Exp. cont. value under

default for y′=yj




(1)

s.t. c = y − δb+ q(b′, y) [b′ − (1− δ)b] ,

and

q(b′, y) =
1

1 + r

J∑
j=1

πj(y)Fj (V (b′, yj))
[
δ + (1− δ)q(b̂(b′, yj), yj)

]
. (2)

The budget constraint says that a government that has repaid in the current period, pays δ

coupons per outstanding bonds (b) and issues b′−(1−δ)b new bonds at a price q. Competition in
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financial markets between risk-neutral lenders implies that lenders make zero expected profits: in

states where the government repays in the next period, bondholders receive the coupon payment

δ and can trade the claims to subsequent coupon payments (that add up to 1 − δ) at prices

q(b̂(b′, yj), yj), which depend on the next-period income realization y′ = yj and next-period

borrowing b̂(b′, yj). The function b̂ solves the optimization problem (1) for all b, y.9

Appendix A provides a description of the Markov game and equilibrium definition that sup-

port the above Bellman equation. We use the same equilibrium concept used in Aguiar and

Gopinath (2006), Arellano (2008), and the papers that followed them.

2.2 Ramsey government

In this economy, the government acting in t > 0 does not control its borrowing. Instead, it

implements the borrowing level prescribed in the plan chosen by the Ramsey government in

period 0. On the other hand, the government acting in t > 0 decides whether to repay in t and,

as in the MPE, it chooses to repay when that yields a higher continuation value than defaulting.

Let yt = {y0, ..., yt} denote the income history until period t and Y t denote the set of all pos-

sible income histories until period t. In period 0, the Ramsey government chooses the borrowing

path for every future period and income history. That is, at t = 0, the Ramsey government

chooses the path b⃗ = {bt+1(y
t)}∞t=0 for all yt = {y0, ..., yt} ∈ Y t. This path will be implemented

until there is a default.

The Ramsey government may want to condition borrowing in t on the realization of the

continuation value under defaulting Ut in order to expand the repayment set. We rule out

this possibility mainly for tractability reasons. If the Ramsey government could condition on

(yt, Ut), discontinuities would appear in the Ramsey government’s objective. Suppose there is a

cutoff U∗
t (⃗b, y

t) at which the government acting in t would be indifferent between repaying and

defaulting. Since bt+1(y
t, Ut) would affect the repayment probability only for Ut = U∗

t (⃗b, y
t) and

that the Ramsey government would internalize that a larger repayment region in t raises bond
9The government can accumulate assets by choosing b′ < 0. We still use equation (2) to price bonds in those

cases, which implies allowing the government to default on its assets. We follow this route to avoid a discontinuity
in the bond price function at b′ = 0, which would invalidate the general use of first-order conditions to compute
the solution of the Ramsey government’s problem. We do not observe states with b′ < 0 in the simulations of the
economies with a Markov or a Ramsey government.
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prices before t, bt+1 cannot be continuous in Ut. In addition, while income has a clear empirical

counterpart (GDP) and borrowing rules that depend on GDP are observed in reality (consider

for example escape clauses in some fiscal rules), it is unclear how to map the utility cost of

defaulting to a verifiable variable that could affect borrowing rules.

The continuation value under repayment, Vt, is determined by the borrowing path chosen by

the Ramsey government, namely

Vt(⃗b, y
t) = u(ct(⃗b, y

t)) + β

J∑
j=1

πj(yt)
[
Fj(Vt+1,j)Vt+1,j +

∫∞
Vt+1,j

Ufj(U)dU
]

(3)

where Vt+1,j = Vt+1

(⃗
b, (yt, yj)

)
, and

ct(⃗b, y
t) = yt − δbt(⃗b, y

t−1) + qt(⃗b, y
t)
[
bt+1(⃗b, y

t)− (1− δ)bt(⃗b, y
t−1)

]
. (4)

To simplify notation, we write the value of repayment at t as a function of the entire borrowing

path b⃗, but Vt only depends on the initial debt in t bt and the borrowing path that follows

after history yt. The government acting in period t defaults whenever the realization of the

continuation value under defaulting Ut is higher than Vt(⃗b, y
t).

Investors observe the borrowing plan b⃗ and price bonds accordingly. The equilibrium bond

price follows the recursion

qt(⃗b, y
t) =

J∑
j=1

πj(yt)Fj

(
Vt+1

(⃗
b, (yt, yj)

)) [
δ + (1− δ)qt+1

(⃗
b, (yt, yj)

)]
1 + r

(5)

for all t = 0, 1, ....

Let U denote the Ramsey government’s objective function evaluated in the initial period. It

depends on consumption flows under repayment for histories (yt, U t) without a default and on

the continuation value under default Ut for histories (yt, U t) where the government defaults in t.

Formally,

U (⃗b, y0) = u(c0) +
∞∑
t=1

βt
∑
yt∈Yt

Pr(yt)
t−1∏
n=1

FI(n,yt)(Vn(⃗b, y
n))

 FI(t,yt)(Vt(⃗b, y
t))u(ct(⃗b, y

t))

+
∫∞
Vt (⃗b,yt)

U fI(t,yt)(U)dU

 , (6)

where I(n, yt) denotes the income realization index in period n < t for an income history yt,

Pr(yt) denotes the probability of observing an income history yt given y0, and yn the sub-history
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of income realizations until period n given yt. The government derives utility u(ct(⃗b, y
t)) in

period t after repaying and expects
∫∞
Vt (⃗b,yt)

U fI(t,yt)(U)dU after defaulting. Both scenarios are

relevant only if the government repays in every period before t, which occurs with probability∏t−1
n=1 FI(n,yt)(Vn(⃗b, y

n)).

The Ramsey government’s optimization problem consists of

Max
b⃗

U (⃗b, y0) (7)

s.t. (3), (4), and (5).

3 Optimality conditions

This section presents the optimality conditions for both the Markov and the Ramsey governments.

For the Markov government, we cannot establish that the objective function is differentiable.

We only assume differentiability of q and V w.r.t. b′ to illustrate the trade-off faced by each

government. We do not rely on the optimality conditions to solve the MPE numerically. However,

for the Ramsey government, we show that the objective function is differentiable.

3.1 Optimality condition for the Markov government

The next equation presents the standard optimality condition for the Markov government:

u′(c)

[
q(b′, y) +

∂q(b′, y)

∂b′
ι

]
︸ ︷︷ ︸

Marginal proceeds from
issuing an extra bond

= β
J∑

j=1

πj(y)Fj(V
′
j )u

′(c′j)
[
δ + (1− δ)q′j

]
, (8)

where V ′
j = V (b′, yj), q′j = q

(
b̂(b, yj), yj

)
, c′j = ĉ(b, yj), and we use ι = b′ − (1− δ)b to denote

the number of bonds issued in the period. The above equation uses the envelope condition

∂V (b, y)/∂b = −u′(c)[δ + (1− δ)q(b̂(b, y), y)].

The left-hand side of equation (8) represents the current marginal benefit from issuing an

extra bond. The government collects q(b′, y) + ∂q(b′, y)/∂b′ι additional units of the consumption

good when it issues an extra bond, where the second term shows it is costly for the government

to lower the current bond price. A lower bond price lowers the proceeds the government obtains
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from issuing bonds. To measure the effect on welfare of issuing an extra bond, the marginal

change in current consumption is weighted by the current consumption valuation u′(c).

The right-hand side of equation (8) represents the cost of transferring more debt to future

periods. In the states in which the government repays in the next period, it pays the coupon

δ and carries a stream 1 − δ of coupon obligations to future periods. The value of the latter is

q
(
b̂(b, yj), yj

)
for y′ = yj.

3.2 Optimality condition for the Ramsey government

We first establish differentiability of the Ramsey government’s objective (the proof of Proposition

1, which illustrates the role played by the shocks Ut in ensuing differentiability, is presented in

Appendix B.1):

Proposition 1 U is continuously differentiable w.r.t. bt+1(y
t) for all t = 0, 1... and yt ∈ Y t.

Differentiability implies that the optimal borrowing path chosen by the Ramsey government

satisfies the following condition for bt+1(ỹ
t), for t=0,1,... and all ỹt ∈ Y t:

Effect of bt+1(ỹt) on utility flows before t along the income path y0,ỹ1,...ỹt︷ ︸︸ ︷
∂

[
u(c0) +

t−1∑
k=1

βkPr(ỹk)
k−1∏
n=1

FI(n)(Vn)
[
FI(k,ỹt)(Vk)u(ck) +

∫∞
Vk
U fk(U)dU

]]
∂bt+1(ỹt)

+

βtPr(ỹt)
t∏

n=1

FI(n,ỹt)(Vn)︸ ︷︷ ︸
Prob of arriving at
t without defaults

×

 u′(ct)
[
qt +

∂qt
∂bt+1(ỹt)

ιt

]
− β

∑J
j=1 πj(ỹt)×

Fj(Vt+1,j)u
′(ct+1,j) [δ + (1− δ)qt+1,j]


︸ ︷︷ ︸

Effect of bt+1(ỹt) on Vt: it resembles the optimality
condition for the Markov government

= 0, (9)

with Vt+1,j = Vt+1(⃗b, (ỹ
t, yj)), qt+1,j = qt+1(⃗b, (ỹ

t, yj)), ct+1,j = ct+1(⃗b, (ỹ
t, yj)), and ιt(⃗b, ỹ

t) =

bt+1(⃗b, ỹ
t)− (1− δ)bt(⃗b, ỹ

t−1) denotes the number of bonds issued in period t after history ỹt. To

simplify notation, we spared the arguments of cs, qs, and Vs for s ≤ t.

Comparing equations (8) and (9) illustrates the time inconsistency problem in the standard

default model with long-term debt. The Ramsey government considers the effect that debt

choices in period t (bt+1(ỹ
t)) have on utility flows prior to t. This is represented by the first line

in equation (9). In contrast, as illustrated in equation (8), the Markov government acting in t
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only takes into account the effects of changing consumption in t and t + 1. The second line in

equation (9) shows that the Ramsey government also considers the same trade-off considered by

the Markov government acting in t: borrowing more in t allows for more consumption in t at the

expense of lowering consumption in t+ 1.

Sufficiency of the first-order condition We cannot show that U is concave and condition

(9) is sufficient for finding the optimum. In the numerical application, we calculate ∂U/∂bt+1(ỹ
t)

for a range of bt+1(ỹ
t) and approximate the shape of U(..., bt+1(ỹ

t), ...) over that range to verify

we are finding a global maximum (Appendix C provides more details).

3.2.1 Recursive optimality condition for the Ramsey government

In this subsection we first show the cumulated effects of borrowing in t on utility flows prior to t

can be condensed in two single dimensional state variables that follow recursive laws of motion.

Second, we show that under a condition that we numerically verify in our quantitative application,

those two variables can be condensed into one, which enables us to find the constrained efficient

allocation by solving a recursion with only one additional state variable relative to the MPE.

Note first that the Ramsey government’s commitment to borrow an extra unit in t after

history yt = (yt−1, yi) affects (i) qt(⃗b, yt) by changing the repayment probability in t+ 1 and (ii)

the repayment probability in t by changing the value of repayment in t Vt(⃗b, yt). Thus, the effect

of bt+1(y
t) on the price of debt in period t− 1 for history yt−1 can be written as function of the

effect of bt+1(y
t) on qt and Vt:

∂qt−1(⃗b, y
t−1)

∂bt+1(yt)
=

Effect of changing the repayment probability in t+ 1 on qt−1︷ ︸︸ ︷
Pr(yi | yt−1)Fi

(
Vt(⃗b, y

t)
)(1− δ

1 + r

)
∂qt(⃗b, y

t)

∂bt+1(yt)

+Pr(yi | yt−1)fi

(
Vt(⃗b, y

t)
)(δ + (1− δ)qt(⃗b, y

t)

1 + r

)
∂Vt(⃗b, y

t)

∂bt+1(yt)
.︸ ︷︷ ︸

Effect of changing the repayment probability in t on qt−1

(10)

More generally, bt+1(y
t) affects the price of debt in every previous period t − n for subhistories

yt−n through ∂qt (⃗b,yt)
∂bt+1(yt)

and ∂Vt (⃗b,yt)
∂bt+1(yt)

. Proposition 2 shows how the effects of bt+1(y
t) on utility flows

15



until t − 1 can be expressed as a weighted sum of ∂qt (⃗b,yt)
∂bt+1(yt)

and ∂Vt (⃗b,yt)
∂bt+1(yt)

, and that the weights

follow a recursive structure (the proof is in Appendix B.2).

Proposition 2 The optimal borrowing plan for the Ramsey government b⃗∗ satisfies first order
conditions

hqt (⃗b
∗, yt)

∂qt(⃗b
∗, yt)

∂bt+1(yt)
+ hVt (⃗b

∗, yt)
∂Vt(⃗b, y

t)

∂bt+1(yt)
= 0 (11)

for all t and yt = (yt−1, yi) ∈ Y t, with

hqt =
(1− δ)Fi (Vt)

1 + r

[
hqt−1 + u′(ct−1)ιt−1h

V
t−1

]
, (12)

hVt =
fi (Vt) [δ + (1− δ)qt]

1 + r

[
hqt−1 + u′(ct−1)ιt−1h

V
t−1

]
+ βFi (Vt)h

V
t−1, (13)

with initial values hq0(⃗b∗, y0) = 0 and hV0 (⃗b∗, y0) = 1, and ιt(⃗b∗, yt) = b∗t+1(y
t)− (1− δ)b∗t (y

t−1).
To simplify notation, the arguments (⃗b∗, yt) and (⃗b∗, yt−1) of variables in period t and t − 1 are
omitted in equations (12)-(13).

The term hqt factors how a change in qt affects expected utility flows from period 0 until

period t − 1, while hVt factors how a change in Vt affects expected utility flows from period 0

until period t− 1 plus the direct effect of changing Vt on U . Equations (12)-(13) show that the

law of motions for those terms can be expressed as a non-linear function of variables in periods

t− 1 and t. This enables us to recast the optimality condition for the Ramsey government using

a recursive structure.

Law of motions for hq and hV When contracting more debt in t increases the default

probability in t + 1, it reduces qt. A lower qt reduces bond prices prior to period t. In equation

(12), the direct effect of changing qt on bond prices prior to t−1 is captured by hqt−1. In addition,

if qt−1 changes, that affects ct−1 and thus the value of repaying in t − 1. The effect of that on

utility flows prior to t− 1 is captured by hVt−1 (and weighted by u′(ct−1)ιt−1).

Contracting more debt in t changes consumption in t and thus the continuation value Vt and

the repayment probability in t. The change in the repayment probability in t affects bond prices

and utility flows until t − 1. As discussed in the previous paragraph, these effects are captured

by hqt−1 + u′(ct−1)ιt−1h
V
t−1, as presented in the first term of the law of motion (13). The second

term in (13) arises because by changing Vt, contracting more debt in t also changes Vt−1 and the
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repayment probability in t − 1, and the effect of that on utility flows prior to t − 1 is captured

by hVt−1.

Equations (11)-(13) in Proposition 2 are possible because of the recursive structure of the

bond price function (5), which in turn is the result of the assumption of geometrically declining

coupon payments.

A formulation with only one state variable As hinted by equation (11), what matters for

the optimality condition is the relative weight on ∂qt(⃗b, y
t)/∂bt+1(y

t) and ∂V (⃗b, yt)/∂bt+1(y
t). If

hVt (⃗b, y
t) ̸= 0, we can define the variable

ht(⃗b, y
t) =

hqt (⃗b, y
t)

hVt (⃗b, y
t)

+ u′(ct(⃗b, y
t))ιt(⃗b, y

t) (14)

that encapsulates the relative effects of changing bond prices in period t on utility flows until

period t. Armed with that auxiliary variable, the following lemma provides a simplified version

of the optimality condition (the proof is in Appendix B.2).

Lemma 3 If hVt (⃗b, yt) ̸= 0 for all t = 0, 1, ... and yt = (yt−1, yi) ∈ Y t, the optimal borrowing
path for the Ramsey planner satisfies

u′(ct)qt +
∂qt

∂bt+1(yt)
ht − β

J∑
j=1

πj(yi)Fj (Vt+1,j)u
′(ct+1,j)[δ + (1− δ)qt+1,j ] = 0, (15)

with the following law of motion for h:

ht =
Fi (Vt) (1− δ)ht−1

fi (Vt) [δ + (1− δ)qt]ht−1 + β(1 + r)Fi (Vt)
+ u′(ct)ιt. (16)

The terms Xt+1,j refer to functions Xt+1(⃗b, (y
t, yj)) for X = V, q, c. We also omitted the

arguments for variables in periods t− 1 and t to simplify notation.

Equation (16) shows that the history variable ht consists of a non-linear function of bond

issuances until period t weighted by their corresponding consumption valuations. It represents

the welfare cost of reducing the bond price in period t (hqt ) relative to the one of changing Vt

(hVt ), as presented in equation (14). Those welfare costs consist of current and prior consumption

sacrifices derived from lowering the prices at which debt is issued in periods t−n with n = 0, 1, ...t.
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Comparing the Markov and Ramsey optimality conditions There are three differences

between the Ramsey optimality condition (15) and the one for a Markov government (8). First,

the Ramsey government weights the bond price derivative in t by ht and the Markov government

by u′(ct)ιt. This means that if ht−1 > 0 (as it is always the case in the simulations) and thus

ht > u′(ct)ιt, the bond price derivative is weighted by a higher number in the Ramsey optimality

condition, indicating that the marginal cost of issuing debt is higher for the Ramsey government

than for the Markov government. This captures the main difference between the two optimization

problems: the Ramsey government internalizes the welfare effect of changing the proceeds from

bond sales in all periods up to t, but the Markov government only internalizes the welfare effect

of changing the proceeds from bond sales in t.

Second, the derivative ∂qt
∂bt+1(yt)

in the Ramsey condition incorporates the effect of changing

the debt stock in t + 1 alone. In contrast, the derivative ∂q/∂b′ in the Markov condition takes

into account how changes in the debt stock in the next period (b′) affect future debt stocks.

Third, qt+1,j are different from their counterparts in the MPE. Since the debt path from period

t+2 onwards is unaffected by changes in bt+1(y
t), the bond prices qt+1,j are invariant to changes

in bt+1(y
t). In contrast, in the MPE, next-period bond prices change with b′. This introduces

a discrepancy in the marginal cost of increasing bt+1(y
t): β

J∑
j=1

πj(y)Fj (Vt+1,j)u
′(ct+1,j)[δ + (1−

δ)qt+1,j].

The above discussion means that if h = 0 (for instance, in period 0 or after a default), the

trade-offs in the optimality conditions for the Ramsey and Markov government coincide: the

derivative of the bond price is only weighted by the marginal utility and issuances in the current

period. However, the debt choice need not coincide because ∂qt/∂bt+1(y
t) and qt+1,j are different

from their counterparts in the MPE.

Comparison with one-period debt Comparing equations (8) and (15) also shows that with

one-period debt (δ = 1), the incentives of the Ramsey and Markov governments coincide. If

δ = 1, ht = u′(ct)bt+1 and h is no longer a relevant state variable.
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Law of motion for h Equation (16) shows that ht is higher for states with a high repayment

probability Fi(Vt). The reason is that borrowing has a larger effect on prior bond prices after

reaching a state with a high repayment probability, and it is thus optimal for the Ramsey

government to borrow less after transiting through those states.

Equation (16) also shows that ht decreases with respect to the density fi(Vt).10 A higher

value of the p.d.f. fi(Vt) means the repayment probability is more sensitive to increases in the

continuation value Vt, inducing the Ramsey government to increase Vt by allowing for more

borrowing in t and in subsequent periods (a lower ht achieves that by lowering the marginal cost

of borrowing in t).

Finally, equation (16) shows that for states with high marginal utility or with a high number

of bonds issued, ht takes a higher value. Recall that in the optimality condition, ht represents

the marginal cost of lowering the bond price. Intuitively, the Ramsey planner wants to increase

the price at which it issues debt in states with high consumption valuation and/or a high debt

issuance. A higher ht achieves that by lowering borrowing in subsequent periods. Note also that

ht is higher when ht−1 is higher, and ht−1 is higher when previous states in the history feature

high consumption valuation and/or high debt issuance. This effect from consumption valuations

and debt issuance in previous periods is absent in the MPE.

Recursive representation with state variable h Armed with Lemma 3, we find the con-

strained efficient borrowing plan by solving the recursion below, which requires keeping track of

the history variable h in addition to the state variables already used in the MPE. Formally, we

find the repayment value V , bond price q, and policies
{
ĉ, b̂, ĥ

}
that satisfy the following:

10This assumes ht > 0, which is always true in our simulations.
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1) V solves

V (b, yi, h) = u(c) + β
∑
j

πj(yi)

[
Fj

(
V ′
j

)
V ′
j +

∫
V ′
j

Ufj(dU)

]
(R)

subject to the resource constraint:

c = yi − δb+ q(b′, yi, h
′)ι, with b′ = (1− δ)b+ ι; (Rc)

the necessary condition for an optimum:

u′(c)q(b′, yi, h
′) + ∆q(b

′, yi, h
′)h′ − β

∑
j

πj(y)Fj(V
′
j )u

′(c′j)
(
δ + (1− δ)q′j

)
= 0, (Rb′)

where the function ∆q(b
′, yi, h

′) = −
∑

j πj(yi)fj(V
′
j )u

′(c′j)
(
δ + (1− δ)q′j

)2
1 + r

V ′
j = V (b′, yj, h

′), c′j = ĉ(b′, yj, h
′), q′j = q

(
b̂(b′, yj, h

′), yj, ĥ(b
′, yj, h

′)
)
;

and the law of motion for h :

h′ =
Fi(V (b, yi, h))(1− δ)h

fi(V (b, yi, h)) [δ + (1− δ)q(b′, yi, h′)] + β(1 + r)Fi(V (b, yi, h))
+ u′(c)ι, (Rh′)

for all (b, yi, h) given
{
q, ĉ, b̂, ĥ

}
;

2) the policy functions
{
ĉ, b̂, ĥ

}
satisfy equations (Rc), (Rb′), and (Rh′), for all (b, yi, h) given

{q, V }; and

3) the bond price q satisfies

q(b′, yi, h
′) =

1

1 + r

∑
j

πj(yi)Fj(V (b′, yj, h
′))
[
δ + (1− δ)q

(
b̂(b′, yj, h

′), yj, ĥ(b
′, yj, h

′)
)]

for all (b′, yi, h′) given
{
b̂, ĥ, V

}
.

Equation (Rh′) is based on the law of motion for the history variable in equation (16). The

recursion above uses h to denote ht−1 in terms of equations (15)-(16). The advantage of this

approach is that we only need to solve for one value of h′. If instead we had chosen h to represent

ht, we would have had to solve for J equations determining h′j for each possible income realization

in the next period.

The necessary condition for optimum in equation (Rb′) is based on equation (15) and the
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bond price derivative function ∆q is based on

∂qt(⃗b, y
t)

∂bt+1(yt)
=

−
J∑

j=1

πj(y)fj (Vt+1,j)u
′(ct+1,j)[δ + (1− δ)qt+1,j]

1 + r
.

The policy functions
{
ĉ, b̂, ĥ

}
are found by solving the system of equations (Rc), (Rb′),

and (Rh′), which requires solving for non-linear equations in (b′, h′). We find there is a unique

solution to both equations in our baseline parameterization. Furthermore, we verify that the sign

of the left hand side of equation (Rb′) changes from positive to negative around the unique root,

indicating we are finding a global maximum. Appendix C describes our numerically algorithm.

4 Calibration

We present a standard calibration such that the simulations of the MPE match data from Mexico.

Mexico is a common reference in the default literature because its business cycle displays the

same properties that are observed in other economies with sovereign default risk (Aguiar and

Gopinath, 2007; Neumeyer and Perri, 2005). Unless otherwise specified, we use quarterly data

from 1993 to 2018.

The utility function displays a constant coefficient of relative risk aversion, that is,

u (c) =
c1−γ − 1

1− γ
, with γ ̸= 1.

The income process is a discretization of log(yt) = ρlog(yt−1) + (1− ρ)µ+ εt.

We endogenize the mean continuation utility of defaulting V D(y) by incorporating the stan-

dard assumptions on the cost of defaulting from the quantitative default literature: stochastic

exclusion from debt markets and income losses. The continuation utility of defaulting U incor-

porates a gaussian shock to V D(y): U ∼ N(V D(y), σU), where

V D(y) = u(y(1− d0 − d1y)) + β
∑
j

πj(y)
[
ψV (0, yj, 0) + (1− ψ)V D(yj)

]
, (17)

and V denotes the continuation value under repayment in equations (1) or recursion (R), for

the Markov and Ramsey governments, respectively. The exclusion period is stochastic, with
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Table 1: Parameter values.

Previous literature or estimated Calibrated to match targets
r 0.01 Standard σU 0.1 Std spread = 2.4%
β 0.97 Standard d0 0.17 Avg debt = 44.2%
ρ 0.94 Mexico GDP d1 1.2 Avg spread = 3.3%
σε 1.5% Mexico GDP γ 4.2 σ(c)/σ(y) = 1.1

µ −0.5σ2
ε E(y) = 1

ψ 0.083 E(excl. duration) = 3 years
δ 0.035 Debt duration = 4.8 years

ψ denoting the probability of exiting this period. While the economy remains excluded, the

government looses a proportion d0 + d1y of its income. As in Chatterjee and Eyigungor (2012),

having two parameters in the cost of defaulting gives us the flexibility to match the levels of debt

and spread in the data. Note that in equation (17), the history variable h resets to 0 after a

default. This assumption rules out the possibility of the Ramsey government manipulating the

cost of defaulting with post-default borrowing promises.

Table 1 presents the values given to all parameters in the model. A period in the model

refers to a quarter. The value of the risk-free rate and the domestic discount factor are standard

in quantitative business cycle and sovereign default studies. Note that assuming β(1 + r) < 1

gives the government incentives to borrow. The parameter values that govern the endowment

process are chosen to mimic the cyclical component of the log-linearly detrended GDP in Mexico

from 1980 to 2014. Setting δ = 0.035 and targeting Mexico’s level of sovereign spreads, implies

an average debt duration in the simulations of 4.8 years, roughly the average duration of public

debt in Mexico.11

Our modeling of the continuation utility of defaulting requires calibrating the value of an

additional parameter relative to other quantitative papers: the volatility of the utility cost,

σU . In order to calibrate this parameter, we choose to add as a target the volatility of the
11We use the Macaulay definition of duration. The data for duration corresponds to the average Modified

Duration for Mexican government bonds computed by J.P. Morgan between January 2002 and March 2018.
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sovereign spread, a statistic of interest for our exercise which is strongly affected by σU (Appendix

E.2). The targets for the mean and the standard deviation of the spread are 3.3% and 2.3%,

respectively, and corresponds to the J.P. Morgan EMBI spread from the first quarter of 1994 to

the first quarter of 2018. As in Bianchi et al. (2018), we make the domestic risk aversion part

of the calibration. This is a key parameter determining the government’s willingness to tolerate

consumption fluctuations and thus the optimal cyclicality of fiscal policy. Overall, we use the

simulations to calibrate the value of four parameters: the values for the default cost d0 and d1

mainly determine the average debt and spread levels (Hatchondo and Martinez, 2017), σU mainly

determines the spread volatility, and γ is determined mainly by the consumption-volatility target.

5 Quantitative results

Subsection 5.1 shows that the economy with a Ramsey government features a significantly lower

spread but a higher average market value of debt claims, and that the welfare gain from perma-

nently switching to an economy with a Ramsey government ranges from 0.3% to 0.7%. Subsec-

tion 5.2 shows that the Ramsey government reduces borrowing in low-income states where bond

prices are more sensitive to borrowing and expands borrowing in the remaining states. Subsec-

tion 5.3 shows that compared with a Markov government, the Ramsey government has a higher

probability of completing a successful deleveraging (without default), even when smoothing out

the initial adjustment. Subsection 5.4 discusses two robustness exercises that show: i) that our

main quantitative findings do not depend on the assumed debt duration and that the optimal

ex-ante debt duration is significantly higher for the Ramsey government than for the Markov

government, and ii) the role of shocks to the utility of defaulting.

5.1 Default risk and welfare

Table 2 reports long-run moments in the data and in the simulations. The table shows that the

constrained efficient allocation features a significantly lower spread than the Markov equilibrium.

Compared with the Markov government, the Ramsey government eliminates more than 80% of

both the average level and the volatility of the sovereign spread. While the mean debt level is

lower with the Ramsey government, the mean market value of debt claims is higher, indicating
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that the Ramsey government does not borrow less on average to lower default risk (this is

illustrated in the right panel of Figure 2). Our assumption of risk neutral lenders and competitive

debt market implies the market value of debt equals the present discounted value of net payments

to lenders, so the market value of debt is a better gauge of the expected debt payments than the

face value of debt.

Table 2: Data and model simulations
Data Markov Ramsey One-period

Mean debt (% ) 44.2 44.0 39.5 26.6
Mean debt mkt. value (%) 37.7 38.2 26.4
Mean spread (in %) 3.3 3.3 0.5 0.2
Std dev spread 2.4 2.4 0.4 0.7
Corr(spread, y) -0.4 -0.8 -0.8 -0.5
σ(c)/σ(y) 1.1 1.1 1.4 1.4

We simulate 1,000 samples of 500 periods (quarters) each, and then select

samples of 88 periods without defaults and with the last default occurring at

least 30 periods before the beginning of the sample. We report the average

value of each moment. The debt level in the simulations is calculated as

the present value of coupon payments discounted at the risk-free rate, i.e.

bδ/(r + δ). The market value of debt corresponds to q × b.

The left panel of Figure 2 presents welfare gains between 0.3% to 0.7% from permanently

switching from the MPE to an economy where borrowing is decided by the Ramsey government.

By correcting the time inconsistency problem, the Ramsey government can achieve a better

allocation of resources across time and states. Given a β(1+ r) < 1 parameterization (as in most

of the quantitative literature on sovereign default), a better allocation is characterized by higher

consumption in earlier periods, as illustrated in the right panel of Figure 2.

If the government only issues one-period bonds, there is no time inconsistency in borrowing

decisions (Aguiar and Amador, 2019). Table 2 shows that in this case default risk is lower than

in our benchmark MPE with long-term debt, but Figure 2 shows welfare is also lower. This is,

consumers are better off with a Markov government that issues debt with a duration of 4.8 years
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Figure 2: Welfare and net borrowing. The initial levels of debt and the history variable h are assume to

be zero. Welfare gains are measured as the permanent proportional change in consumption that would

leave consumers indifferent between staying in the economy with a Markov government and moving

either to an economy with a Ramsey government or to an economy in which the government only issues

one-period debt (δ = 1 and all other parameter values as in the benchmark calibration). The right

panel illustrates the average net transfer the economy receives from lenders in periods with repayment.

than with one that issues one-period debt. While one-period debt eliminates time inconsistency

in borrowing decisions, it magnifies the exposure to shifts in borrowing opportunities. When the

government issues only one-period bonds, it has to roll over its debt every period, and thus it is

more vulnerable to adverse income shocks that contract its borrowing set. The optimal response

to this source of risk is to issue less debt and reduce consumption frontloading (right panel of

Figure 2).
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Figure 3: Cyclicality of fiscal policy. All functions plotted assume initial debt levels bt equal to

the mean debt in the simulations of each of the two economies, and history variable ht equal to the

average in the simulations of the economy with a Ramsey government. The range of income realizations

included in the plots is such that the equilibrium repayment probability for Fi(Vt) is above 5 percent in

each of the two economies. Income takes values in a discrete set but to facilitate the comparison across

economies, continuous lines are used to illustrate functions for the Ramsey government.
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5.2 Borrowing incentives and the cyclicality of fiscal policy

The top-left panel of Figure 3 shows that the borrowing policies of both the Markov and Ramsey

governments are hump-shaped across income levels, with less issuances at high and low income

realizations. Two opposing forces determine how equilibrium borrowing depends on the income

level. On the one hand, as in models without default, borrowing is shaped by consumption-

smoothing incentives. This implies that borrowing is lower when income is higher, as occurs for

high income levels in the figure.

On the other hand, the main difference between the first-order conditions in default models

(equations 8 and 11) and in models without default risk, is that in default models, borrowing may

increase default risk and thus may lower the price of debt, weakening incentives to borrow. The

top-right panel of Figure 3 shows that the effect of borrowing on the bond price is stronger for

lower income levels.12 If income is sufficiently low, this effect becomes dominant, and equilibrium

borrowing is typically increasing with respect to income.

The top-left panel of Figure 3 also shows a jump in borrowing by the Ramsey government

at the lowest income realizations. The optimality condition (11) shows that the Ramsey govern-

ment weights the effect of the derivative of the bond price by hqt/hVt , which in turn depends on

the repayment probability Fi(Vt). Intuitively, the Ramsey government is less concerned about

lowering the bond price for income realizations where repayment is unlikely. This occurs because

lowering the bond price in those states has a small effect on bond prices and welfare in previous

periods. The bottom-right panel of Figure 3 shows that for the lowest income realizations, Fi(Vt)

and thus hqt/hVt are low, lowering cost of borrowing for the Ramsey government.

Table 2 shows that with either the Markov or the Ramsey government, consumption volatility

is higher than the volatility of income. This indicates that the government tends to borrow less

when income is lower. This is, governments prefer to conduct a procyclical fiscal policy.

Table 2 also shows that consumption volatility is higher with the Ramsey government, in-

dicating that the Ramsey government prefers a more procyclical fiscal policy. This is further
12The top-right panel of Figure 3 also shows that the derivative of the bond price is lower in the economy with

a Markov government. In this economy, adding more debt in t has a persistent effect on the debt stock and thus
raises the default probability also in subsequent periods. This is the case because unlike the Ramsey government,
the Markov government acting in t does not control subsequent borrowing.
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illustrated in the left panels of Figure 3. Lower debt issuances at lower income in the top-left

panel lead to consumption being more sensitive to income (bottom-left panel).

The Ramsey government curbs borrowing more than the Markov government at moderately

lower income levels because those are the states where both, bond prices are more sensitive to

borrowing, and prior welfare is more sensitive to changes in bond prices. In effect, the top-right

panel of Figure 3 shows that the derivative ∂qt/∂bt+1 becomes significantly negative in the Ramsey

economy for yt < 0.96, while the bottom-right panel shows that hqt/hVt is significantly away from

zero for yt > 0.92. Thus, for 0.92 < yt < 0.96, it is optimal for the Ramsey government to curb

borrowing more than the Markov government. Since the Ramsey government curbs borrowing

more for relatively low levels of income, it implements a fiscal policy that is more procyclical

than the one chosen by the Markov government.

In the economy with a Ramsey government, for income realizations above the mean, ∂qt/∂bt+1 ≃

0 (top-right panel of Figure 3). The nearly zero value of this derivative reflects that, at high

income realizations, the debt chosen by the Ramsey government commands almost no default

risk for the next period and, given a gaussian distribution for Ut+1, default risk is insensitive

to borrowing at the margin. Therefore, for income levels higher than the mean, the Ramsey

government does not have significant incentives to issue less debt than the Markov government.

Finally, the top-left panel of Figure 3 shows that in contrast to the Markov government,

the Ramsey government may choose to buy back debt. While the Markov government does not

benefit from the increase in bond prices implied by a buyback in the current period (Aguiar

et al., 2019; Bulow and Rogoff, 1988, 1991), the Ramsey government may find it optimal because

it internalizes the benefits that the increase in bond prices in t has on utility flows before t.

Higher borrowing dispersion with a Ramsey government Figure 4 illustrates the dis-

tribution of bond issuances in the simulations. The borrowing path chosen by the Ramsey

government entails a significant dispersion even after conditioning for income, underscoring the

importance of a history variable for disciplining borrowing. The figure also shows that Ramsey

borrowing is more dispersed mostly at low income realizations. As explained before, it is in low

income states where the bond price is more sensitive to borrowing (top-right panel of Figure 3)

28



bt+1 − (1− δ)bt in the simulations
Markov Ramsey

0.9 1 1.1 1.2
Income

-0.1

-0.05

0

0.05

0.1

0.9 1 1.1 1.2
Income

-0.1

-0.05

0

0.05

0.1

1st percentile

25th percentile

Median

Figure 4: Debt issuance in the simulation periods used to compute the moments in Table 2.

and, thus, where dispersion in the history variable h generates borrowing dispersion. The higher

borrowing dispersion at lower income levels with a Ramsey government is reflected in the higher

consumption dispersion reported in Table 2. Finally, Figure 4 shows that the Ramsey govern-

ment finds it optimal to repay at (low) income realizations at which the Markov government

never repays. This enables the Ramsey government to borrow to buffer consumption drops over

that income range.

Cross country evidence of ∂q/∂b′.

The policy prescription implied by the previous results is that implementing the constrained

efficient allocation necessitates restricting debt issuances–a Markov government would choose–in

states with a higher sensitivity of bond prices (spreads) to the debt level. Regardless of the

government’s type, in the model, the spread is more sensitive to the debt level in states with

lower income levels, which (as in the data) coincide with higher spreads (see Table 2). This

feature of the model seems consistent with the data. In a panel of 33 emerging economies, we

find that the spread increases more with debt in years with high spread (at less than 1% statistical

significance). The spread also increases more with debt in years with low growth, albeit at a

weak statistical significance (less than 17%). Appendix D presents more details about these

findings, showing that the MPE captures remarkably well the relationship between debt, spread,

and income in the data. This makes the model a plausible laboratory for the policy exercises

presented in the next subsection.
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5.3 Deleveraging

The COVID-19 outbreak has caused significant increases in budget deficits, sending public debt

ratios to historically record levels, as illustrated in Figure 1. This episode will likely foster discus-

sions about the best strategies to unwind those high debt levels. In this subsection we compute

the debt path a Ramsey government would choose starting from a scenario with high debt, and

compare it with two alternative debt paths: (i) the debt path chosen by an unconstrained Markov

government, which allows us to quantify the importance of having full commitment to future

borrowing, and (ii) the debt path chosen by a Markov government constrained by a sequence

of debt limits, which allows us to measure the effectiveness of simple fiscal rules relative to the

constrained efficient allocation.

We study simulations for the Markov and Ramsey governments for an initial state with aver-

age income, a debt-to-income ratio of 50%, and initial history h0 = 0 for the Ramsey government.

For the Markov government, this implies an initial spread of 6.6% and defaults during the first

six years of the deleveraging process in 33% of the simulation samples. The Ramsey government

achieves a significantly higher probability of a successful deleveraging, reducing the probability

of default during the first six years of deleveraging to 22%. Furthermore, in none of the income

paths for which the Ramsey government defaults, the Markov government finds it optimal to

repay.

Figure 5 illustrates how the Ramsey government implements a more successful deleveraging

even with weaker initial austerity. For the first year of deleveraging, compared with the Markov

government, the Ramsey government chooses on average a slower deleveraging (top-left panel)

and lowers net transfers to creditors (yt−ct; mid-left panel). This is a consequence of the relative

impatience of domestic consumers. Since β(1+r) < 1, earlier states are more valuable than later

ones. Unlike in the case of zero debt (Figure 2), the Ramsey government cannot front-load

consumption when it starts with high debt, yet it can moderate the adjustment in early periods.

The left panels of Figure 5 show that after the first year, the Ramsey government achieves

a faster debt reduction with a similar level of net transfers in repayment states. This is a result

of the higher repayment incentives in that economy: the higher prices at which the govern-
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Figure 5: Deleveraging paths in 25,000 samples of 10 years each. The average and standard deviation

in period t are computed using samples without defaults up to period t. All samples start with at debt

ratio of 50%, mean income level and initial history h0 = 0 for the Ramsey government. The debt and

net transfer to lenders (yt − ct) are expressed as a proportion of the unconditional mean income E(y).
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ment issues debt (bottom-left panel of Figure 5) enables the government to collect the same

proceeds from debt issuances with a lower number of bonds issued.13 The bottom-left panel of

Figure 5 shows that the lower probability of default with a Ramsey deleveraging path is reflected

immediately by lower sovereign spreads.

Consistently with the discussion in the previous subsection, the right panels of Figure 5

illustrate that the conditionality imposed by the Ramsey government on its deleveraging path

increases consumption and debt volatility compared to the economy with a Markov government.

Welfare is higher when the deleveraging plan is implemented by a Ramsey government. The

welfare gain is equivalent to a permanent consumption increase of 0.44% relative to the MPE. It

should also be emphasized that our model underestimates the gains from having commitment to

a long term deleveraging plan. First, we are not considering the windfall gains of bondholders,

who benefit from the increase in bond prices implied by the enhanced commitment. Second, the

lower spreads implied by commitment are not reflected in higher aggregate income. In sum, our

results indicate that the ability to commit to a long-term deleveraging plan allows for a smaller

early consumption sacrifice while greatly increasing the probability of a successful deleveraging

process that avoids default.14

5.3.1 Deleveraging with debt limits

In this subsection, we compare the deleveraging plan chosen by a Ramsey government with

the one chosen by a Markov government that is constrained by a sequence of debt limits. This

exercise will enable us to measure the relative effectiveness of simpler implementable deleveraging

paths, as the ones usually implemented in practice. Formally, we solve the following problem
13It should be noted that the Ramsey government repays in more states and thus on average transfers more

resources to its creditors.
14Bi et al. (2013) show that expectations about future fiscal consolidations are an important determinant of

the success of fiscal adjustments.

32



V (b, y, t) =Max
b′

{
u(c) + β

J∑
j=1

πj(y)

[
Fj

(
V ′
j

)
V ′
j +

∫ ∞

V ′
j

U fj(U)dU

]}

s.t. c = y − δb+ q(b′, y, t) [b′ − (1− δ)b] , V ′
j = V (b′, yj, t+ 1),

b′ ≤Max
{
b̄(t+ 1), (1− δ)b

}
, (18)

where b̄(t+ 1) denotes the debt limit in period t and the constraint (18) says that the gov-

ernment is not forced to buy back bonds when b̄(t+ 1) < (1− δ)b.

For tractability reasons, we search over the following family of debt limit sequences. First,

we assume b̄(0) = b0, where b0 denotes the number of bonds outstanding at the beginning of the

deleveraging process. Second, we assume the debt limit evolves according to b̄(t) − b̄(t + 1) =

a0+a1t. This formulation is flexible enough to allow for different adjustment paths. For instance,

it allows for milder initial adjustments for a0 < 0 and a1 > 0, or faster initial adjustments for

a0 > 0 and a1 < 0. Third, we assume that once the economy reaches period T , the debt

limit becomes constant, i.e., b̄(t) = b̄(∞) ∀t ≥ T . This enables us to introduce long-run

discipline with only one parameter. We find the optimal sequence of debt limits by optimizing

over
{
T, b̄(∞), a1

}
.

The optimal sequence of debt limits features a transition of 8 years (T = 32), a final debt limit

of 38.25%, with a slope a1 = −0.000235 and a0 = 0.0223. The top-left panel of Figure 5 presents

the path of average debt, which in the case of the deleveraging process with debt limits almost

coincide with the sequence of debt limits. This is because the debt limits are almost always

binding in the simulations. Indeed, the top-right panel shows the debt volatility is close to zero

during the deleveraging process. The top-left panel of Figure 5 shows that compared with the

Ramsey deleveraging, the optimal sequence of debt limits imposes a much faster deleveraging.

The Ramsey government imposes austerity in states where austerity is most effective at reducing

default risk, while placing milder constraints in other states. A debt limit constrains borrowing

in almost all states and thus imposes excessive austerity in states where it need not be necessary,

driving the average debt down. The middle-left panel of Figure 5 shows that on average the

deleveraging process with debt limits forces the government to transfers more net resources to

lenders during the deleveraging period compared with the average net transfers chosen by the
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Ramsey government. The bottom-left panel of Figure 5 shows that the Ramsey government is

more successful in reducing the spread than a Markov government with debt limits.

The inability to fine tune the states in which austerity is imposed leads to a lower welfare gain

than with a Ramsey government. However, we find that simple constraints on future borrowing

go a long way in terms of generating welfare gains. The optimal deleveraging with debt limits

achieves a welfare gain of 0.26%, equivalent to 59% of the one achieved by a Ramsey government.

5.4 Robustness exercises

The inefficiency studied in the paper hinges on the government issuing long-term debt. While

we assume an exogenous maturity structure, Arellano and Ramanarayanan (2012), Hatchondo

et al. (2016), Dvorkin et al. (2020), and others show that with plausible calibrations of the

government’s incentives to hedge against changes in the borrowing cost, the Eaton-Gersovitz

model can account for the debt maturities observed in the data. In Appendix E.1, we show that

i) our main quantitative results do not change if we assume a debt duration equal to the optimal

ex-ante value preferred by the Markov government (2.3 years vs. 4.8 years in our benchmark),

and ii) once the Ramsey government corrects the time inconsistency in borrowing decisions, the

optimal ex-ante debt duration is significantly higher than in our benchmark (more than 30 years).

The shock to the utility cost of defaulting enables us to exploit first-order conditions to

solve for the Ramsey government’s problem. The importance of the shock to the utility cost of

defaulting is given by the volatility of U conditional on income (σU), which in our benchmark

calibration is disciplined by the sovereign spread volatility.

We find that for the parameter values in Table 1, the shock to U plays a minor role in

determining default decisions. For instance, the bottom-right panel of Figure 3 shows that

for most income realizations, the government either repays or defaults almost surely regardless

of the realization of U . This property is also confirmed in our simulations, where defaults are

mostly driven by low income realizations. One can interpret shocks to U as encompassing default

determinants that are not related to income. A higher σU would capture a higher role for those

default determinants, which would make bond prices sensitive to borrowing even at high income

realizations. Equation (11) indicates that in such scenarios, the Ramsey planner would also want

34



to restrict borrowing at high income realizations. This is verified in Appendix E.2, where we

show that higher values of σU moderate the additional procyclicality of fiscal policy chosen by the

Ramsey government. Appendix E.2 also shows that the Ramsey government achieves significant

welfare gains and significant reductions in sovereign default risk for different values of σU .

6 Conclusions

We solve a quantitative Eaton-Gersovitz sovereign default model with long-term debt in which

a Ramsey government decides the entire borrowing plan taking as given ex-post optimal default

decisions. The Ramsey government improves upon the Markov government because it takes into

account how borrowing decisions in period t affect borrowing opportunities, and thus welfare,

prior to t. Our contribution is to show that the effect of borrowing decisions in t on utility flows

prior to t can be encapsulated by two single dimensional variables, and by one variable under

conditions that we verify are satisfied in our quantitative exercise. This allows us to propose

a tractable algorithm to find the constrained efficient borrowing policy. Relative to a Markov

government, the Ramsey government distorts borrowing decisions more when i) bond prices are

more sensitive to borrowing and ii) changes in bond prices have a more significant effect on past

utility flows. For empirically plausible parameter values, more than 80% of the default risk is

eliminated by a Ramsey government, without lowering average borrowing levels. An efficient

reduction in default risk prescribes a higher volatility in borrowing and debt levels. The welfare

gain of having a Ramsey government instead of a Markov government ranges from 0.3% to 0.7%,

depending on initial income. The Ramsey government carries a more procyclical fiscal policy

that includes debt buybacks in some states with low income. This higher procyclicality of fiscal

policy is mitigated in economies where default determinants are less correlated with income.

Starting from a state with high debt, the Ramsey government has a higher probability of com-

pleting a successful deleveraging (without defaults) than the Markov government. In addition,

compared with the Markov government, by effectively reducing future default risk, the Ramsey

government can afford to smooth out the initial adjustment during the deleveraging path. The

Markov government’s commitment to a simple deleveraging plan consisting of a sequence of debt

limits imposes harsher initial austerity and delivers 60% of the welfare gains achieved by the
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Ramsey government. These results are indicative of the quantitative importance of enhancing

long-term fiscal discipline for the success of debt reduction programs.

Our methodology could be extended to study other aspects of debt management in which

time inconsistency plays a role. Similar inefficiencies arise when governments issue debt in local

and foreign currency, when they decide fiscal and monetary policy, when they issue debt with

different maturities, and when they accumulate debt and assets (foreign reserves, see Bianchi

et al., 2018). Extending our analysis to study and quantify these issues and inform the on the

role of fiscal rules to regulate other debt management tools is an interesting avenue for future

research.
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Online Appendix

A Definition of the Markov Perfect Equilibrium

Let x′ denote the next-period value of variable x, b̂ denote the borrowing strategy followed

by future governments (number of bonds outstanding at the end of the period), d̂ denote the

defaulting strategy followed by future governments, and V denote the continuation value under

repayment when future governments follow the strategies b̂ and d̂. The function V is given by

V (b, y) = u(c) + β
J∑

j=1

πj(y)

{∫
U ′

[
d′jU

′ + (1− d′j)V (b′, yj)
]
f(U ′)dU ′

}
(19)

where c = y − δb+ q(b′, y′)[b′ − (1− δ)b],

d′j = d̂(b′, yj, U
′), and

b′ = b̂(b, y).

In states where the government acting in the next period defaults (d̂(b′, yj, U ′) = 1), it receives

the continuation value U ′.

Competition in financial markets between risk-neutral lenders implies a bond price function

where lenders break even in expectation:

q(b′, y) =

J∑
j=1

πj(y)
{∫

U ′ [1− d̂(b′, yj, U
′)]
[
δ + (1− δ)q(b′′j , yj)

]
f(U ′)dU ′

}
1 + r

. (20)

In states where the next-period government repays, bondholders receive the coupon payment

δ and can trade the claims to subsequent coupon payments (that add up to 1 − δ) at prices

q(b′′j , yj), which depend on the next-period income realization y′ = yj and next-period borrowing

decisions b′′j = b̂(b′, yj).

Let V denote the maximum welfare a government can attain in the current period if it chooses
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to repay and expects future governments to follow strategies b̂ and d̂.15 Formally,

V(b, y) =Max
b′

{
u(c) + β

J∑
j=1

πj(y)

{∫
U ′

[
d′jU

′ + (1− d′j)V (b′, yj)
]
f(U ′)dU ′

}}
(21)

s.t. c = y − δb+ q(b′, y′)[b′ − (1− δ)b], and

d′j = d̂(b′, yj, U
′).

The problem above illustrates that the current government has a limited ability to affect

future debt levels.

At the beginning of the period the government observes its continuation value under default-

ing U and chooses its defaulting decision according to

d = Max
d∈{0,1}

{dU + (1− d)V(b, y)} . (22)

A Markov Perfect Equilibrium is characterized by strategies d̂ and b̂ such that

(a) Given d̂ and b̂, the value function under repayment V satisfies the functional equation (19).

(b) Given d̂ and b̂, the bond price function q satisfies the functional equation (20).

(c) The function d̂ solves problem (22) for all b, y, U .

(d) The function b̂ solves problem (21) for all b, y.

B Proofs

B.1 Proof of proposition 1

Proof. Consider a particular history ỹt. Changes in bt+1(ỹ
t) only have effects in periods s ≤ t+1.

Given that the debt path after t+1 is not affected, neither is the consumption path after period

t+ 1 and therefore the path of repayment probabilities after t+ 1.
15The government can accumulate assets by choosing b′ < 0. We still use equation (20) to price bonds in those

cases, which implies the government can default on its assets. We follow this route to avoid a discontinuity in

the bond price function at b′ = 0, which would invalidate the general use of first-order conditions to compute the

solution of the Ramsey government’s problem. We do not observe states with b′ < 0 in the simulations of the

economies with a Markov or a Ramsey government.
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Step 1: Differentiability in t+ 1.

If the economy starts with more debt in period t+1 and there is no change in the subsequent

debt path, the only effect on Vt+1 is due to the decrease in ct+1. The following first-order derivative

∂Vt+1(⃗b, (ỹ
t, yj))

∂bt+1(ỹt)
= −u′

(
ct+1(⃗b, (ỹ

t, yj))
) [
δ + (1− δ)qt+1(⃗b, (ỹ

t, yj)
]
,

exists and is continuous w.r.t. bt+1(ỹ
t) because u′ is continuous, and ct+1(⃗b, (ỹ

t, yj)) is con-

tinuous in bt+1(ỹ
t). Moreover, the repayment probability in t + 1, Fj

(
Vt+1(⃗b, (ỹ

t, yj))
)

is also

continuously differentiable w.r.t. bt+1(ỹ
t) because Fj is continuously differentiable.

Step 2: Differentiability of effects in t.

A higher amount of debt in t+ 1 affects the repayment probability in t+ 1 and thus

∂qt(⃗b, ỹ
t)

∂bt+1(ỹt)
=

J∑
j=1

πj(ỹ)fj

(
Vt+1

(⃗
b, (ỹt, yj)

))
∂Vt+1 (⃗b,(ỹt,yj))

∂bt+1(ỹt)

[
δ + (1− δ)qt+1

(⃗
b, (ỹt, yj)

)]
1 + r

is continuously differentiable w.r.t. bt+1(ỹ
t) because of Step 1. As a consequence,

∂Vt(⃗b, ỹ
t)

∂bt+1(ỹt)
=u′(ct(⃗b, ỹ

t))

[
qt(⃗b, ỹ

t) +
∂qt(⃗b, ỹ

t)

∂bt+1(ỹt)

(
bt+1(ỹ

t−1)− (1− δ)bt(ỹ
t)
)]

+ β
J∑

j=1

πj(ỹ)Fj

(
Vt+1

(⃗
b, (ỹt, yj)

)) ∂Vt+1(⃗b, (ỹ
t, yj))

∂bt+1(ỹt)

is also continuously differentiable w.r.t. bt+1(ỹ
t) because u, qt and Vt+1 are continuously

differentiable w.r.t. bt+1(ỹ
t).

Step 3: Even though there is no change in the number of bonds issued in period t − 1, the

price at which those bonds are traded can change because the repayment probability and bond

price in t for the income realization yt = ỹt may change. The derivative

∂qt−1(⃗b, ỹ
t−1)

∂bt+1(ỹt)
=
Pr(ỹt | ỹt−1)

1 + r

 fI(t,ỹt)

(
Vt

(⃗
b, ỹt

))
∂Vt (⃗b,ỹt)
∂bt+1(ỹt)

[
δ + (1− δ)qt

(⃗
b, ỹt

)]
+FI(t,ỹt)

(
Vt

(⃗
b, ỹt

))
(1− δ) ∂qt (⃗b,ỹt)

∂bt+1(ỹt)


exists and is continuous w.r.t. bt+1(ỹ

t) because qt and Vt are continuously differentiable w.r.t.

bt+1(ỹ
t). The term I(t, ỹt) denotes the income index realization in t for income history ỹt. The
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derivative

∂Vt−1(⃗b, ỹ
t−1)

∂bt+1(ỹt)
= u′(ct−1(⃗b, (ỹ

t−1)))
∂qt−1(⃗b, ỹ

t)

∂bt+1(ỹt)

[
bt(ỹ

t−1)− (1− δ)bt−1(ỹ
t−2)

]
+ βPr(ỹt | ỹt−1)FI(t,ỹt)

(
Vt

(⃗
b, ỹt

)) ∂Vt(⃗b, (ỹt, yj))
∂bt+1(ỹt)

exists and is continuous because u, qt−1, and Vt are continuously differentiable.

Step 4: The same logic applied in Step 3 extends to periods s = t− 2, t− 3, ..., 0.

B.2 Proof of Proposition 2

Proof. The proof is structured in four steps. Firstly, we show that the derivative of the Ramsey

government’s objective with respect to bt+1(ỹ
t) can be expressed as a function of the derivatives

of the repayment value in t and bond prices up to t. Secondly, we show that the derivatives of

bond prices up to t can be written as functions of ∂qt/∂bt+1(ỹ
t) and ∂Vt/∂bt+1(ỹ

t). Thirdly, we

show how the coefficients that weight the current derivatives of the bond price and the expected

utility under repayment follow a recursive structure. Finally, we combine the previous steps to

establish the recursive structure of the necessary condition for the optimum.

Notation To simplify notation, we drop the arguments (⃗b, ỹs) for variables evaluated in period

s ≤ t after income-history ỹs, we use I(s) to denote the income realization index in s, I(s, ỹt) for

s ≤ t, and we use u′s to denote u′(cs(⃗b, ỹs)). We use Vt+1,j, qt+1,j to denote Vt+1(⃗b, (ỹ
t, yj)), and

qt+1(⃗b, (ỹ
t, yj)), respectively.

First, note that the derivative of the Ramsey government’s objective U w.r.t. bt+1(ỹ
t), can

be written as:

∂U (⃗b, y0)
∂bt+1(ỹt)

=
∂V0

∂bt+1(ỹt)
=
∂
[
u(c0) + βPr(ỹ1 | y0)

[
FI(1) (V1)V1 +

∫∞
V1
UfI(1)(U)dU

]]
∂bt+1(ỹt)

,

where we assume it is optimal to repay in the initial period. Since the continuation values

under repayment and default are identical at V1(⃗b, ỹ
1), changing the repayment probability
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FI(1)

(
V1(⃗b, ỹ

1)
)

does not affect the expected continuation value. Therefore,

∂U (⃗b, y0)
∂bt+1(ỹt)

= u′0ι0
∂q0

∂bt+1(ỹt)
+ βPr(ỹ1 | y0)FI(1) (V1)

∂V1
∂bt+1(ỹt)

(23)

= u′0ι0
∂q0

∂bt+1(ỹt)
+ βPr(ỹ1 | y0)FI(1) (V1)

×
[
u′1ι1

∂q1
∂bt+1(ỹt)

+ βPr(ỹ2 | ỹ1)FI(2) (V2)
∂V2

∂bt+1(ỹt)

]
,

where the second line substitutes ∂V1(⃗b, ỹ1)/∂bt+1(ỹ
t). If we continue substituting away the

derivatives ∂Vt−n (⃗b,ỹt−n)
∂bt+1(ỹt)

for all 0 < n < t, we obtain

∂U (⃗b, y0)
∂bt+1(ỹt)

=
t∑

n=1

βt−nPr(ỹt−n | y0)
t−n∏
m=1

FI(m) (Vm)u
′
t−nιt−n

∂qt−n

∂bt+1

+ βtPr(ỹt | y0)
t∏

m=1

FI(m) (Vm)
∂Vt
∂bt+1

, (24)

where sure repayment in the initial period implies F (V0) = 1.

The following lemma states that the effect of bond issuances in t on bond prices in periods

t− n ( ∂qt−n

∂bt+1(ỹt)
) can be written as a function of the effect of bond issuances on the bond price in

the issuance period ( ∂qt
∂bt+1(ỹt)

), and of the effect of bond issuances on the expected utility in the

issuance period ( ∂Vt

∂bt+1(ỹt)
). The latter affects the probability of a default in that period, which is

not captured in the bond price for that period, but affects bond prices in previous periods.
Lemma 4 The derivative of the bond price in t− n w.r.t. bt+1(ỹ

t) satisfies

∂qt−n

∂bt+1(ỹt)
= Pr(ỹt−n+1, ...ỹt | ỹt−n)

[
Aq

t,t−n

∂qt
∂bt+1(ỹt)

+Bq
t,t−n

∂Vt
∂bt+1(ỹt)

]
. (25)

Proof.

First, consider n = 1. The derivative

∂qt−1

∂bt+1(ỹt)
=
Pr (ỹt | ỹt−1)

[
fI(t)(Vt) [δ + (1− δ)qt]

∂Vt

∂bt+1(ỹt)
+ FI(t)(Vt)(1− δ) ∂qt

∂bt+1(ỹt)

]
1 + r

, (26)

indicating the bond price in t − 1 may change because there is a change in the repayment

probability in t+1 (captured by ∂qt/∂bt+1(ỹ)) and/or because there is a change in the repayment
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probability in t (captured by ∂Vt/∂bt+1(ỹ)). Equation (26) implies equation (25) for

Aq
t,t−1 =

FI(t)(Vt)(1− δ)

1 + r
and Bq

t,t−1 =
fI(t)(Vt) [δ + (1− δ)qt]

1 + r
.

Second, consider n = 2. The derivative

∂qt−2

∂bt+1(ỹt)
=
Pr (ỹt−1 | ỹt−2)

1 + r

[
fI(t−1)(Vt−1)

∂Vt−1

∂bt+1(ỹt)
[δ + (1− δ)qt−1]

+ FI(t−1)(Vt−1)(1− δ)
∂qt−1

∂bt+1(ỹt)

]
,

Using
∂Vt−1

∂bt+1(ỹt)
= u′t−1ιt−1

∂qt−1

∂bt+1(ỹt)
+ βPr (ỹt | ỹt−1)FI(t)(Vt)

∂Vt
∂bt+1(ỹt)

and equation (26), ∂qt−2/∂bt+1(ỹ
t) can be written as

∂qt−2

∂bt+1(ỹt)
= Pr(ỹt−1,ỹt|ỹt−2)

1+r
fI(t−1)(Vt−1) [δ + (1− δ)qt−1] βFI(t)(Vt)

∂Vt

∂bt+1(ỹt)

+Pr(ỹt−1,ỹt|ỹt−2)
1+r

[
fI(t−1)(Vt−1) [δ + (1− δ)qt−1]u

′
t−1ιt−1 + FI(t−1)(Vt−1)(1− δ)

]
×
[
Aq

t,t−1
∂qt

∂bt+1(ỹt)
+Bq

t,t−1
∂Vt

∂bt+1(ỹt)

]
,

implying that it can be recasted as in equation (25) for

Aq
t,t−2 =

[
fI(t−1)(Vt−1) [δ + (1− δ)qt−1]u

′ (ct−1) ιt−1 + FI(t−1)(Vt−1)(1− δ)

]
1+r

Aq
t,t−1

and

Bq
t,t−2 =


fI(t−1)(Vt−1) [δ + (1− δ)qt−1] βFI(t)(Vt)+[
fI(t−1)(Vt−1) [δ + (1− δ)qt−1]u

′ (ct−1) ιt−1FI(t−1)(Vt−1)(1− δ)
]
Bq

t,t−1


1+r

.

For any other n > 2, we can recast ∂qt−n/∂bt+1(ỹ
t) as in (25) after iterating on the bond

price and repayment value functions as above.

The next lemma shows how the coefficients that determine the effect of debt issuances in t+1

on the bond price in period t − n, Aq
t+1,t−n and Bq

t+1,t−n, can be written as functions of Aq
t,t−n

and Bq
t,t−n.

46



Lemma 5 Consider an income-history ỹt−1 and continuation history ỹt = (ỹt−1, yi) with yi ∈ Y.
For any n > 1, the coefficients are

Aq
t,t−n =

(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

) (1− δ)Fi(Vt)

1 + r
, (27)

Bq
t,t−n =

(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

) fi(Vt) [δ + (1− δ)qt]

1 + r
+Bq

t−1,t−nβFi(Vt). (28)

For n = 1, the coefficients are

Aq
t,t−1 =

(1− δ)Fi(Vt)

1 + r
, (29)

Bq
t,t−1 =

fi(Vt) [δ + (1− δ)qt]

1 + r
. (30)

Proof. Changes in borrowing in t affect qt−1 and Vt−1. Applying Lemma 4 to express the effects

of borrowing in t on qt−n through changes in qt−1 and Vt−1, implies

∂qt−n

∂bt+1(ỹt)
= Pr(ỹt−n+1, ...ỹt | ỹt−n)

[
Aq

t−1,t−n

∂qt−1

∂bt+1(ỹt)
+Bq

t−1,t−n

∂Vt−1

∂bt+1(ỹt)

]
. (31)

After using ∂Vt−1

∂bt+1(ỹt)
= u′t−1ιt−1

∂qt−1

∂bt+1(ỹt)
+ βPr(yi | ỹt−1)Fi(Vt)

∂Vt
∂bt+1(ỹt)

to substitute ∂Vt−1

∂bt+1(ỹt)
into equation (31), we obtain

∂qt−n

∂bt+1(ỹt)
= Pr(ỹt−n+1, ..., ỹt−1 | ỹt−n)

[
Aq

t−1,t−n

∂qt−1

∂bt+1(ỹt)

+ Bq
t−1,t−n

[
u′t−1ιt−1

∂qt−1

∂bt+1(ỹt)
+ βPr(yi | ỹt−1)Fi(Vt)

∂Vt
∂bt+1(ỹt)

]]

∂qt−n

∂bt+1(ỹt)
=Pr(ỹt−n+1, ..., ỹt−1 | ỹt−n)

[(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

) ∂qt−1

∂bt+1(ỹt)

+ Bq
t−1,t−nβPr(yi | ỹt)Fi(Vt)

∂Vt
∂bt+1(ỹt)

]
. (32)

Recall that

∂qt−1

∂bt+1(ỹt)
=
Pr(yi | ỹt−1)

1 + r

[
fi(Vt) [δ + (1− δ)qt]

∂Vt
∂bt+1(ỹt)

+ (1− δ)Fi(Vt)
∂qt

∂bt+1(ỹt)

]
.
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After substituting the above equation into (32), we can recast ∂qt−n

∂bt+1(ỹt)
as a function of ∂Vt

∂bt+1(ỹt)

and ∂qt
∂bt+1(ỹt)

:

∂qt−n

∂bt+1(ỹt)
= Pr(ỹt−n+1, ..., ỹt−1 | ỹt−n)

[(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

) Pr(yi|ỹt−1)
1+r

×
[
fi(Vt) [δ + (1− δ)qt]

∂Vt

∂bt+1(ỹt)
+ (1− δ)Fi(Vt)

∂qt
∂bt+1(ỹt)

]
+ Bq

t−1,t−nβPr(yi | ỹt)Fi(Vt)
∂Vt

∂bt+1(ỹt)

]
.

Since Pr(ỹt−n+1, ..., ỹt−1, yi | ỹt−n) = Pr(ỹt−n+1, ..., ỹt−1 | ỹt−n)Pr(yi | ỹt−1),

∂qt−n

∂bt+1(ỹt)
= Pr(ỹt−n+1, ..., yi | ỹt−n)

{(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

) (1−δ)Fi(Vt)
1+r

∂qt
∂bt+1(ỹt)

+
[(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

) fi(Vt)(δ+(1−δ)qt)
1+r

+Bq
t−1,t−nβFi(Vt)

]
∂Vt

∂bt+1(ỹt)

}
.

(33)

Equations (25) and (33) imply equations (27) and (28). Equations (29) and (30) follow from

(27), (28), Aq
t,t = 1, and Bq

t,t = 0

Necessary condition for optimum and law of motions for hq and hV If we use equa-

tion (25) to substitute the derivatives ∂qt−n/∂bt+1(y
t) in the derivative (24), we can recast the

derivative of the Ramsey government’s objective as a function of the effect of bond issuances

on the bond price in the issuance period ( ∂qt
∂bt+1(yt)

), and of the effect of bond issuances on the

repayment value in the issuance period ( ∂Vt

∂bt+1(yt)
). Using the expression for ∂U/∂bt+1(y

t) in (24)

and the previous lemma,

∂U (⃗b, y0)
∂bt+1(ỹt)

= Pr(ỹt | y0)
[
hqt

∂qt
∂bt+1(ỹt)

+ hVt
∂Vt

∂bt+1(ỹt)

]
(34)

for all t and yt ∈ Y t, with

hqt =
t∑

n=1

βt−n
t−n∏
m=1

FI(m) (Vm)u
′
t−nιt−nA

q
t,t−n, and (35)

hVt =
t∑

n=1

βt−n
t−n∏
m=1

FI(m)(Vm)u
′
t−nιt−nB

q
t,t−n + βt

t∏
m=1

FI(m)(Vm). (36)

The next lemma shows the welfare weights hqt , hVt can be written as functions of the weights

hqt−1 and hVt−1 in period t− 1.
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Lemma 6 Given an income history up to period t ỹt ∈ Y t with yt = yi

hqt =
(1− δ)Fi (Vt)

1 + r

(
hqt−1 + u′t−1ιt−1h

V
t−1

)
, (37)

hVt =
fi (Vt) [δ + (1− δ)qt]

1 + r

(
hqt−1 + u′tιth

V
t−1

)
+ βFi (Vt)h

V
t−1. (38)

Proof. Using lemma 5 to substitute Aq
t,t−n by Aq

t−1,t−n and Bq
t−1,t−n in equation (35), we obtain

hqt =
t−1∑
n=1

βt−1−n

t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−n ×

(Aq
t−1,t−1−n+Bq

t−1,t−1−nu
′
t−1ιt−1) (1−δ)Fi(Vt)

1+r︷ ︸︸ ︷
Aq

t,t−1−n

+ βt−1

t−1∏
m=1

FI(m)(Vm)u
′
t−1ιt−1 Aq

t,t−1︸ ︷︷ ︸
(1−δ)Fi(Vt)

1+r

=
(1− δ)Fi(Vt)

1 + r

[
t−1∑
n=1

βt−1−n

t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−nA

q
t−1,t−1−n+

u′t−1ιt−1

[
t−1∑
n=1

βt−1−n

t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−nB

q
t−1,t−1−n + βt−1

t−1∏
m=1

FI(m)(Vm)

]]

=
(1− δ)Fi(Vt)

1 + r

[
hqt−1 + u′t−1ιt−1h

V
t−1

]
.

Likewise, using lemma 5 to substitute Bq
t,t−n by Aq

t−1,t−n and Bq
t−1,t−n in equation (36), we

obtain
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hVt =
t∑

n=1

βt−n

t−n∏
m=1

FI(m)(Vm)u
′
t−nιt−n

[
Aq

t−1,t−n

fi(Vt) [δ + (1− δ)qt]

1 + r

+Bq
t−1,t−n

[
u′t−1ιt−1

fi(Vt) [δ + (1− δ)qt]

1 + r
+ βFi(Vt)

]]
+ βt

t∏
m=1

FI(m)(Vm)

=
t−1∑
n=1

βt−1−n

t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−n

[
Aq

t−1,t−1−n

fi(Vt) [δ + (1− δ)qt]

1 + r

+Bq
t−1,t−1−n

[
u′t−1ιt−1

fi(Vt) [δ + (1− δ)qt]

1 + r
+ βFi(Vt)

]]

+βt−1

t−1∏
m=1

FI(m)(Vm)u
′
t−1ιt−1

fi(Vt) [δ + (1− δ)qt]

1 + r
+ βt

t∏
m=1

FI(m)(Vm)

=
fi(Vt) [δ + (1− δ)qt]

1 + r

[
t−1∑
n=1

βt−1−n

t−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−nA

q
t−1,t−1−n+

u′t−1ιt−1

[
t−1∑
n=1

βt−1−n

t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−nB

q
t−1,t−1−n + βt−1

t−1∏
m=1

FI(m)(Vm)

]]

+βFi(Vt)

[
t−1∑
n=1

βt−1−n

t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−nB

q
t−1,t−1−n + βt−1

t−1∏
m=1

FI(m)(Vm)

]

=
fi(Vt) [δ + (1− δ)qt]

1 + r

(
hqt−1 + u′t−1ιt−1h

V
t−1

)
+ βFi(Vt)h

V
t−1

where the second equality uses Aq
t−1,t−1 = 1 and Bq

t−1,t−1 = 0. Since Pr(yt | y0) > 0 for all

yt ∈ Y t, the borrowing plan b⃗∗ that solves the Ramsey government’s problem must satisfy

hqt (⃗b
∗, yt)

∂qt(⃗b
∗, yt)

∂bt+1(yt)
+ hVt (⃗b

∗, yt)
∂Vt(⃗b

∗, yt)

∂bt+1(yt)
= 0 (39)

for all t and yt ∈ Y t.
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B.3 Proof of Lemma 3

Proof. It follows from (14), the optimality condition (11), and

∂Vt(⃗b, y
t)

∂bt+1(yt)
= u′(ct(⃗b, y

t))

[
qt(⃗b, y

t) +
∂qt(⃗b, y

t)

∂bt+1(yt)
ιt(⃗b, y

t−1)

]

− β

J∑
j=1

πj(y)Fj

(
Vt+1

(⃗
b, (yt, yj)

))
u′(ct+1(⃗b, y

t+1))[δ + (1− δ)qt+1(⃗b, y
t+1)].

C Computation

We solve the MPE by iterating on the value and bond price functions as described in Hatchondo

et al. (2010). We assume the initial iteration corresponds to the final period of the finite horizon

model, implying that the equilibrium we find is the limit of the finite horizon game. We use 50

grid points for b and 21 grid points for y. We use cubic spline interpolation to evaluate V and q

for debt levels in the grid [−0.4, 4], and we verify those limits are never binding in the simulations.

We do not extrapolate over b. We iterate until the maximum deviation across iterations for the

functions V and q is below 10−6.

We solve the Ramsey government’s problem by solving the fixed point described in page 20

and assuming an initial iteration identical to the last period of the finite horizon model. We

assume h ∈ [h, h̄].16 We use the same grids for b and y used for the MPE, and we interpolate

linearly over h. We do not extrapolate over b or h. The two computational challenges relative

to the standard default model are finding (h′, b′) that solve the non-linear equations (Rb′)-(Rh′)

and, more importantly, guaranteeing we are finding a global maximum.

C.1 Solving for h′ given (b, yi, h, b
′)

Each time we evaluate equations (R)-(Rh′), we first solve for the value of h′ that solves the law

of motion (Rh′) given the initial state (b, y, h) and debt choice b′. This implies solving for the
16We impose h = 0 and h̄ = 6, and verify these bounds are never binding.
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Figure 6: Finding the fixed point h′ = g(h′). The figure assumes (b, h) takes the average values in
the simulations, a mean income yi, and b′ = b̂(b, h, yi). The blue dashed line depicts g(h′), defined in
equation (40). The left vertical axis corresponds to the 45 degrees line and the right axis to g(h′).

non-linear equation h′ − g(h′) = 0 where

g(h′) =
Fi(V )(1− δ)h

fi(V ) [δ + (1− δ)q] + β(1 + r)Fi(V )
h+ u′ (c) [b′ − (1− δ)b], (40)

with V = V (b, yi, h) and q = q(b′, yi, h
′). Assuming that h′− g(h′) is increasing in h′ (see below),

we solve h′ − g(h′) using the following steps:

1. If h− g(h) > 0, we impute h′ = h. We do this to avoid extrapolating in h.

2. If h̄− g(h̄) < 0, we impute h′ = h̄.

3. If 1. and 2. do not hold, we search over a grid {h1, ...hn} starting from h1 = h and find

the lowest index i with hi − g(hi) < 0 and hi+1 − g(hi+1) > 0. We then search for a root

within the interval (hi, hi+1) using a bisection method.

Figure 6 presents a representative case where the root h′∗ s.t. h′∗ − g(h′∗) = 0 ∈ (h, h̄). The

figure shows that the slope of g is significantly below the 45 degrees line, which validates our

conjecture of an increasing h′ − g(h′). We show below this property is more general than the

case depicted in the figure.
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Uniqueness of solution of h′ − g(h′) = 0 Once we have found a fixed point in
{
V, b̂, ĥ, ĉ, q

}
,

we verify that it satisfies the fixed point conditions when we use two alternative procedures to

solve for h′ − g(h′) = 0. In the first procedure: a) we impute h′ = h only when hi − g(hi) > 0

for all i = 1, ..., n; b) we impute h′ = h̄ only when hi − g(hi) < 0 for all i = 1, ..., n; and c)

otherwise, we use a bisection method to find a root in [h, h̄]. We find that the fixed point we

originally found also satisfies the fixed point conditions when using this alternative procedure.

The second procedure is identical to the one described above but where the search for h′ in step

3 starts from the highest h on the grid (instead of from the lowest h as in step 3). We also find

this change makes no difference, indicating that the fixed point we find features a unique solution

for h′ − g(h′) = 0 for all (b, yi, h, b′).

C.2 Finding the global maximum

We exploit the tractable formulation for ∂U/∂bt+1(y
t) to numerically verify the solution for

equation (Rb′) we find is a maximum. The borrowing plan chosen by the Ramsey government

(⃗b∗) satisfies

∂U (⃗b∗, y0)
∂bt+1(yt)

=Pr(yt | y0)
[
[ht − u′(ct)ιt]

∂qt
∂bt+1(yt)

+
∂Vt

∂bt+1(yt)

]
× (41)

[
fi (Vt) [δ + (1− δ)qt]

1 + r
ht−1 + βFi (Vt)

]
hVt−1︸ ︷︷ ︸

hV
t

= 0.

for all t and yt. For simplicity, we omit the argument (⃗b∗, yt) in equation (41). The equation

stems from taking hVt (⃗b∗, yt) as common factor in equation (11), and applying the law of motion

(13) and ht−1 = hqt−1/h
V
t−1 + u′(ct−1)ιt−1.

Based on equation (41), for each initial state (b, h, yi), we define the function

O(b′) =

∫ b′

b



[
u′(c)q(b′, yi, h

′)−
∑

j πj(yi)fj(V
′
j )u

′(c′j)(δ+(1−δ)q′j)
2

1+r
h′

−β
∑

j πj(y)Fj(V
′
j )u

′(c′j)
[
δ + (1− δ)q′j

]]
×
[
fi(W (b,yi,h,b

′))[δ+(1−δ)q(b′,yi,h′)]
1+r

h+ βFi (W (b, yi, h, b
′))
]


db′, (42)

with V ′
j = V (b′, yj, h

′), q′j = q(b′, yj, h
′), and where
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W (b, h, yi, b
′) = u (c) + β

∑
j

πj(yi)

[
Fj

(
V ′
j

)
V ′
j +

∫
V ′
j

Ufj(dU)

]
denotes the continuation value after repaying and choosing b′. The value of h′ used in equation

(42) is the one that solves equation (Rh′) given (b, yi, h, b
′).

The function O approximates the shape of the Ramsey government’s objective with respect

to bt+1 = b′ after arriving at t with (bt, ht, y) = (b, h, yi).17 It does so because the integrand in

equation (42) is proportional to the derivative of the Ramsey government’s objective. In terms

of equation (41), the constant of proportionality is Pr(yt | y0)hVt−1(B⃗, y
t), where B⃗ = b⃗∗ for all

components except for bt+1(y
t).18 Equation (41) can be used to see how ∂U(B⃗,y0)

∂bt+1(yt)
depends on

hVt−1(B⃗, y
t−1), which depends on the choice of bt+1(y

t). This effect is absent in the computation

of O. For this reason, the function O is useful to identify local maxima but not the global

maximum. We show below this is not a problem in our quantitative application.

We approximate O over a grid for b′ and use its shape to verify if the candidate for the

optimum is at the boundaries b, b̄ or if it is interior. In the first case, we do not extrapolate

and assume b′ is at one of the bounds. In the second case, we find b′∗ = Argmax
b′∈{b1,,....bn}

O(b′) and use

a non-linear equation solver with initial guess b′∗ to solve equation (Rb′). Figure 7 depicts the

shape of O for the average values of (b, h, y) in the simulations. The flat segment corresponds to

b′ choices at which the government buys back so many bonds that current consumption is too

low to make repayment optimal for almost any possible realization of the continuation value of

defaulting U .

Uniqueness of local maxima The shape of O in Figure 7 resembles the ones we find for

other states. In fact, once we have found the functions
{
V, b̂, ĥ, ĉ, q

}
that satisfy the fixed

17The derivative used in O differs from the one in (11) because while in (11) we assume a one-time deviation in

the debt path, in equation (42) we assume the government reoptimizes its future borrowing path after changing

bt+1. This is so because we are using V ′
j = V (b′, h′, yj), c′j = ĉ(b′, h′, yj), and q′j = q(b̂(b′, h′, yj), ĥ(b

′, h′, yj), yj),

which change with b′. We verify if the fixed point satisfies the optimality condition with one-time deviations and

find that is the case.
18We verify in our simulations that hV

t always takes positive values, which implies that O increases (decreases)

if and only if the Ramsey government’s objective increases (decreases) in bt+1.
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Figure 7: Approximated shape of the objective function of the Ramsey government. The figure
assumes the average levels of b, h, and y in the simulations.

point conditions on page 12, we verify that those conditions are also satisfied when we use two

alternative procedures to compute b′: i) choose the local maximum with the lowest b′ and ii)

choose the local maximum with the highest b′. That is, we find that both local maxima coincide,

for all (b, h, yi) on the grid, indicating that the solution we find is a global maximum.

Robustness without income uncertainty. We perform a similar exercise with the infinite-

horizon version of the model but without income uncertainty (σε = 0, and all other parameter

values as in the benchmark calibration). In this case, there is no hedging motive for issuing

long-term debt, and it is optimal to issue one-period bonds (Aguiar et al., 2019), eliminating the

time inconsistency problem and thus making the optimal solution for the Markov and Ramsey

government coincide. We find that the optimal paths of consumption with one-period bonds,

and the optimal paths of consumption implied by our algorithm (with long-term bonds and

commitment to future borrowing) are almost identical.

D Cross-country evidence

Akitoby and Stratmann (2008) and Jaramillo and Tejada (2011) document that fiscal variables

and growth rates have statistically significant effects on sovereign spreads. We build on those

55



papers to estimate how the relationship between the spread and public debt depends on income

and spread levels. We use annual data from a sample of 33 emerging market countries ranging

from 1994 to 2015. In order to facilitate the comparison of the model’s testable implications

with the data, we subtract to GDP growth rates the average growth rate for each country (GDP

is assumed to be stationary in the model). We remove country-year observations in which the

country was in default according to the definition of Standard & Poor’s.

The empirical strategy in Akitoby and Stratmann (2008), Jaramillo and Tejada (2011), and

most of the references therein is based on Edwards (1984, 1986) and consists of regressing the

logarithm of the spread on a set of explanatory variables. Table 3 shows the result of conducting

that regression using the simulations of the economy with the Markov government (we assume

that the data is generated by governments that lack commitment to future borrowing). All

regressions show that more debt and lower growth rates are associated with a higher spread.

Regression (2) shows that the spread is more sensitive to debt when aggregate income is below

its long-run mean. Regression (3) shows the same result when the spread is above its mean.19

We contrast the testable implications presented in Table 3 with data by estimating a fixed

effects panel regression with robust standard errors.20 Namely, we estimate

log (Spread)it = α + βXit + δi + ηit, i = 1, ..., N, t = 1, ..., T,

where i denotes the country index, Xit is a vector of control variables for country specific and

global macroeconomic factors; δi are country fixed effects; and ηit represents disturbances that

are independent across countries and time.

The results are summarized in Table 4. As in Jaramillo and Tejada (2011), Akitoby and

Stratmann (2008), and other studies, all the regressions in the table show that the spread in-

creases with the debt level and decreases with GDP growth. The model is consistent with this

and even implies a remarkably similar coefficient for the growth rate. The coefficient for debt is
19Regression (1) shows the relationship between spread and debt does not depend on the growth rate. This is

an artifact of having a model with a stationary income process in which higher growth does not necessarily mean

a good income state.
20The robust variance matrix estimator in Wooldridge (2002, p. 152) is implemented with the option “hccme

= 3 cluster” in SAS.
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Table 3: Regressions using simulations of the MPE

Regression (1) (2) (3)

Constant -1.713 0.677 0.604

Public debt to GDP 0.167 0.106 0.109

Real GDP growth -0.045 -0.0291 -0.025

Debt × I (growth <0) 0.000

Debt × I (GDP < Mean GDP) 0.011

Debt × I (Spread > Mean spread) 0.014

R2 0.637 0.744 0.816

Annual variables are created out of the quarterly model simulations

in the economy with a Markov government. The dependent variable

is log(spread). The dummy variables I take a value of 1 when the

condition in brackets is satisfied and 0 otherwise.

higher than the one in the data but the model abstracts from other determinants for borrowing

and defaulting. Regression (2) shows that even though there seems to be evidence that the spread

increases more with debt in years with low growth, the statistical significance is weak (17%).

Regression (3) shows the spread increases more with debt in years with high spread. Regression

(4) shows that the spread seems to increase more with government net borrowing but also at a

low significance level (19%). Finally, regression (5) shows the spread increases more with net

government borrowing in years with high spread.
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Table 4: Panel regressions

Regression (1) (2) ( 3) (4) (5)

Public debt to GDP 0.020 0.019 0.004 0.020 0.017

(0.004) (0.004) (0.002) (0.004) (0.003)

Real GDP growth -0.042 -0.034 -0.031 -0.036 -0.036

(0.006) (0.009) (0.004) (0.007) (0.006)

Reserves to GDP -0.033 -0.033 -0.022 -0.033 -0.027

(0.017) (0.017) (0.010) (0.017) (0.014)

Net gov borrowing to GDP 0.020 0.021 0.017 0.012 -0.023

(0.014) (0.015) (0.009) (0.015) (0.017)

VIX 0.034 0.034 0.0194 0.035 0.028

(0.003) (0.003) (0.004) (0.003) (0.004)

Debtit × I (growthit < meani(growth)) 0.002

(0.001)

Debtit × I (spreadit > meani(spread)) 0.013

(0.001)

NGBit × I (growthit < meani(growth)) 0.020

(0.016)

NGBit × I (spreadit > meani(spread)) 0.102

(0.016)

Observations 523 523 523 523 523

R-squared 0.77 0.77 0.87 0.77 0.82

Number of countries 33 33 33 33 33

The dummy variables I(x) = 1 when condition x is met and 0 otherwise. NGB stand for

net government borrowing to GDP. Robust standard errors in parentheses.
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Table 5: Simulations with a debt duration of 2.3 years

Markov Ramsey

Mean debt-to-income ratio (in %) 35.4 35.1

Mean debt market value (in %) 34.3 34.8

Mean spread (in %) 1.5 0.5

Std dev spread 1.8 0.6

σ(c)/σ(y) 1.3 1.4

E Robustness exercises

E.1 Optimal ex-ante debt duration

We calculate the optimal ex-ante duration by choosing the value of δ in an initial period with zero

debt and income equal to the mean, and assuming the government commits to issuing bonds with

that δ thereof. Welfare is measured relative to the economy with one-period bonds. The optimal

ex-ante δ = 0.0963, implying an average debt duration of 2.3 years, around half the value used

in our parameterization. Hatchondo and Martinez (2013) quantify the optimal ex-ante duration

and the endogenous duration in an Eaton-Gersovitz model calibrated to Mexico. They find the

endogenous duration is higher than the optimal ex-ante duration, suggesting that if we allowed

for an endogenous debt portfolio, the average duration would be above 2.3 years.

Table 5 shows that the Markov government issues less debt and at a lower spread for a debt

duration of 2.3 years. The intuition is similar to the lower debt and spread discussed in the

economy with one-period bonds in section 5. However, default risk is still inefficiently high and a

Ramsey government that issues bonds with the same coupon structure would choose a borrowing

path with a lower default risk and higher average borrowing. The welfare gain from permanently

switching to a Ramsey government in a period with no debt and mean income is 0.16% (it is

0.42% for our benchmark parameterization).
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We could not find an interior solution for the ex-ante optimal debt duration for the Ramsey

problem. We solved the Ramsey government’s problem for debt durations of up to 30 years and

found welfare always increases with duration over that interval. A debt duration of 30 years

correspond to δ = −0.0016, i.e., bond payments increase over time but at a lower pace than the

risk-free interest rate.21 Hatchondo et al. (2016) show that mitigating the government’s time

inconsistency problem with debt covenants would lead the Markov government to choose longer

maturities. Once the inefficiency in the borrowing path is corrected, the Ramsey planner benefits

from extending the debt duration to exploit the hedging benefits of long-term debt described by

Arellano and Ramanarayanan (2012).

E.2 Shocks to the utility cost of defaulting

Table 6 presents simulation results for different values of σU , while keeping the benchmark

values for all other parameters. The table shows that for both the Ramsey and the Markov

governments, a higher σU implies lower debt levels and a higher mean and standard deviation

of sovereign spreads (the latter being consistent with our calibration strategy). Intuitively, a

higher σU increases the mass of states in which it is optimal to default. Lenders anticipate that

and offer worse bond price schedules, and the government borrows less. By the same logic, a

higher σU also increases the sensitivity of bond prices to debt at high income states. In this

scenario, equation (11) implies the Ramsey government would also want to distort borrowing in

those states, moderating the procyclicality of fiscal policy. This effect can be seen in column 5:

for instance when σU = 1, the Ramsey government chooses an allocation with the same relative

consumption volatility as the one chosen by the Markov government.

Despite the above differences in terms of debt and consumption volatility, Table 6 also shows

that the Ramsey government achieves significant welfare gains and significant reductions in

sovereign default risk for different values of σU . As expected, welfare gains decrease with σU .

The lower the relative importance of income shocks as a default determinant, the lower the gain

from conditioning borrowing on income histories.

21We rescale the sequence of coupon payments to allow for longer durations. Formally, we assume a bond issued

at t pays a coupon (r + δ)(1− δ)n−1 in period t+ n, for n = 1, 2, ....
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Table 6: Importance of the shock to the utility cost of defaulting

Std. dev. Mean Mean Std dev σ(c)/σ(y) Welfare

shock to V D debt (%) spread (%) spread gain (%)

Markov

0.08 44.3 3.0 2.2 1.1

0.10 44.3 3.3 2.4 1.1

0.25 40.7 3.9 2.8 1.1

0.75 26.4 8.9 4.7 1.0

1.00 22.5 12.1 5.2 1.0

Ramsey

0.08 40.4 0.5 0.4 1.4 0.43

0.10 39.5 0.5 0.4 1.4 0.45

0.25 34.5 0.9 0.6 1.3 0.41

0.75 17.8 4.4 2.1 1.1 0.17

1.00 13.8 8.4 3.5 1.0 0.13

Rows in bold typeface correspond to our baseline calibration.
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