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I. INTRODUCTION 

Since the outbreak was first reported in Wuhan, China in late-December 2019, the corona 

virus disease (COVID-19) has spread to over 200 countries and territories globally (Figure 1, 

panel A). As of June 26, close to 10 million cases have been confirmed, resulting in nearly 500 

thousand deaths. 

 In the absence of a vaccine or effective treatments, many countries have responded by 

implementing several non-pharmaceutical interventions to halt the spread of the virus and limit 

the number of fatalities. Interventions included improved diagnostic testing and contact tracing, 

isolation and quarantine for infected people, and most notably measures aimed at reducing 

mobility and creating social distancing (containment measures, hereafter). While the extent and 

type of containment measures introduced varies across countries, most countries have introduced 

a combination of: (i) school closures; (ii) workplace closures; (iii) cancellation of public events; 

(iv) restrictions on size of gatherings ; (v) closures of public transport; (vi) stay-at-home orders; 

(vii) restrictions on internal movement; (viii) restrictions on international travel. Figure 1 (panel 

B) presents the broad patterns of containment measures across time and country groups, based on 

a composite index of these measures (see next section for detail). 

To date, there is limited evidence on the quantitative effect of these measures, and it 

remains unclear why they seem to have been more successful in certain countries compared with 

others. Indeed, despite significant theoretical contributions on the topic, to the best of our 

knowledge, empirical evidence on the quantitative effect of these measures is limited to China and 

a few economies (see next section for a brief review). It is also unclear why containment measures 

seem to have been more successful in certain countries compared to others. Indeed, while almost 

all countries have adopted stringent containment measures, there is huge variation on the observed 
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evolution of the pandemic, suggesting that country-specific factors may have played an important 

role in explaining the effectiveness of these measures.  

We try to address this knowledge gap by using daily data on the number of COVID-19 cases 

and deaths as well as on real-time containment measures in 129 countries around the world from 

January 1 to June 15, 2020. The large sample of countries allows us to analyze some key factors 

contributing to the heterogeneity in the effectiveness of containment measures. We also use these 

data to assess the role of re-openings (easing of containment measures) in the resurgence of 

infections in many economies. 

Establishing causality is difficult in this context because, as illustrated in Figure 1, countries have 

introduced containment measures in response to the spread of the virus. This implies that addressing 

causality requires the researcher to effectively control for this endogenous response. Failure to control for 

possible reverse causality would result in estimates of the effect of containment measures on infections and 

deaths being upward biased—that is, toward not finding significant effectiveness. We address this issue by 

controlling for the change in the number of infected cases occurring in the days before the implementation 

of containment measures. Given lags in the implementation of interventions at daily frequency, this allows 

one to effectively control for the endogenous response of containment measures to the spread of the virus. 

To further account for expectations about the country-specific evolution of the pandemic, we also control 

for country-specific linear, quadratic, and cubic time trends. 

Another important empirical challenge is that containment measures have been introduced as 

parts of broader non-pharmaceutical interventions (NPIs) including enhanced testing, contact tracing and 

public information campaign aimed at increasing social awareness. To address this issue and disentangle 

the effect of containment measures from other NPIs, we explicitly control for these variables in our 

estimation framework.  
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Finally, there are concerns that containment measures were announced before being 

implemented and were, therefore, anticipated. This may have resulted in reduced mobility ahead 

of the implementation of some containment measures and to an upward bias in the estimates.  

We show that controlling for mobility does not quantitatively change the results. Further, an 

analysis on the effect international travel restrictions, which were implemented across countries 

in response to outbreaks in other countries—and therefore exogenous to domestic conditions—

and ahead of the other containment measures and reduced mobility, provides reassurance on the 

causal effect of containment measures. 

Results suggest that containment measures have been, on average, very effective in 

flattening the “pandemic curve”. These effects have been stronger in countries where containment 

measures have been implemented faster and have resulted in less de facto mobility—more social 

distancing—and in countries with lower temperatures, lower population density, a larger share of 

the elderly in the population, and stronger health systems. Across different types of containment 

measure, internal and international travel restrictions have been most effective. We also show that 

easing of containment measures (re-openings) has resulted in an increase in the number of cases, 

but the effect has been lower (in absolute value) than that from tightening measures. 

The remainder of the paper is structured as follows. Section II provides a brief review of 

the rapidly growing literature on the effect on containment measures on the COVID-19 

pandemic. Section III describes the data and econometric methodology. Section IV presents our 

results on the effect of containment measures on COVID-19 cases, and how these effects vary 

across countries (depending on country-specific characteristics) and type of containment 

measure. It also extends the analysis to assess the impact on the number of fatalities. The last 

section concludes. 
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II. RELATED LITERATURE 

The literature on the effectiveness of containment measures is rapidly expanding. The 

empirical strand of these studies focuses on the impact of measures in China. Kraemer et al. 

(2020) match real-time mobility data from Wuhan with detailed case data of travel history to 

showcase the role of mobility in the transmission of COVID-19 across cities in China, as well as 

the impact of control measures on the spread of the epidemic. They find that while mobility 

played a large role in the spread of the virus initially, after the implementation of control 

measures, the correlation between infection growth rates and mobility dropped significantly.  

Chinazzi et al. (2020) use a global metapopulation disease model to project the impact of 

travel restrictions on the spread of COVID-19. The model estimates that while travel restrictions 

reduced case importations outside China significantly, they would not impact the trajectory of 

the pandemic if they are not combined with a reduction in the transmissibility of the disease.   

Tian et al. (2020) investigate the role of the Wuhan travel ban and public health non-

pharmaceutical interventions (NPI) in China on the reproduction number (𝑅 ) of COVID-19, 

using a geocoded repository of COVID-19 data. They find that the reproduction number fell 

significantly after travel restrictions and public health interventions were implemented.  

Cowling et al. (2020) use cross-sectional telephone surveys to model social behavior 

towards COVID-19 in Hong Kong SAR, and then examine the impact of NPIs and social 

behavior on COVID-19 transmission. They find that social distancing measures and behavioral 

changes coincided with a substantial drop in influenza transmission in February 2020, which 

suggests a similar impact on COVID-19 transmission rates.    

More closely to our work, Hsiang et al. (2020) compile new data on 1,717 local, regional, 

and national non-pharmaceutical interventions deployed in China, Korea, Italy, Iran, France and 
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the United States, to estimate the effect of containment measures on the growth rate of infection. 

They estimate that, in the absence of policy actions, early infections of COVID-19 exhibit 

exponential growth of roughly 38 percent per day, and find that anti-contagion policies have 

significantly reduced this growth. 

There have been also numerous studies using modelling approaches to examine the 

impact of containment measures. Here we provide a selected survey of recent papers, and we 

refer to them for a more extensive review. Eichenbaum, Rebelo and Trabandt (2020) extend the 

classic SIR model by Kermack and McKendrick (1927) to study the equilibrium interactions 

between economic decisions and the dynamics of epidemics. Their model finds that, while 

people’s decisions to cut back on work and consumption reduce fatalities, they exacerbate the 

recession during an epidemic.  

Forslid and Herzing (2020) use a basic epidemiologic model calibrated to resemble 

COVID-19 dynamics to study the implications of quarantines. They find that the implementation 

of early quarantine can delay but not alter the course of a pandemic, while delaying quarantine 

reduces both deaths and economic costs but results in a higher peak infection.  

Brotherhood et al. (2020) calibrate a standard SIR epidemiological model to investigate 

the role of testing and quarantine measures. They find that imposing restrictions for the young 

(given limited mobility of the elderly) can prolong the epidemic as herd immunity is delayed and 

expose the elderly to extended periods of risk. They also find that testing and quarantine would 

significantly reduce infections, even if only targeted to the young, who are highly mobile. 

Finally, their results suggest that quarantines are most efficient close to when a vaccine is in 

place, so that the disease has a lower chance of rebounding.    
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III. DATA AND METHODOLOGY 

A.   Data  

We assemble a comprehensive daily database across many areas. 

 

COVID-19 infections and deaths  

Data on infections and deaths are collected from the COVID-19 Dashboard1, which is 

sourced by the Coronavirus Resource Center of Johns Hopkins University. Coverage begins 

from January 22, 2020 and provides the location and number of confirmed cases, deaths, and 

recoveries for 208 affected countries and regions. For this paper, the data cut-off is June 16, 

2020. 

 
Containment measures 

We use data Oxford’s COVID-19 Government Response Tracker2 (OxCGRT) for 

containment measures. OxCGRT collects information on government policy responses across 

eight dimensions, namely: (i) school closures; (ii) workplace closures; (iii) public event 

cancellations; (iv) gathering restrictions; (v) public transportation closures; (vi) stay-at-home 

orders; (vii) restrictions on internal movement; and (viii) international travel bans. The database 

scores the stringency of each measure ordinally, for example, depending on whether the measure 

is a recommendation or a requirement and whether it is targeted or nationwide. We normalize 

each measure to range between 0 and 1 to make them comparable. In addition, we use the 

 
1 COVID-19 Map, JHU Coronavirus Resource Center, Accessed June 16, 2020 
https://coronavirus.jhu.edu/map.html.  
2 “Coronavirus Government Response Tracker.” Blavatnik School of Government. Accessed June 16, 2020. 
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker. 
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aggregate Stringency Index calculated as the average of the sub-indices, again normalized to 

range between 0 and 1. This database starts on January 1, 2020 and covers 151 economies.  

 

Additional controls used are: 

Additional non-pharmaceutical interventions 

We include daily data for the following non-pharmaceutical interventions: testing 

policies, contacting tracing policies, and public information campaigns. The data are collected 

from OxCGRT and are available for 176 countries from January 1, 2020.   

 

Temperature and humidity 

We include daily data on mean temperature and humidity for 95 countries. The data are 

collected from the Air Quality Open Data Platform and include humidity and temperature for 

each major city, based on the median of several stations, in 95 countries from January 1, 2020.3  

 

Tests conducted 

We use daily data on COVID-19 tests from Our World in Data, an open source platform 

drawn from countries’ Ministry of Health.4  The dataset covers total tests conducted and tests per 

thousand people in 84 countries from January 1, 2020 onwards. Given limited data coverage on 

testing, this variable is not used in the baseline specification and but in the robustness check 

analysis. 

 

 
3 COVID-19 Worldwide Air Quality Data. Accessed June 16, 2020. https://aqicn.org/data-platform/COVID-
19/report/  
 
4 Hasell, Joe, COVID-19 Testing - Statistics and Research.” https://ourworldindata.org/coronavirus-testing.  
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Population density and age structure  

We use indicators which are relevant to the COVID-19 pandemic, such as population 

density and age structure. Indicators are sourced from The World Development Indicators 

database,5 which is developed by the World Bank Group and compiled from official international 

sources. Data coverage includes 189 member countries, with the latest available data.  

 

Health robustness indices  

We use two different indices for health robustness. The first is the Global Health Security 

index, published by the Johns Hopkins Center for Health Security, which provides a 

comprehensive assessment of health security across 195 countries.6 It generates an index based 

on countries’ health scores for the following six categories: (i) prevention of the emergence or 

release of pathogens; (ii) early detection and reporting for epidemics of potential international 

concern; (iii) rapid response to and mitigation of the spread of an epidemic; (iv) sufficient and 

robust health system to treat the sick and protect health workers; (v) commitments to improving 

national capacity, financing plans to address gaps, and adhering to global norms; and (vi) overall 

risk environment and country vulnerability to biological threats.  

We also use the Health Index, which measures the overall health condition of economies 

on a 0-7 scale. It is sourced from the 2019 Global Competitiveness Report by the World 

Economic Forum and covers 114 economies. 7 

 
5 “World Development Indicators.” Washington, D.C.: The World Bank. Accessed June 16, 2020. 
6 “The Global Health Security Index.” GHS Index. Accessed June 16, 2020. https://www.ghsindex.org.  
7 Schwab, Klaus; Sala i Martin, Xavier; World Economic Forum, "Global Competitiveness Report 2019", World 
Economic Forum, 10/2019. Accessed June 16, 2020. 
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Mobility Trends  

We use data provided by Apple Map’s Mobility Trends Report and Google Mobility 

Reports.8 Apple’s daily report produces walking and driving indices for 66 countries, sent from 

user’s devices to the Apple map server. Specifically, it measures the relative volume of direction 

requests. Data are available both for walking as well as driving directions. The report started 

from January 13, 2020.  

This is supplemented by similar data from Google’s mobility indices, specifically retail and 

transit-station mobility. These data series show how visits and lengths of stay have changed since 

containment measures have begun. Daily data is available for 89 countries in our dataset, with 

coverage beginning from February 15, 2020. 

 

B.   Methodology  

Similar to Hsiang et al. (2020), we use a reduced-form econometric approach to identify the 

causal effect of containment measures on the evolution of the number of COVID-19 infections. In 

particular, we use a “difference-in-difference” approach that allows to compare the dynamic 

evolution of infected cases before and after the day of the introduction of the containment measure 

(treatment) in a given country (treatment group) with that of another country (control group) that has 

not instructed the measure in the same day. The approach can be thought as an experimental research 

design using observational study data. 

Any analysis of the effect of containment measures on COVID-19 infections is clearly subject to 

reverse causality as countries (or states, regions and provinces) have introduced containment measures in 

 
8 Apple Maps Mobility Trends Report, Accessed June 16, 2020. https://www.apple.com/covid19/mobility. 
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response to the spread of the virus. This implies that addressing causality requires the researcher to 

effectively control for this endogenous response. Failure to control for possible reverse causality would 

result in estimates of the effect of containment measures on infections and deaths being upward biased—

that is, toward not finding significant effectiveness. We address this issue by controlling for the change in 

the number of infected cases occurring in the day before the implementation of containment measures. 

Given lags in the implementation of interventions at a daily frequency, this allows one to effectively control 

for the endogenous response of containment measures to the spread of the virus. To further account for 

expectations about the country-specific (exponential) evolution of the pandemic, we also control for 

country specific linear, quadratic and cubic time trends. 

An important empirical challenge is omitted variable bias, as containment measures have been 

introduced as parts of broader non-pharmaceutical interventions (NPIs) which include enhanced testing, 

contact tracing, and public information campaigns aimed towards increasing social awareness. To address 

this issue and disentangle the effect of containment measures from other NPIs, we explicitly control for 

these variables in our estimation framework.  

Another concern is that containment measures were announced before being 

implemented and, therefore, were anticipated. This may have resulted in reduced mobility ahead 

of the implementation of some containment measures and to an upward bias in the estimates.  

We show that controlling for mobility does not quantitatively change the results. Moreover, 

examine the effect of international travel restrictions—which were implemented across countries 

in response to outbreaks in other countries, and therefore exogenous to domestic conditions, and 

ahead of the other containment measures and reduced mobility—and the results confirm that 

containment measures have been very effective in flattening the “pandemic curve” and reducing 

the number of fatalities. 
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Two econometric specifications are used to estimate the effect of containment 

measures on the number of confirmed COVID-19 cases and deaths. The first establishes 

whether containment had, on average, significant effects on infections. The second assesses 

whether these effects vary across countries depending on country-specific characteristics, 

such as the capacity of the health system, average temperature, the share of vulnerable (or 

elderly) persons in the population, etc. The analysis is also extended to the number of 

COVID-19 related fatalities.  

We follow the approach proposed by Jordà (2005) to estimate the dynamic 

cumulative effect of containment measures on the number of confirmed COVID-19 cases, a 

methodology used also by Auerbach and Gorodnichenko (2013), Ramey and Zubairy (2018), 

and Alesina et al. (2019) among others. This procedure does not impose the dynamic 

restrictions embedded in vector autoregressions and is particularly suited to estimating 

nonlinearities in the dynamic response. The first regression we estimate is:  

 

∆𝑑 ,   𝑢  𝑐 , 𝑋′ , Γ ∑ 𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ 𝜀 ,  (1) 

 

where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the number of infections, in 

country 𝑖 observed at date 𝑡. 𝑐 ,  denotes the OxCGRT Stringency Index. 𝑢  are country-fixed 

effects to account for time-invariant country-specific characteristics (for example, population 

density, age profile of the population, health capacity, average temperature, etc.). 𝑋 is a 

vector of control variables which includes: (i) daily temperature and humidity levels; (ii) 

country-specific linear, quadratic and cubic time trends; (iii) testing and contact tracing policies 

and public information campaign.  
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The second specification allows for the response of COVID-19 infections to vary 

with countries characteristics. It is estimated as follows: 

 

∆𝑑 ,   𝑢 𝜃 𝐹 𝑧 , 𝑐 , 𝜃 1 𝐹 𝑧 , 𝑐 ,  𝑋′ , Γ  ∑ 𝐹 𝑧 ,  𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ

∑ 1 𝐹 𝑧 , 𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ 𝜀 ,   

with  𝐹 𝑧 𝑒𝑥𝑝 / 1 𝑒𝑥𝑝 ,     𝛾 0     (2) 

where z is a country-specific characteristic normalized to have zero mean and a unit variance. 

 The weights assigned to each regime vary between 0 and 1 according to the weighting 

function 𝐹 . , so that 𝐹 𝑧  can be interpreted as the probability of being in a given state of the 

economy. The coefficients 𝜃 and 𝜃 capture the impact of containment measures at each horizon 

h in cases of very low levels of z  (𝐹 𝑧 1 when z goes to minus infinity) and very high levels 

of z  (1 𝐹 𝑧 1 when z goes to plus infinity), respectively. 𝐹 𝑧 =0.5 is the cutoff between 

low and high country-specific characteristics—that is, for example, low and high health capacity. 

This approach is equivalent to the smooth transition autoregressive model developed 

by Granger and Terävistra (1993). The advantage of this approach is twofold. First, 

compared with a model in which each dependent variable would be interacted with a 

measure of country-specific characteristics, it permits a direct test of whether the effect of 

containment measures varies across different country-specific “regimes”. Second, compared 

with estimating structural vector autoregressions for each regime, it allows the effect of 

containment measures to vary smoothly across regimes by considering a continuum of states 

to compute impulse responses, thus making the functions more stable and precise. 

Equations (1 and 2) are estimated for each day h=0,..,30. Impulse response functions are 

computed using the estimated coefficients 𝜃 , and the 90 and  95 percent confidence bands 
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associated with the estimated impulse-response functions are obtained using the estimated 

standard errors of the coefficients 𝜃 , based on robust standard errors clustered at the country 

level. Our sample consists of a balanced sample of 129 economies with at least 30 observation 

days after a significant outbreak (100 cases).9 

 

IV. RESULTS  

A.   Baseline 

 
Figure 2 shows the estimated dynamic cumulative response of the number of 

confirmed COVID-19 cases to a unitary change in the aggregate containment stringency 

index over the 30-day period following the implementation of the containment measure, 

together with the 90 and 95 percent confidence intervals around the point estimate. 

Consistent with predictions from epidemiological models, the results provide strong evidence 

that containment measures, by reducing mobility (Figure A1), have significantly reduced the 

number of infections. The magnitude of these effects is sizeable: for example, the very 

stringent containment measures put in place in New Zealand—restrictions on gatherings and 

public events implemented when cases were in single digits, followed by school and 

workplace closures as well as stay-at-home orders just a few days later—are likely to have 

reduced the number of infections by almost 90 percent relative to a baseline with no 

containment measures.10 In other words, the results suggest that, in a country like New 

Zealand, the number of confirmed COVID-19 deaths would have been at least ten times 

 
9 Similar results are obtained when using alternative thresholds. 

10 The percent effects reported in the text are computed as e -1)*100. 
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larger than in the absence of stringent containment measures. In addition, we find that lagged 

values of daily temperature and humidity affect significantly the number of cases and deaths, 

with cold and dry conditions facilitating the spread of the virus. 

We also find evidence to support the hypothesis that early intervention and 

containment have had a significant impact on infections. For each country, we compute the 

public health response time (PHRT) as the number of days it takes for the country to 

implement containment measures after a significant outbreak (defined as 100 confirmed 

cases). For calculating the PHRT, we include all non-pharmaceutical interventions other than 

international travel restrictions, since these were often implemented before confirmed 

domestic outbreaks and as an effort to reduce exposure from people that had traveled to 

China. We find that containment measures in countries with low PHRT—that  is, countries 

that put in place containment measures faster—reduced the average number of infections and 

deaths by 95, while the impact was not statistically significant for counties where the PHRT 

was relatively high (Figure 3).  

 

B.   Robustness checks 

We carried out several robustness checks of these findings. First, since containment 

measures have been introduced first in China, there is the risk that the longer-term (30 days) 

results may simply reflect the observed flattening of the pandemic curve in China. To address 

this issue, we repeated the analysis excluding China from the sample. Second, we checked 

whether the results are driven by the inclusion of the United States, which as of now is the 

country with the largest number of confirmed cases and deaths. Third, instead of using an index 

of containment measures, which attempts to quantify the severity of the measures, we used a 
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simple dummy variable to identify the start and end of containment and mitigation measures—

this is similar to treating the containment measures as a shock (Figure 10) . Another concern is 

that containment measures were announced before being implemented and, therefore, were 

anticipated. This may have resulted in reduced mobility ahead of the implementation of the 

containment measures (as shown in Figure A2) and to an upward bias in the estimates. To check 

for this possibility, we repeated the analysis adding changes in mobility as controls. These results 

are reported in Figure 4a and not statistically different from, the baseline. 

Although our specification includes country specific linear, quadratic and cubic trends, it 

may be argued that country specific time dummies are also required, both to control for the 

timing of the pandemic in the global context. An additional concern is the serial correlation in 

the containment stringency index since the containment measures were often adopted in 

sequence and reversed after the number of infection has declined. Hence, we follow the 

methodology outlined by Teulings and Zubanov (2014) and control for leads of the stringency 

index— ∑ 𝜑 𝑐 ,  to account for containment measures introduced within the response 

horizon t+h (for h>1).  As reported in Figure 4b, our main results continue to hold, although 

there are some differences in the estimated magnitudes.  

Finally, we experimented with the lag structure of the regressions, the horizon for the 

local projections and alternative specifications for the standard errors (e.g. Driscoll-Kraay 

standard errors). Our results were not affected.  

 

C.   Role of country characteristics and health infrastructure 

This section examines whether the average effect of containment measures presented in the 

previous section varies across countries depending on country characteristics. We focus on 
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characteristics that are thought to influence the spread of the virus, such as the overall capacity of 

a country’s healthcare system, its average temperature, the share of vulnerable (or elderly) 

persons in the population, population density, etc. Our main findings are summarized in Figure 5.  

Temperature 

While no strong consensus has been reached on the role of temperature in the 

transmission of COVID-19, emerging data as well as results discussed in the previous section 

suggest that cold and dry conditions may facilitate the spread of the novel coronavirus.11 To 

test for the role of temperature in affecting the effect of containment measures on infections 

and deaths, we estimated equation (2) using the average country temperature in the first 4 

months of 2020 as an interaction variable. The results in Figure 6 (top panel) suggest that the 

effect of containment measures was stronger in countries with lower average temperatures. 

While stringent containment measures may have reduced the number of confirmed cases by 

more about 98 percent in countries with very low average temperature, they did not have 

statistically significant effects in countries with very high average temperate measures. 

Similar results are obtained for humidity. 

 
Age 

Existing information strongly suggests that people over the age of 65 are particularly 

vulnerable to the effects of COVID-19. For example, in the United States about 80 percent of 

 
11 https://www.cebm.net/covid-19/do-weather-conditions-influence-the-transmission-of-the-coronavirus-sars-cov-2/ 

https://www.medrxiv.org/content/10.1101/2020.02.13.20022806v2 
https://www.medrxiv.org/content/10.1101/2020.02.22.20025791v1 
https://www.medrxiv.org/content/10.1101/2020.03.12.20034728v3 
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total deaths are concentrated in this age group.12  The results presented in Figure 6 (bottom 

panel), using the share of the population above 65 as the interaction term, had a particularly large 

impact (reducing by about 98 percent COVID-19 cases 30 days after implementation) in 

countries with a relatively high share of the elderly in total population. In contrast, the impact is 

not statistically different from zero in countries with a very young population. The results also 

reflect the fact that testing has been mostly restricted to people who are most sick or hospitalized, 

and the elderly predominantly fall into this category. 

 
Population density 

The spread of the virus is likely to be more difficult to control in countries with higher 

population density, as this renders social distancing more difficult. The results in Figure 7 (top 

panel) confirm this hypothesis. We find that while stringent containment measures have been 

associated with a reduction by about 97 percent of COVID-19 cases 30 days after 

implementation of the measures in countries with a low population density.  

 
Health preparedness  

The preparedness and capacity of a country’s health sector is of paramount importance to 

detect the spread of the virus and contain it. To examine whether the effect of containment 

measures varies according to countries’ health security and capability, we estimate equation (2) 

using two alternative indicators of health preparedness (i) the Global Health Security Index from 

John Hopkins; and (ii) the Health Index compiled by the World Economic Forum. The results 

obtained for both indicators paint a similar picture: containment measures are more effective in 

countries with higher health security and a better health index (Figure 7, bottom panel and Figure 

 
12 https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm 
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A3).13 In particular, while stringent containment measures may have reduced the number of 

confirmed cases by more about 97 percent in countries with very strong health systems, they did 

not have statistically significantly effects in countries with weak health capabilities.  

 

Mobility and de facto social distancing 

The analysis so far has relied on de jure measures of containment. However, the actual 

outcomes in terms of infections and deaths are likely to be determined by compliance with these 

de jure measures. In order to assess the de facto impact of social distancing, we interacted the 

containment measures with data on mobility available from Apple and Google mobility trends 

reports. The results suggest that containment measures have been more effective in countries 

where the measures resulted in de facto lower mobility and greater social distancing (Figure 8). 

 
D.   COVID-19 fatalities 

The analysis so far has focused on the number of COVID-19 cases but can be extended to 

the number of confirmed COVID-19 related fatalities. While the primary role of NPIs is to slow 

down the rate of COVID-19 infections and ensure that the health systems are not overwhelmed, 

we expect a delayed effect of containment measures on the number of deaths as the reduction in 

the number of infections translates into lower eventual fatalities. However, an analysis of the 

dynamics of the number of COVID-19 related deaths is complicated by the available data as 

contrary to expectations, the path of confirmed cases and deaths in a given country is extremely 

synchronized—the average correlation between the two series in the sample is above 0.9. This is 

likely an artifact of the data and how confirmed cases and deaths are recorded in different 

 
13 Similar results are obtained for the individual sub-indices of the Global Health Security Index.  
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countries. Given huge uncertainty in the timing of the response of deaths to containment 

measures, here we focus on the total impact after 30-days as opposed to the dynamics over time.  

The results presented in Figure 9 show that in addition to slowing down the number of 

infections, containment measures have also led to a sharp reduction in the number of COVID-19 

related fatalities. Our results suggest that containment measures may have reduced the number of 

deaths by close to 97 percent after 30 days relative to a baseline of no containment. In addition, 

the country characteristics identified as playing a key role in determining the effectiveness of 

containment measures in reducing the number of infections also matter in limiting fatalities. If 

anything, factors such as population density and health infrastructure are even more important in 

the case of deaths.   

 
E.   Types of containment measure 

In this section, we examine whether the effect of containment varies across types of 

measure: (i) school closures; (ii) workplace closures; (iii) cancellation of public events; (iv) 

restrictions on size of gathering; (v) closures of public transport; (vi) stay-at-home requirements; 

(vii) restrictions on internal movement; and (viii) restrictions on international travel. 

Examining the effect of international travel restrictions is important to provide 

reassurance on the causal effect of containment measures, as such restrictions have tended to be 

implemented in response to outbreaks in other countries and are therefore exogenous to domestic 

conditions. However, estimating the effect of particular measures (other than foreign travel 

restrictions) is challenging, because such measures have tended to be introduced simultaneously 

as part of an overall strategy to limit the spread of the virus in a country.  

In an attempt to overcome this challenge, we use two alternative approaches. In the first, 

we introduce each measure one at a time in equation (1). Clearly, the problem with this approach 
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is that the estimates suffer from omitted variable bias. In the second approach, we include all 

measures together. While this approach addresses omitted variable bias, given the high 

correlation across measures, the effects are likely to be less precisely estimated due to 

multicollinearity.  The results from the two approaches suggest that all measures have 

contributed significantly to reducing the number of COVID-19 cases, with restrictions on 

international and domestic travel and stay-at-home orders appearing to have been relatively more 

effective in reducing the number of infections (Figure 10 and 11). The results are similar when 

we use dummy variables for the date of implementation or removal of the various measures 

(instead of the indices that quantify also the severity).  

 
F.   Re-openings and the easing of containment measures  

Finally, we use more recent data for countries which have exited the lockdown phase to 

assess the impact of re-openings. Specifically, we look at countries which have begun easing 

containment measures. Such countries are identified by restricting the data to after the stringency 

index 𝑐 ,  has reached its peak value and then was lowered for the remaining time frame. The 

sample consists of a balanced panel of 78 countries.  

Figure 12 shows the estimated dynamic response of the number of confirmed COVID-19 

cases to a unitary decline in the aggregate containment stringency index over the 30-day period 

following relaxation of the containment measure, together with 90 and 95 percent confidence 

intervals around the point estimate. The results suggest that relaxing containment measures have 

led to an increase in COVID-19 infections by more than 50 percent, relative to a baseline of 

stringent containment, though the results are statistically significant only at the 90 percent 

confidence level.  
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V. CONCLUSIONS 

 
In the absence of a vaccine or effective treatments, containment measures are key to 

halting the spread of the virus and limiting the number of fatalities. In this paper, we have 

provided a first empirical assessment which quantifies the effectiveness of containment measures 

on the number of COVID-19 infections and deaths.  

While the approach is not based on controlled experiments, our approach based on daily 

data and real-time observations of containment measures should limit concerns about reverse 

causality (from the spread of the virus to the nature of containment policies). We therefore 

consider our empirical estimates to provide a reasonable assessment of the causal effect of 

containment policies on infections. Specifically, we find that containment measures have 

significantly reduced the number of infections and therefore more importantly, the number of 

deaths. Our results suggests that countries that have put in place stringent measures, such as 

those implemented in Wuhan, China or in countries like New Zealand (where the stringency 

index has moved from about 0 to 1 in a matter of days), may have reduced the number of 

confirmed cases and deaths by more than 90 percent relative to the underlying country-specific 

path in the absence of measures.  

Containment measures have had stronger effects in countries where the measures were 

implemented faster and resulted in less mobility—de facto, more social distancing—and in 

countries with lower temperatures, lower population density, a larger share of older population, 

and stronger health systems. Across different types of containment measure, internal and 

international travel restrictions have been most effective We also show that easing of 

containment measures has resulted in an increase in the number of cases, but the effect has been 

lower (in absolute value) than that from the tightening of measures.  
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Figure 1: Evolution of Total Infection and Containment Measures 

Panel A. Total cases (log scale) Panel B. Stringency of containment measure 

Source: Haver, OxCGRT Stringency Index and IMF Staff calculations. 
Note: The index is scaled to vary between zero (least stringent) to 1 (most stringent) containment measures. It is comprised of the following categories: (i) School closing; (ii) 
Workplace closing; (iii) Cancel public events; (iv) Restrictions on gathering size; (v) Close public transport; (vi) Stay at home requirements; (vii) Restrictions on internal movement; 
(viii) Restrictions on international travel. 
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Figure 2: Effect of Containment Measures on Total Confirmed COVID-19 Cases 

Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. The analysis is restricted to countries with a 
significant outbreak that has lasted at least 30 days. t = 0 is the date when the outbreak becomes significant (100 cases) in each country. The graph shows the response and 
confidence bands at 90 and 95 percent. The horizontal axis shows the response x days after the containment measures. Estimates based on ∆𝑑 ,   𝑢  𝑐 , 𝑋′ , Γ
∑ 𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ 𝜀 ,  where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the number of COVID-19 cases in country 𝑖 observed at date 𝑡. The model is estimated at each 

horizon ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is the index capturing the level of containment and mitigation measures; 𝑋 is a matrix of time varying control variables 
and country specific linear, quadratic and cubic time trend. The figure displays log-difference changes whereas the text translates these into percent changes. Results are based 
on June 15 data. 

 

  



 
Figure 3: Interaction with Public Health Response Time 

(deviation from baseline, log percentage points) 

 
Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. 
The analysis is restricted to countries with a significant outbreak that has lasted at least 30 days. The graph shows the response 
and confidence bands at 90 and 95 percent. The horizontal axis shows the response x days after the containment measures. 
Estimates based on ∆𝑑 ,   𝑢 𝑢 𝜃 𝐹 𝑧 , 𝑐 , 𝜃 1 𝐹 𝑧 , 𝑐 ,  𝑋′ , Γ ∑ 𝐹 𝑧 ,  𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ

∑ 1 𝐹 𝑧 , 𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ 𝜀 ,  with  𝐹 𝑧 , 𝛾 0 where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the 

number of COVID-19 cases in country 𝑖 observed at date 𝑡 and z is the country-specific characteristics normalized to have zero 
mean and a unit variance. The model is estimated at each horizon ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is the index 
capturing the level of containment and mitigation measures; 𝑋 is a matrix of time varying control variables and country specific 
linear, quadratic and cubic time trend. Results are based on June 15 data. The figure displays log-difference changes whereas the 
text translates these into percent changes. 
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Figure 4a: Robustness Checks 
Response to stringency of containment measures: ex China 

 
Response to stringency of containment measures: ex US 

  
Response to stringency of containment measures: with mobility controls 

 
Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. 
The analysis is restricted to countries with a significant outbreak that has lasted at least 30 days. t = 0 is the date when the 
outbreak becomes significant (100 cases) in each country. The graph shows the response and confidence bands at 90 and 95 
percent. The horizontal axis shows the response x days after the containment measures. Estimates based on ∆𝑑 ,   𝑢
 𝑐 , 𝑋′ , Γ ∑ 𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ 𝜀 ,  where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the number of COVID-19 

cases in country 𝑖 observed at date 𝑡. The model is estimated at each horizon ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is 
the index capturing the level of containment and mitigation measures; 𝑋 is a matrix of time varying control variables and country 
specific linear, quadratic and cubic time trend. Results are based on June 15 data. The figure displays log-difference changes 
whereas the text translates these into percent changes. 
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Figure 4b: Robustness Checks 
Response to stringency of containment measures: with time fixed effects 

 
Response to stringency of containment measures: additional controls for serial correlation of measures (leads) 

  
Response to stringency of containment measures: with time fixed effects and leads 

 
Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. 
The analysis is restricted to countries with a significant outbreak that has lasted at least 30 days. t = 0 is the date when the 
outbreak becomes significant (100 cases) in each country. The graph shows the response and confidence bands at 90 and 95 
percent. The horizontal axis shows the response x days after the containment measures. Estimates based on ∆𝑑 ,   𝑢
 𝑐 , 𝑋′ , Γ ∑ 𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ 𝜀 ,  where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the number of COVID-19 

cases in country 𝑖 observed at date 𝑡. The model is estimated at each horizon ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is 
the index capturing the level of containment and mitigation measures; 𝑋 is a matrix of time varying control variables and country 
specific linear, quadratic and cubic time trend. The last two panels add leads of the containment measure, ∑ 𝜑 𝑐 , , to 
account for containment measures introduced during the response horizon. Results are based on June 15 data. The figure 
displays log-difference changes whereas the text translates these into percent changes. 
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Figure 5: Summary of interactions with country characteristics 
(percent deviation from baseline 30 days after the introduction of containment measures) 

Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. 
The analysis is restricted to countries with a significant outbreak that has lasted at least 30 days. The graph shows the cumulative 
response after 30 days for beeline and each county characteristic. Estimates based on ∆𝑑 ,   𝑢 𝑢 𝜃 𝐹 𝑧 , 𝑐 ,

𝜃 1 𝐹 𝑧 , 𝑐 ,  𝑋′ , Γ ∑ 𝐹 𝑧 ,  𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ ∑ 1 𝐹 𝑧 , 𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ 𝜀 ,  with 𝐹 𝑧 , 𝛾 0 where 

∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the number of COVID-19 cases in country 𝑖 observed at date 𝑡 and z is the 
country-specific characteristics normalized to have zero mean and a unit variance. The model is estimated at each horizon ℎ
0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is the index capturing the level of containment and mitigation measures; 𝑋 is a matrix 
of time varying control variables and country specific linear, quadratic and cubic time trend. Results are based on June 15 data. 
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Figure 6: Interaction with Temperature and Elderly Population 
(deviation from baseline, log percentage points) 

Average Air Temperature 

 
Share of Population above 65 years 

 
Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. 
The analysis is restricted to countries with a significant outbreak that has lasted at least 30 days. The graph shows the response 
and confidence bands at 90 and 95 percent. The horizontal axis shows the response x days after the containment measures. 
Estimates based on ∆𝑑 ,   𝑢 𝑢 𝜃 𝐹 𝑧 , 𝑐 , 𝜃 1 𝐹 𝑧 , 𝑐 ,  𝑋′ , Γ ∑ 𝐹 𝑧 ,  𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ

∑ 1 𝐹 𝑧 , 𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ 𝜀 ,  with 𝐹 𝑧 , 𝛾 0 where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the 

number of COVID-19 cases in country 𝑖 observed at date 𝑡 and z is the country-specific characteristics normalized to have zero 
mean and a unit variance. The model is estimated at each horizon ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is the index 
capturing the level of containment and mitigation measures; 𝑋 is a matrix of time varying control variables and country specific 
linear, quadratic and cubic time trend. Results are based on June 15 data. The figure displays log-difference changes whereas the 
text translates these into percent changes. 
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Figure 7: Interaction with Population Density and Health Infrastructure 
(deviation from baseline, log percentage points) 

Population Density 

 
Health Security Index 

 
Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. 
The analysis is restricted to countries with a significant outbreak that has lasted at least 30 days. The graph shows the response 
and confidence bands at 90 and 95 percent. The horizontal axis shows the response x days after the containment measures. 
Estimates based on ∆𝑑 ,   𝑢 𝑢 𝜃 𝐹 𝑧 , 𝑐 , 𝜃 1 𝐹 𝑧 , 𝑐 ,  𝑋′ , Γ ∑ 𝐹 𝑧 ,  𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ

∑ 1 𝐹 𝑧 , 𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ 𝜀 ,  with 𝐹 𝑧 , 𝛾 0 where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the 

number of COVID-19 cases in country 𝑖 observed at date 𝑡 and z is the country-specific characteristics normalized to have zero 
mean and a unit variance. The model is estimated at each horizon ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is the index 
capturing the level of containment and mitigation measures; 𝑋 is a matrix of time varying control variables and country specific 
linear, quadratic and cubic time trend. Results are based on June 15 data. The figure displays log-difference changes whereas the 
text translates these into percent changes. 
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Figure 8: Interaction with Mobility 
(deviation from baseline, log percentage points) 

Driving Mobility (Apple) 

 
Retail Mobility (Google) 

 
Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. 
The analysis is restricted to countries with a significant outbreak that has lasted at least 30 days. The graph shows the response 
and confidence bands at 90 and 95 percent. The horizontal axis shows the response x days after the containment measures. 
Estimates based on ∆𝑑 ,   𝑢 𝑢 𝜃 𝐹 𝑧 , 𝑐 , 𝜃 1 𝐹 𝑧 , 𝑐 ,  𝑋′ , Γ ∑ 𝐹 𝑧 ,  𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ

∑ 1 𝐹 𝑧 , 𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ 𝜀 ,  with 𝐹 𝑧 , 𝛾 0 where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the 

number of COVID-19 cases in country 𝑖 observed at date 𝑡 and z is the country-specific characteristics normalized to have zero 
mean and a unit variance. The model is estimated at each horizon ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is the index 
capturing the level of containment and mitigation measures; 𝑋 is a matrix of time varying control variables and country specific 
linear, quadratic and cubic time trend. Results are based on June 15 data. The figure displays log-difference changes whereas the 
text translates these into percent changes. 
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Figure 9: Effect of Containment Measures on Total Confirmed COVID-19 Deaths 
(percent deviation from baseline 30 days after the introduction of containment measures) 

 
Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. 
The analysis is restricted to countries with a significant outbreak that has lasted at least 30 days. The graph shows the cumulative 
response after 30 days for beeline and each county characteristic. Estimates based on ∆𝑑 ,   𝑢 𝑢 𝜃 𝐹 𝑧 , 𝑐 ,

𝜃 1 𝐹 𝑧 , 𝑐 ,  𝑋′ , Γ ∑ 𝐹 𝑧 ,  𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ ∑ 1 𝐹 𝑧 , 𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ 𝜀 ,  with 𝐹 𝑧 , 𝛾 0 where 

∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the number of COVID-19 deaths in country 𝑖 observed at date 𝑡 and z is the 
country-specific characteristics normalized to have zero mean and a unit variance. The model is estimated at each horizon ℎ
0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is the index capturing the level of containment and mitigation measures; 𝑋 is a matrix 
of time varying control variables and country specific linear, quadratic and cubic time trend. Results are based on June 15 data. 
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Figure 10: Local projection response to different containment measures 
(deviation from baseline, log percentage points) 

 

 
Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. 
The analysis is restricted to countries with a significant outbreak that has lasted at least 30 days. t = 0 is the date when the 
outbreak becomes significant (100 cases) in each country. The graph shows the response and confidence bands at 90 and 95 
percent. The horizontal axis shows the response x days after the containment measures. Estimates based on ∆𝑑 ,   𝑢
 𝑐 , 𝑋′ , Γ ∑ 𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ 𝜀 ,  where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the number of COVID-19 

cases in country 𝑖 observed at date 𝑡. The model is estimated at each horizon ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is 
the index capturing different types containment and mitigation measures, introduced one at a time; 𝑋 is a matrix of time varying 
control variables and country specific linear, quadratic and cubic time trend. Results are based on June 15 data. The figure 
displays log-difference changes whereas the text translates these into percent changes. 

 
  



 38 

 
 

 

Figure 11: Local projection response to different containment measures (together) 
(deviation from baseline, log percentage points) 

 

 
Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. 
The analysis is restricted to countries with a significant outbreak that has lasted at least 30 days. t = 0 is the date when the 
outbreak becomes significant (100 cases) in each country. The graph shows the response and confidence bands at 95 percent. 
The horizontal axis shows the response x days after the containment measures. Estimates based on ∆𝑑 ,   𝑢  𝑐 ,

𝑋′ , Γ ∑ 𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ ∑ 𝜑 𝑐 , 𝜀 ,  where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the number of 

COVID-19 cases or deaths (depending on specification) in country 𝑖 observed at date 𝑡. The model is estimated at each horizon 
ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  are indices capturing different types containment and mitigation measures, 
introduced simultaneously in the regression; 𝑋 is a matrix of time varying control variables and country specific linear, quadratic 
and cubic time trend. Results are based on June 15 data. The figure displays log-difference changes whereas the text translates 
these into percent changes.  

 



 

Figure 12: Effect of Containment Measures on Total Confirmed COVID-19 Cases 

 
Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. The analysis is restricted to countries with a 
significant outbreak that has lasted at least 30 days. t = 0 is the date when the outbreak becomes significant (100 cases) in each country. The graph shows the response and 
confidence bands at 90 and 95 percent. The horizontal axis shows the response x days after the easing of containment measures. Estimates based on ∆𝑑 ,   𝑢  𝑐 ,

𝑋′ , Γ ∑ 𝜓 ,ℓ∆𝑑 , ℓ
ℒ
ℓ 𝜀 ,  where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the number of COVID-19 cases in country 𝑖 observed at date 𝑡. The model is 

estimated at each horizon ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is the index capturing the level of containment and mitigation measures; 𝑋 is a matrix of time varying 
control variables and country specific linear, quadratic and cubic time trend. The figure displays log-difference changes whereas the text translates these into percent changes. 
Results are based on June 15 data. 
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ANNEX 

 
Figure A1: Effect of Containment Measures on Mobility 

(deviation from baseline, log percentage points) 

 
Note: Impulse response functions are estimated using a sample of 70 countries using daily data from the start of the outbreak. Google mobility and retail indices are reported as 
percent deviations for each day of the week to that corresponding day of the week in the baseline. They are smoothed out over 7 days to estimate the average deviation from 
the baseline, and then cumulated to report the total deviation from the baseline. The analysis is restricted to countries with a significant outbreak that has lasted at least 30 days. 
t = 0 is the date when the outbreak becomes significant (100 cases) in each country. The graph shows the response and confidence bands at 95 percent. The horizontal axis 
shows the response x days after the containment measures. Estimates based on ∆𝑑 ,   𝑢  𝑐 , 𝑋′ , Γ ∑ 𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ ∑ 𝜑 𝑐 , 𝜀 ,  where ∆𝑑 , 𝑑 ,

𝑑 ,  and 𝑑 ,  is the logarithm mobility in country 𝑖 observed at date 𝑡. The model is estimated at each horizon ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is the index 
capturing the level of containment and mitigation measures; 𝑋 is a matrix of time varying control variables and country specific linear, quadratic and cubic time trend. Results are 
based on June 15 data. 

 



 

Figure A2: Containment measures and mobility  
(mobility index, percent) 

  

  

  

  
Sources: Apple Mobility Indices, OxCGRT Stringency Index and IMF Staff calculations. An index =100 suggest no decline in 
mobility compared to trends. 

 
 



 

Figure A3: Interaction with Health Security Index and Health Infrastructure 
(deviation from baseline, log percentage points) 

 
Note: Impulse response functions are estimated using a sample of 129 countries using daily data from the start of the outbreak. The analysis is restricted to countries with a 
significant outbreak that has lasted at least 30 days. The graph shows the response and confidence bands at 90 and 95 percent. The horizontal axis shows the response x days 
after the containment measures. Estimates based on ∆𝑑 ,   𝑢 𝑢 𝜃 𝐹 𝑧 , 𝑐 , 𝜃 1 𝐹 𝑧 , 𝑐 ,  𝑋′ , Γ ∑ 𝐹 𝑧 ,  𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ ∑ 1 𝐹 𝑧 , 𝜓 ,ℓ∆𝑑 , ℓ

ℒ
ℓ

𝜀 ,  with  𝐹 𝑧 , 𝛾 0 where ∆𝑑 , 𝑑 , 𝑑 ,  and 𝑑 ,  is the logarithm of the number of COVID-19 cases in country 𝑖 observed at date 𝑡 and z is the 
country-specific characteristics normalized to have zero mean and a unit variance. The model is estimated at each horizon ℎ 0, 1, …𝐻, with a lag structure ℓ 1, 2 …ℒ; 𝑐 ,  is the 
index capturing the level of containment and mitigation measures; 𝑋 is a matrix of time varying control variables and country specific linear, quadratic and cubic time trend. 
Results are based on June 15 data. The figure displays log-difference changes whereas the text translates these into percent changes. 
 

 




