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Abstract

In this paper we propose a novel approach to obtain the predictive density of global GDP growth.

It hinges upon a bottom-up probabilistic model that estimates and combines single countries’ pre-

dictive GDP growth densities, taking into account cross-country interdependencies. Specifically,

we model non-parametrically the contemporaneous interdependencies across the United States,

the euro area, and China via a conditional kernel density estimation of a joint distribution. Then,

we characterize the potential amplification effects stemming from other large economies in each

region—also with kernel density estimations—and the reaction of all other economies with para-

metric assumptions. Importantly, each economy’s predictive density also depends on a set of ob-

servable country-specific factors. Finally, the use of sampling techniques allows us to aggregate

individual countries’ densities into a world aggregate while preserving the non-i.i.d. nature of the

global GDP growth distribution. Out-of-sample metrics confirm the accuracy of our approach.
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1 Introduction

The use of predictive densities and fan charts has become common in many central banks and policy-

making institutions. The Bank of England, for example, has been publishing a fan chart for inflation 
forecasts since 1996 (Holly et al., 2000), and has been emulated by other central banks ever since. The 
object of interest gradually broadened to other variables, notably GDP growth and unemployment.

As of 2006, the International Monetary Fund (IMF) World Economic Outlook (WEO)’s global GDP 
growth projections have been accompanied by a fan chart summarizing the balance of risks (IMF, 2006).1 

Starting in 2017, the IMF Global Financial Stability Report (GFSR) has been publishing an assess-

ment of unlikely, yet possible, global GDP growth collapses—thereby focusing on the left tail of the 
predictive density—employing a framework that links current economic and financial conditions to the 
probability distribution of future GDP growth (IMF, 2017).2 These developments reflect the need to 
quantify—in probabilistic terms—uncertainties surrounding any point forecast along the forecasting 
horizon, as well as the need to pinpoint the probability of specific events of interest (e.g., the outcome 
associated with a five percent probability).

While the literature on predictive density generation is vast, aggregating predictive densities still 
poses a series of challenges.3 Elliot and Timmermann (2016) and Aastveit et al. (2019) argue that—

similar to the case of combinations of individual point forecasts outperforming a single point forecast—

combinations of densities are also superior to individual models. The literature proposes different meth-

ods to combine predictive densities (see next section for a review), but these prove unsatisfactory when 
we need to aggregate densities of different objects (e.g., economic growth in different countries). In

this case, in fact, the aggregation problem turns particularly severe because the data-generating pro-

cess is different across countries and because country-specific densities are not identically and indepen-

dently distributed (i.i.d.). In other words, country aggregates are subject to tail dependence: when one 
country suffers a negative shock, other countries may be more likely to suffer negative shocks as well. 
For these reasons, linear combinations of country-specific densities are not viable solutions as these 
marginal distributions do not account for their interdependences.

In this paper, we propose a novel approach to obtain the predictive density of global GDP growth, 
which relies on a bottom-up probabilistic model that estimates and combines single countries’ predic-

tive densities. To avoid the curse of dimensionality, we split the sample into three groups based on

their share of world output and assume a reasonable structure of inter-dependencies: (i) other economies 
depend on large economies and their respective regional leaders, (ii) regional leaders depend on large 
economies, and (iii) regional leaders and other economies have no impact on large economies. Our ap-

proach consists of a four-step probabilistic model for global GDP growth that mixes parametric and 
non-parametric features. It first generates the joint predictive density via a multivariate conditional

1The IMF WEO’s methodology was then revised in IMF (2009), incorporating information embedded in survey and 
market indicators to better anticipate changes in the distribution of risks (Kannan and Elekdag, 2009).

2See Prasad et al. (2019) for details about the methodology employed in the GFSR, which is largely inspired by 
Adrian et al. (2019b).

3See Tay and Wallis, 2000 for a review of the methods to generate density forecasts and Elliot and Timmermann

(2016) and Aastveit et al. (2019) for a summary on density forecast combination.
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kernel density estimation for a set of large economies (see Li and Racine 2007).45 This means that

a certain probability is assigned to all the possible combinations of future GDP growth rates in the

three large economies (the US, the euro area, and China), conditional on the current values of country-

specific factors and the other two large economies’ contemporaneous GDP growth rates. Second, our

approach estimates the regional leaders’ kernel density for each conditioning triplet of large economies’

GDP growth rates obtained in the previous step and samples from it to construct the predictive den-

sities. Third, for each tuple of large economies’ and regional leaders’ GDP growth rates, we estimate

the other economies’ predictive density drawing from a normal distribution with historical mean and

standard deviation.6 And fourth, it aggregates each vector of GDP growth rates obtained in the pre-

vious steps with a simple PPP-weighted average. If judgement needs to be introduced—for example to

re-center the mode around a given forecast—we propose a rejection sampling algorithm or by fitting

the parametric distribution that minimizes the Kolmogorov-Smirnov distance between the empirical

distribution and the parametric one.

In Figure 1, we report the evolution of the four-quarter ahead predictive density of global GDP

growth obtained with the proposed methodology during 2005–2019. Despite a relatively short sample

length, some interesting facts become apparent. First, the central tendency of the distribution shifts

significantly over time, tracking relatively well the realization of actual global GDP growth. Second,

the distribution is often close to be symmetric. This is not surprising given that, for the world and

in ‘normal’ times, upsides risks in some economies are generally counterbalanced by downside risks in

other economies, resulting in a distribution close to a normal one, consistent with the central limit the-

orem. Third, in correspondence to the global financial crisis, the collapse in GDP growth led to an up-

ward skewed predictive density, signalling that in the aftermath of the crisis the probability of growth

above the mode was higher than the probability of a further worsening, as in standard mean-reverting

processes. Fourth, during the Euro area crisis, the density becomes significantly flatter and shows a

predominant left tail, indicating large downside risks. Density evaluation exercises based on out-of-

sample metrics confirm the accuracy of our approach.

The proposed approach has several advantages. First, at the cost of a few assumptions, it charac-

terizes the probability of each state of the world allowing for inter-dependencies across large economies,

potential amplification effects stemming from regional dynamics, and the endogenous reaction of other

economies. Second, it circumvents the problem of density aggregation by employing sampling tech-

niques, which allow to preserve the consistency needed to perform ex-post aggregation. Third, by es-

timating country-specific specifications instead of treating the world as an aggregate, it avoids the av-

eraging of the conditioning factors across countries, which might dilute the signals they are expected

to provide. And fourth, compared with quantile regression based approaches, kernel density estimators

impose less constraints and does not require linearity assumptions, often resulting in accuracy gains.7

4Ideally, one would want to generate the joint density for all countries, however the curse of dimensionality would
make the procedure computationally prohibitive.

5In a recent paper, Adrian et al. (2019a) use the same estimation approach to predict the density of US GDP growth
based on past economic and financial conditions.

6This assumption conveniently speeds up the estimation procedure without much inaccuracy, as we only do it for the
group of other economies.

7Quantile regressions approximate each quantile linearly, while kernel density estimators do not impose a functional
form at the quantile level. This is particularly relevant when forecasting higher moments of the distribution, which relies
on multiple quantile estimations that compound approximation errors.

5



Figure 1: Predictive Density of Global GDP Growth
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Notes: The figure shows the four-quarter ahead distribution of global GDP growth. Blue colors
indicate low probability, red colors indicate high probability.

The rest of the paper is organized as follows. Section 2 provides a brief review of the literature

on density aggregation and summarizes its shortcomings when the object of interest is global GDP

growth. Section 3 outlines the empirical strategy. Section 4 presents the results of the estimation and

the evidence from density evaluation tests. Section 5 concludes.

2 Background

Similar to individual point forecasts, predictive density combinations tend to outperform individual

predictive densities (Elliot and Timmermann, 2016). Rossi (2013), for instance, shows that the rela-

tive performance of different models varies over time and therefore suggests that forecast combination

is a natural solution to eliminate the uncertainty about the best model.8 Kascha and Ravazzolo (2010)

show that combining densities is better than pre-selecting a particular model, as combinations insure

against selecting improper models. However, compared to individual point forecasts, predictive density

combination poses more challenges, as convex combinations could result in shapes completely differ-

ent from the individual components, thereby delivering different forecasts. Most applications of pre-

dictive density combinations—generally across forecasters or forecasting models—aim at aggregating

subjective probability distributions to create an opinion pool (Genest and Zidek, 1986). The commonly

8See Aastveit et al. (2019) for a comprehensive review of the evolution of the literature on forecasts density combina-
tion.

6



adopted combination strategy in the literature is the “linear opinion pool”, which can be formalized as

follows:

f̂linpyq “
n
ÿ

i“1

ωifipyq (1)

where fipyq is the predictive density for the variable of interest y from forecaster/mode i, and ω is

the weight such that
řn
i“1 ωi “ 1 (Stone, 1961). A notorious variation of the linear opinion pool is the

“logarithmic opinion pool”.9

These approaches, however, came under scrutiny in recent years. Hora (2004) shows that any non-

trivial convex combination of two calibrated density forecasts is uncalibrated. Ranjan and Gneiting

(2010) argue that linear combination formulas with strictly positive coefficients may not be coherent

and demonstrated potential improvement under nonlinear aggregation. Busetti (2017) notes that the

logarithmic opinion pool gives probability of zero to events that have zero probability under any of the

individual distributions. He proposes a quantile aggregation strategy based on quantile functions of the

individual forecast distributions and shows that the properties of this strategy are between those of the

linear and logarithmic pool.

Rossi and Sekhposyan (2019) argue that equal weights to predicting densities often result in fore-

cast improvements. However, the drawback of such weighting scheme is that the wealth of informa-

tion about the individuals’ predicting ability remains neglected. Hall and Mitchell (2007), Geweke and

Amisano (2011), Waggoner and Zha (2012), Billio et al. (2013), Conflitti et al. (2015), Kapetanios et

al. (2015), Pettenuzzo and Ravazzolo (2016), and Del Negro et al. (2016) propose various schemes to

optimize weights for density combinations, including time-varying weights reflecting the past perfor-

mance of different models. They show that they can lead to improvements in the forecasting perfor-

mance.

When the object of interest is global GDP growth, the density combination problem becomes par-

ticularly severe. To make this point, let the world consist of two countries i “ 1, 2, so that global GDP

growth is defined as y “
ř2
i“1 ωiyi, with ω being the country weights. If xi “ ωiyi with distribution

gipxiq and if countries’ GDP growth were independent from each other, their joint distribution would

be:

fpyq “

ż `8

´8

ż `8

´8

jpx1, x2qdx1dx2 “

ż `8

´8

jpx1, y ´ x1qdx1 “ g1px1qg2px2q (2)

which is different from the weighted average of the distributions f̂linpyq as defined in equation (1).

An additional and critical layer of complexity is given by the tail dependence inherent to countries’

GDP growth. That is, the aggregation scheme used to obtain f̂linpyq is based on the assumption that

each element is unrelated to the others. However, f̂ipyq describes the marginal distribution of economic

growth of each country, and not its dependence on other countries.10 This represents a major limita-

9Applications to predictive densities and generalizations of the linear opinion pool are in Mitchell and Hall (2005),
Wallis (2005), Hall and Mitchell (2007), Jore et al. (2010), Kascha and Ravazzolo (2010), Garratt et al. (2011), Geweke
and Amisano (2011), Billio et al. (2013), and Bassetti et al. (2020), among others.

10To see that, consider a world of two countries with equal weight (ω1 “ ω2 “ 0.5) and three possible GDP
growth outcomes, say, 2, 4, and 6 percent. The distribution of global GDP growth resulting would feature 2 percent
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tion if the aim is to construct world aggregates, as risks in some countries may lead to risks in other

countries, either in the same direction or the opposite one.

How to then construct the predictive density for global GDP growth taking into account inter-

dependencies across countries? The simplest workaround is to estimate directly the predictive den-

sity using aggregate data. This is the status quo in the IMF WEO and the IMF GFSR. The revised

methodology employed in the IMF WEO since 2009 assumes that both global GDP growth and the key

risk factors are drawn from a two-piece normal distribution function.11 Survey or options price data for

the term spread, S&P500 returns, oil prices, and inflation are used to construct one-year-ahead proba-

bility distributions for these variables. The variance and skew of these distributions are then mapped

to the confidence intervals around the projections for global GDP growth using weights obtained with

OLS regressions, thereby imposing linearity. Ohnsorge et al. (2016) proposed a similar approach based

on vector autoregression models with time-varying weights that depend on the horizon of interest. In

this (still linear) framework, the weights for the dispersion are obtained from the variance decompo-

sition (i.e., share of global GDP growth forecast error variance explained by each risk factor) and the

weights for the skewness are obtained from the impulse responses. These weights are then used to in-

form the parameters of the two-piece normal distribution function. Following the methodology pro-

posed by Adrian et al. (2019b), since 2017 the IMF GFSR has been constructing the predictive den-

sity of global GDP growth by first estimating quantile regressions for the 10, 25, 50, 75 and 90 precen-

tiles, conditioning on current economic and financial conditions (proxied by current global GDP growth

and a financial condition index). Then, a skew-t distribution is fitted through the predicted conditional

quantiles for the horizon of interest.

While these approaches based on aggregate data take into account inter-dependencies by construc-

tion, they suffer from other shortcomings. For example, they often rely on shorter series, possibly ne-

glecting periods in which extreme events took place. In the case of the quantile regression-based ap-

proach, this may lead to characterizing the tails of the predictive density with very few data points. In

the case of the techniques relying on survey data, the results may turn out to be unstable because of

the relatively small sample of analysts submitting the forecasts. Also, averaging out country-level infor-

mation may end up diluting the signals that it is expected to provide.

3 A Model of Predictive Density for Global GDP Growth

In this section, we describe our approach to aggregate the predictive densities of single countries into

the predictive density of global GDP growth. We first layout the model setup and assumptions and

then we present the steps of the model estimation.

3.1 Setup

Global GDP growth is defined as the PPP-weighted average of N individual economies’ real GDP growth:

(0.5 ˆ 2 ` 0.5 ˆ 2) with probability 1{9, 3 percent with probability 2{9, 4 percent with probability 3{9, 5 percent with
probability 2{9, and 6 percent with probability 1{9. This is different from the distribution implied by equation (1), that
would feature 2 percent with probability 1{3, 4 percent with probability 1{3, and 6 percent with probability 1{3.

11The two-piece normal distribution has the benefit of a simple-to-compute density function and the ability to directly
incorporate asymmetries.
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yWt “

N
ÿ

i“1

ωit´1 y
i
t with yit , @i P t1, ¨ ¨ ¨ , Nu (3)

where tyitui P 1,¨¨¨ ,N is a collection of non-i.i.d GDP growth rates; and the time-varying weights,

ωit´1, are determined by the relative size of each economy’s GDP in the world economy as of the previ-

ous period ωt´1 “ Y it´1{
řn
j“1 Y

j
t´1, with Y jt being the real GDP of economy j.

The non-i.i.d nature of the sample rules out the possibility of estimating each economy’s GDP sep-

arately. In this paper, we approach the problem by estimating the joint distribution of countries’ GDP

growth, fpy1t , ¨ ¨ ¨ , y
n
t q, to take into account cross-country inter-dependencies. The estimation of a joint

density with a large number of countries, however, is computationally intensive because the dimen-

sionality curse quickly kicks in as the number of dependent variables increases. To make the problem

tractable, we implement an empirical strategy that reduces dimensionality by partitioning countries in

three groups and running a sequential estimation.

After selecting a sample of countries based on data availability of quarterly series, we group them

in three categories based on their share of world output as of 2018:12

1. Large economies: the United States (US), the euro area, and China. At the end of 2018, the com-

bined GDP of these three countries represented 45 percent of the world GDP, based on the IMF

WEO PPP weights.

2. Regional leaders: South Africa in Africa, India and Japan in Asia, Russia and the United King-

dom in Europe, Brazil and Mexico in the Western Hemisphere.13 These represent the two largest

economies in each region, with the exception of Africa for which we only have one country in the

sample due to quarterly data limitations. At the end of 2018, the share of world GDP for these

countries was 22 percent.

3. Other economies: Argentina, Australia, Belarus, Canada, Chile, Colombia, Croatia, Czech Re-

public, Denmark, Hong Kong SAR China, Hungary, Indonesia, Israel, Jordan, Kazakhstan, Ko-

rea, Malaysia, Moldova, Norway, Peru, Philippines, Poland, Romania, Serbia, Singapore, Sweden,

Switzerland, Taiwan Province of China, Thailand, Turkey, Ukraine, Venezuela, and Vietnam. At

the end of 2018, this group accounted for 19.5 percent of world GDP.

Then, we decompose the joint density of all economies into the conditional densities of the three

groups via the density chain-rule:

fpyL,yR,yOq “ fpyO|yR,Y Lq
loooooooomoooooooon

Third step

ˆ fpyR|yLq
loooomoooon

Second step

ˆ fpyLq
loomoon

First step

(4)

where yL denotes the vector of the large economies, yR is the vector of regional leaders, and yO is

the vector of the other economies.

Finally, we assume that:

12See Appendix A for the list of countries with the relative share of world GDP in PPP terms.
13We rely on the IMF WEO regional classification.
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H1: Other economies’ predictive densities depend on large economies’ and their respective regional

leaders’, as well as country-specific factors. Hence, the conditional density for an economy of this

group can be written as:

fpyo |Xo, yUS , yEA, yCHN , tyiui P 1,¨¨¨ ,R, ty
iui P 1,¨¨¨ ,o´1,o`1,¨¨¨ ,Oq “

fpyo |Xo, yUS , yEA, yCHN , tyiui P 1,¨¨¨ ,Rq

where Xo is a vector of country-specific conditioning factors.14 This assumption allows to dras-

tically reduce dimensionality, as there is no need to estimate the joint distribution of all other

economies.

H2: Regional leaders’ predictive densities is a function of large economies’ GDP growth rates and

country-specific factors Xr. The conditional density for each regional leader yr can then be ex-

pressed as:

pyr |Xr, yUS , yEA, yCHN , tyiui P 1,¨¨¨ ,r´1,r`1,¨¨¨ ,R, ty
iui P 1,¨¨¨ ,Oq “

fpyr | Xr, yUS , yCHN , yEAq

As in the case of other economies, this assumption simplifies the model by ruling out inter-dependencies

among regional leaders. Instead, the model only considers the spillovers regional leaders might

have from the US, the Euro Area, and China.

H3: Regional leaders and other economies have no impact on large economies, so that the predictive

densities of large economies only depend contemporaneously on the other large economies’ ones.

In the case of the US, for example, the conditional density can be expressed as:

fpyUS | XUS, yEA, yCHN , tyiui P 1,¨¨¨ ,OYRq “

fpyUS |XUS, yEA, yCHN q

where XUS is a vector of US-specific conditioning factors.

Based on these three simplifying assumptions, we design the empirical strategy sequentially. First,

the estimation of the joint density of the three large economies. Second, the estimation of the density

of regional leaders, conditional to the joint density estimated in the first step. Third, the estimation of

the other economies’ conditional densities. And finally, the computation of the world density.

14For instance, Argentina’s future GDP growth can be a function of Argentina’s current GDP growth, financial condi-
tions, industrial production, etc.
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3.2 A Sequential Probabilistic Approach

We now go over the four steps of the estimation strategy. The first estimates the predictive densities

of large economies, the second estimates the regional leaders’ predictive density, the third estimates

the other economies’ predictive density, and the fourth aggregates predictive densities to obtain the

predictive density for global GDP growth. To deal with the reduced number of observations, we use a

rolling window that excludes the 12 quarters following the quarter being forecast.

3.2.1 Large Economies

The first and core step of the empirical strategy is to estimate the joint density of large economies’

GDP growth at a given horizon h, conditional on a set of observed country-specific macroeconomic

variables. This can be written as:

fpyUSt`h, y
EA
t`h, y

CHN
t`h | XUS

t ,XEA
t ,XCHN

t q (5)

Several techniques are available to estimate joint densities, including the Gibbs sampler, copula

functions, kernel density estimators, among others. In our approach, we rely on kernel density estimations—

as presented in Li and Racine (2007) and applied by Adrian et al. (2019a)—since they require less ob-

servations than copulas while avoiding the problems of compatibility of the conditional distributions

associated with the Gibbs sampler.15 Moreover, as noted in Adrian et al. (ibid.), kernel density estima-

tions allow to “remain agnostic about the nature of dynamic interactions between variables of interest,

allowing the data to directly inform us instead.”

The probability kernel density of a multivariate process x is given by:

f̂Hpxq “
1

n

n
ÿ

i“1

KHpx´ xiq (6)

where x “ px1, x2, . . . , xdq
T and xj “ pxi1, xi2, . . . , xidq

T , @ i P t1, 2, . . . , nu are d -vectors; H is

the bandwidth d ˆ d matrix which is symmetric and positive definite; and K is the kernel function, a

symmetric multivariate density, where KHpxq “ |H|
´ 1

2KpH
1
2xq.16

The conditional density fpY |Xq can be estimated directly using the Bayes’ theorem:

fpY |Xq “
fpY,Xq

fpXq

where both the joint and the marginal multivariate distributions are estimated with the kernel pre-

sented in equation (6), with appropriate (potentially different) bandwidths. Estimating directly the

joint density has the appealing feature of conditioning the joint distribution of the three countries on

all the country-specific variables. In other words, US-specific variables not only affect the joint density

through the US GDP growth, but have also a direct impact on the joint GDP growth of China and the

euro area, hence capturing spillovers not necessarily mediated by GDP growth (or not mediated within

15See Chen and Ip (2015) for a discussion about Gibbs sampler behavior with incompatible conditional distributions.
16We use a Gaussian distribution for the kernel function as Gaussian kernels have convenient computational and

asymptotic properties. However, we analyze the sensitivity of the results to the use of other distributions.
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the forecast horizon).

One crucial aspect of the kernel density estimation is the choice of the bandwidth matrix H, as it

controls the amount and orientation of the smoothing induced. In our case, we follow Silverman’s rule

of thumb (Silverman, 1986):

b

Ĥij “

ˆ

4

d` 2

˙
1

d`4

n
´1
d`4σi

where d is the dimension or number of variables, n is number of points, and σi is the standard de-

viation of variable i, and Ĥij “ 0, @i ‰ j.17 We estimate the optimal bandwidth matrix using histori-

cal data for yUSt`h, y
EA
t`h, y

CHN
t`h , XUS

t , XEA
t , XCHN

t @t P r1, . . . , T s.

To estimate the joint conditional future density in each conditioning period t0, the state-space is

discretized over an equally spaced three-dimensional support:

tyUSt0`h,g, y
EA
t0`h,g, y

CHN
t0`h,gug P G P IUS ˆ IEA ˆ ICHN ðñ CG

where Ij , @ j P tUS,EA,CHNu is the support for each economy’s GDP growth, G is the num-

ber of points on the grid, and CG the cubic grid of dimension G. In our baseline application, we set the

number of points on the grid to be 50.18 The minimum and the maximum of the supports have to be

carefully chosen as, if they are too small, they may artificially truncate the tails of the joint distribu-

tion. Thus, we apply a rule for which each economy’s specific support is bounded between the coun-

try’s historical minimum GDP growth minus 10 percent and the historical maximum GDP growth plus

10 percent. Then, we implement an iterative procedure that (i) computes the probability of 100 equally

distant points on the boundary surface of each country pair of the joint distribution; (ii) if the proba-

bility of the points at the extremes is larger than 0.1 percent, it extends the support by 0.5 percentage

points in the direction of those points; and (iii) repeat (i) and (ii) until the points at the extremes have

probability below 0.1 percent. This ensures that the tails of the joint distribution are defined up to a

very low probability.

The estimation of the joint probability density function, conditional on a given set XUS
t0 , XEA

t0 , XCHN
t0

can be then written as:

f̂Ĥpy
US
t0`h,g, y

EA
t0`h,g, y

CHN
t0`h,g | X

US
t0 , XEA

t0 , XCHN
t0 q “

1
n

řn
i“1KĤy,x

prrryl, xt0sss
111
´ rrryi, xisss

111
q

1
n

řn
i“1KĤx

pxt0 ´ xiq
@ g P CG (7)

where the density is estimated over the 3-d grid. In other words, equation (7) estimates the proba-

bility distribution function for each point in the cube CG, conditional on country-specific variables.

17Alternative approaches include least squares cross-validation and biased cross-validation (Li et al., 2013), which re-
turn broadly comparable results. Adrian et al. (2019a) take a different approach, using the conditional standard deviation
of each variable, up to a constant determined by out-of-sample performance.

18While it is desirable to have more points, the size of the cubic grid increases exponentially with G limiting its prac-
tical application: using a 50-point grid per variables gives a cube of 125,000 points, while using a 100-point grid would
generate a cube of one million points, slowing considerably the procedure.
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At the end of the first step of this procedure, the joint density of large economies f̂pyUS , yEA, yCHN q

is stored as a collection of jointly estimated 3-tuple of GDP growth rates py.,USt0`h, y
.,EA
t0`h, y

.,CHN
t0`h q for a

given support:

ż

GUS

ż

GEA

ż

GCHN

f̂pyUS , yEA, yCHN q dyUS dyEA dyCHN “ 1 (8)

where GUS ,GEA, and GCHN are the different discrete supports for real GDP growth in the US, the

euro area, and China, respectively.19

3.2.2 Regional Leaders

We now turn to the estimation of the predictive density of regional leaders. As explained Section 3.1,

future GDP growth of regional leaders is assumed to be conditional on the contemporaneous GDP

growth of large economies as well as on past realizations of country-specific variables. Hence, as re-

gional leaders’ GDP growth rates are assumed to be independent of each other, we can estimate re-

gional leaders’ future GDP growth separately.

The estimation approach is similar to the one used for large economies since it consists of a kernel

density estimation. However, the object of interest is now a univariate density rather than a multivari-

ate one. Thus, the conditional kernel density estimation is given by:

f̂Ĥpy
r
t0`h,g, | y

US
t0`h,g, y

EA
t0`h,g, y

CHN
t0`h,g, X

r
t0q “

1
T

řT
i“1KĤy,x

prrryr, xt0sss
111
´ rrryi, xisss

111
q

1
T

řT
i“1KĤx

pxt0 ´ xiq
(9)

where T is the length of the sample, which can vary across regional leaders.

In other words, for any three-tuple of large economies’ GDP growth rates, pỹUSt0`h, ỹ
EA
t0`h, ỹ

CHN
t0`h q,

drawn from the joint support, GUS
Ś

GEA
Ś

GCHN , and the current observed value for Xr
t0, we obtain

the predictive density of ỹrt0`h. Then, we simply draw one point from it. The process is repeated for

all regional leaders, and, at the end of the second step of the procedure, we store a four-tuple for each

region.

3.2.3 Other Economies

Spillovers from GDP growth of other economies to global GDP growth—either directly or via regional

leaders and large economies—is likely to be marginal. This is because their country-specific share in

global GDP is relatively small and because their impact on their neighbors is dominated by the spillovers

stemming from large economies and regional leaders.20 Hence, the main focus when estimating the pre-

dictive density for these economies resides on their conditional first moment—expected GDP growth

conditional on the performance of larger economies, as well as country-specific factors—rather than on

higher moments.

Even though the kernel density approach used in the two previous steps could in principle be ap-

19The joint density informs about the probability of any tuple drawn from the joint support: GUS
Ś

GEA
Ś

GCHN “

CG : P
“

yUS “ ỹUS , yEA “ ỹEA , yCHN “ ỹCHN
‰

“ p̃.
20See, for instance, Rey (2015) for the importance of shocks in the US in shaping global financial conditions for the

rest of the world and Huidrom et al. (2017) for evidence on spillovers from large emerging markets.
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plied to other economies, this would make the procedure computationally challenging. Thus, with the

objective of reducing the computation time, we adopt a parametric approach. Specifically, we impose

that the predictive density of other economies follows a Gaussian distribution. We obtain the first mo-

ment of the Gaussian distribution via ordinary least squares: each economy’s future GDP growth is

conditioned on the future GDP growth of the regional leader of reference (for instance, Peru is associ-

ated with Brazil), the future GDP growth of the three large economies, as well as the economy’s own

set of regressors as follows:

yot`h “β
oXo

t ` βryrt`h ` βUSyUSt`h ` βEAyEAt`h ` βCHNyCHNt`h ` εo @o P O (10)

where Xo
t is a vector of country-specific variables observable at time t, and O represents the set of

other economies. Then, we compute the second moment of the Gaussian distribution using the econ-

omy’s historical GDP growth variance estimator σ̂o.

Hence, for each four-tuple of future GDP growth rates for the three largest economies and one re-

gional center, the density of the GDP growth a given economy o is given by:

yot`h „ N pŷot`h, σ̂oq (11)

where ŷot`h is the expected fitted value from estimating equation (10).

3.2.4 The World

Using the chain-rule formula in equation (4), the derivation of the predictive density via direct sam-

pling is straightforward. Any given tuple pỹUSt`h, ỹ
EA
t`h, ỹ

CHN
t`h , tỹjt`huj P 1,¨¨¨ ,Rq, tỹ

j
t`huj P 1,¨¨¨ ,Oq gener-

ates a possible future state of the world economy by applying the aggregation formula in equation (3).

Thus, drawing a large enough number of tuples from the joint support generates the distribution of in-

terest fpyWt q.

4 Results

In this section, we first present the estimation results and then we report perform some density evalua-

tion tests.

4.1 Estimation Results

As discussed in Section 3, our sample is composed by 43 countries and one country group of 19 coun-

tries (i.e., the euro area), representing 87 percent of the world output. Each country’s predictive den-

sity depends on other countries’ predictive densities as well as a set of observable country-specific fac-

tors, as described in Section 3.1. We group these factors in five categories: financial conditions (proxied

by the financial conditions index),21 leading indicators of economic activity (industrial production and

21See IMF (2018) for details about the construction of financial condition indexes for advanced economies and emerg-
ing markets; for the US, see Brave and Butters (2011).
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purchasing managers’ index), external variables (import demand, real effective exchange rate, and com-

modity terms of trade),22 proxies of uncertainty (business confidence, economic policy uncertainty, and

geopolitical risk),23 and demographics factors (population growth).24

The estimation period varies by country depending on data availability. In the case of large economies,

however, the joint distribution has to be estimated on the same sample period for the three countries.

This is limited by the GDP growth data for China, which start in 1995q1.25 Another relevant aspect of

the specification is that, if covariates are available at monthly frequency, we include the lead of the av-

erage of monthly observations over a quarter.26 The choice of variables for each country’s specification

is based on data availability as well as our understanding of what factors are likely to have an impact

on GDP growth vulnerability for each specific country. To the cost of introducing some arbitrariness

in the specification, we prefer this more subjective approach to one based on information criteria or re-

gression analysis as some variables may become important in shaping GDP growth risks in the future

but were not clearly doing so in the past. Beyond the other larger economies’ contemporaneous GDP

growth, the specification of the US includes past GDP growth, the financial condition index, industrial

production, and business confidence; for the euro area, the set of regressors includes past GDP growth,

industrial production, and the real effective exchange rate; and for China the specification features past

GDP growth, the real effective exchange rate, import demand, commodity terms of trade, and popula-

tion growth. However, as the object of interest is a joint predictive density, any of the variables above

also plays a role for the other large economies.27

We first present the results of the estimation of the joint predictive density of the large economies.

We show a contour plot between three pairs of countries. In Figure 2, we plot the joint predictive dis-

tribution between the US (on the x-axis) and the euro area (on the y-axis), where brighter colors in-

dicate a larger probability. We display the four-quarter ahead joint distribution for selected horizons.

The first horizon is 2006q1 (panel [a]), for which the probability is concentrated around relatively high

growth rates for both economies: about 3 percent of the US and 2 percent for the euro area. As the

global financial crisis approaches in 2008q4 (panel [b]), the mode of the joint distribution shifts towards

lower growth rates for both economies. In the case of the United states, there is a relatively high prob-

ability of negative growth, but the outcome becomes more uncertain as shown by the relatively longer

tails. The predictive joint distribution in 2009q1 (panel [c]) displays two distinguishable modes: a good

one, characterized by higher growth rates in both economies, and a bad one, with lower growth rates.

As of 2009q2 (panel [d]), the predicted distribution clearly assigns a higher probability to the bad out-

come compared to the good one. In 2009q3 (panel [e]), bi-modality disappears and the probability of a

22See Gruss and Kebhaj (2019) for details about the construction of the commodity terms of trade.
23See Baker et al. (2016) for details on economic policy uncertainty and Caldara and Iacoviello (2018) on geopolitical

uncertainty.
24See Appendix A for a description of the data sources.
25Given the prominent role of this group of countries in our approach, in a robustness test we extend the quarterly

GDP growth series of China and the euro area with interpolated annual GDP growth rates back to 1981q1. The main
results presented in the paper hold.

26The average is computed over the available monthly observations. For example, if no monthly observations are avail-
able, data up to 2018q4 is used to predict the GDP growth of 2019q4; however, if one monthly observation for 2018q2 is
available, that observation is also used to predict 2019q4.

27Due to the limited sample, we use a parsimonious specification for the joint distribution. In our baseline we exclude
the financial conditions index for the euro area and China because the indexes are quite correlated with the financial
conditions index of the US. Including them do not significantly change the results.
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deep recession in both economies increases considerably. Bi-modality was also observed in correspon-

dence of the peak Euro-zone debt crisis’s peak. In 2010 and 2011, the fear of excessive sovereign debt

led to higher interest rates, which made it harder for countries with large deficits to finance their bud-

gets. The predictive joint distribution for 2012q3 (panel [f]) indicates that, while the prevalent mode

was still one featuring good growth outcomes, a certain probability could have been attached to lower

growth rates.

To get an overview of the country-specific predictive densities from the joint distribution of large

economies, Figure 3 reports the estimated 5–95 and 25–75 percentile range of the forecast, the mode

of the forecast density, and the realized GDP growth since 2005 for the three large economies. In all

panels, actual GDP growth falls within the 25–75 percentile range most of the time, providing some

indication that the model is well specified to capture changes in GDP growth. This is true even in the

case of China (panel [c]), which shows a negative trend in GDP growth since 2007. If anything, the

50 percent interval appears too wide. However, this assessment is complicated by the fact that we are

estimating a joint distribution and not a country-specific predictive density. Consistent with the results

in Figure 2, panels (a) and (b) for the US and euro area, respectively, clearly show a larger probability

mass to the left of the mode in correspondence to the global financial crisis and the Euro-zone debt

crisis.

We now present the results for the regional leaders.28 Figure 4 shows the four-quarter ahead pre-

dictive densities of Brazil (panel [a]), India (panel [b]), Japan (panel [c]), Mexico (panel [d]), Russia

(panel [e]), the United Kingdom (panel [f]), and South Africa (panel [g]). In each panel we plot the

kernel fit of the sampled predictive densities at two different points in time. In particular, to appre-

ciate the shifts in the predictive density, we take a quarter representative of normal times (2006q1),

and a quarter when the country experienced some deceleration.29 Unsurprisingly, predicting normal

times is easier and the mode of the predictive density is not very far from the GDP growth realization.

However, even at times of large swings in GDP growth and despite the relatively long forecast horizon

(i.e., 4 quarters ahead), the results show consistent movements in the predictive density. In some cases

and periods—for example the United Kingdom in Figure 4—some parts of the densities could appear

jagged, as the bandwidth obtained with the Silverman’s rule of thumb turns out too small for the grid.

While the bandwidth can be changed, this may lead to some discretionality in the treatment of differ-

ent countries or periods so we refrain from that.

As an illustrative example for the other economies’ densities, we report results for one advanced

economy and one emerging market, namely Switzerland (panel [a]) and Turkey (panel [b]).30 Figure 5

shows that also in the case of other economies the predictive densities move during bad times and that

the mode of the density is relatively close to the actual realization. The results show that the assump-

tion of Gaussianity for other economies does not significantly affect the accuracy of the forecasts.

28The sample period generally starts in the early 1990s, except in the case of India, for which data are available from
1997q1.

29For Brazil, we take 2016q; for India, 2019q3; for Japan 2019q2; for Russia 2015q4; and for Mexico and the United
Kingdom we take a quarter in the middle of the global financial crisis, 2009q3.

30For Turkey we compare 2006q1 to 2018q2 and for Switzerland we report 2006q1 and 2009q3. The full set of other
economies’ densities are available upon request.

16



Figure 2: Predictive Density of the United States and the Euro Area from the Joint Distribution

(Four-quarter ahead forecast, percent)
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(b) 2008q4
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(c) 2009q1
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(d) 2009q2

-8.0 -6.0 -5.0 -3.0 -1.0 0.0 2.0 4.0 6.0 7.0
United States

8.0

6.0

5.0

3.0

1.0

-0.0

-2.0

-4.0

-6.0

-7.0

Eu
ro

ar
ea

(e) 2009q3

-8.0 -6.0 -5.0 -3.0 -1.0 0.0 2.0 4.0 6.0 7.0
United States

8.0

6.0

5.0

3.0

1.0

-0.0

-2.0

-4.0

-6.0

-7.0

Eu
ro

ar
ea

(f) 2012q3
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Notes: Brighter colors indicate higher probability.
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Figure 3: Interval Forecast Evaluation for Large Economies

(Four-quarter ahead forecast, percent)
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Notes: The light blue and dark blue shades denote the estimated 5–
95 and 25–75 percentile range of the predictive densities, the red line
denotes the mode of the predictive density, and the black line denotes
actual GDP growth.
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Figure 4: Predictive Density of Regional Leaders

(Four-quarter ahead forecast, percent)
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(c) Japan
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Notes: The blue lines denote the predictive densities in a quarter of ‘normal times’ (i.e. 2006q1). The red lines de-
note the predictive densities during GDP growth slowdowns or recessions (the quarter in this case varies by coun-
try). The blue and red vertical dashed lines denote the GDP growth realizations in the corresponding quarters.
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Figure 5: Predictive Density of Other Countries

(Four-quarter ahead forecast, percent)
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Notes: The blue lines denote the predictive densities in a quarter of ‘normal times’ (i.e. 2006q1). The red lines denote the
predictive densities during GDP growth slowdowns or recessions (the quarter in this case varies by country). The blue
and red vertical dashed lines denote the GDP growth realizations in the corresponding quarters.

We now turn to the results for the world. Figure 7 shows the interval forecast of the predictive

density for global GDP growth. This reveals that growth fell within the 25–75 percentile range of the

predictive density most of the time. Since 2006 the 5–95 percentile range ranges between 1.8 percent

and 6.4 percent, with the exception of the global financial crisis and the euro-zone crisis when the 5

percentile of the distribution reached -2.6 percent and -2 percent, respectively. As the global financial

crisis is a unique event in the dataset, our data-driven approach struggles in predicting it and only does

so with a lag.31 However, as the technique leverages on past data, the interval forecast shows a signifi-

cant downward skewness in correspondence of the euro-zone crisis.

The results of the global GDP growth density can be used to compute the probability that global

GDP growth slows below a given threshold. To set a meaningful threshold, we take the global GDP

growth rate corresponding to the 25th percentile of the historical distribution, which is about 3 per-

cent. In Figure 6, we plot the probability associated with a GDP growth outcome below 3 percent over

the entire sample period. The probability of a significant slowdown was unsurprisingly high during the

global financial crisis. It is interesting that the left tail was already wide enough to predict a high prob-

ability of a slowdown at the end of 2007. The probability spiked again to about 60 percent in 2011 and

2012, and then again in 2015. Since 2017, it started to crawl upwards and reached about 43 percent in

2020.

The user of our approach might be interested in forcing the mode of the derived predictive density

to an alternative central tendency. In the case of the IMF, for example, the mode should correspond

to the baseline IMF WEO projection for global GDP growth. This is calculated as a PPP-weighted

average of the individual country projections based on different models and, importantly, on informed

judgement, which are meant to convey the desk estimate of the most likely GDP growth outcome. To

do that, there are at least two options. A first option is to fit a parametric distribution with a con-

straint on the mode, which requires choosing across a wide family of parametric distributions. To limit

31This is not uncommon in the literature. Adrian et al. (2019b) also show that their approach based on quantile re-
gressions fails to predict the collapse in output in the US during the global financial crisis.
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Figure 6: Interval Forecast Evaluation for the World

(Four-quarter ahead forecast, percent)
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Notes: The light blue and dark blue shades denote the estimated 5–
95 and 25–75 percentile range of the predictive densities, the red line
denotes the mode of the predictive density, and the black line denotes
actual GDP growth.

Figure 7: Probability of a global GDP Growth Slowdown

(Four-quarter ahead forecast, percent)
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Notes: The blue line denotes the probability associated with global GDP
growth falling below the 25th percentile of the historical distribution
(i.e., 3 percent).

arbitrariness, the minimum Kolmogorov-Smirnov distance between the empirical distribution and the

parametric one can be used as a criterion.32 A second option is to use a rejection sampling algorithm.

This consists of a procedure in which a new sample is generated from the original one, so that the new

sample exhibits particular features of interest. Specifically, the idea is to draw points from the original

sample, and reject some points with a certain probability if they do not respect a given criteria. In our

case, the probability of rejection is proportional to the distance of the drawn points to the mode of the

32One could also pre-select a parametric distribution. A particularly attractive option is the skewed-t distribution,
which has a flexible probability density function with four parameters. Thus, all parameters but the location would be
optimized to reflect the empirical distribution.
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new sample. This approach ensures that the new sample distribution not only has the desired mode,

but also that the moments of the distribution are as consistent as possible with the original data gener-

ating process, because points are randomly drawn from the original unconstrained sample.

In figure 8, we present an illustrative example of these two approaches based on the global pre-

dictive density for 2019q4, estimated with data up to 2018q4. Specifically, in panel (a) we plot the

sampled density with a histogram, as well as the kernel fit and some alternative parametric fits: the

skewed-t distribution, used in Adrian et al. (2019a) and in the IMF GFSR, the asymmetric-t distribu-

tion; and the best parametric fit among the beta distribution, the skew normal distribution, and the

Weibull distribution. The sampled density of the global GDP growth distribution for 2019q4 varies be-

tween one and six percent, it is broadly symmetric and presents a mode of 3.2 percent. It is evident

that parametric distributions do a better job than others at tracking the empirical distribution. In this

case, for example, the Kolmogorov-Smirnov distance is the smallest for the beta distribution, which

overlaps with the kernel fit. However, in some other cases, it is the skewed-t that produces the small-

est Kolmogorov-Smirnov distance. Thus, given the flexibility of our approach, the preferred parametric

form can be chosen on a case-by-case basis. In panel (b), we force the mean to the IMF WEO projec-

tion of 2.9 percent. Forcing the mode affects the tails and asymmetry of the distribution, highlighting

the importance of the mode accuracy prediction. In this example, this leads to a modest change in the

symmetry of the sample density obtained via rejection sampling, which becomes slightly skewed to the

right. We re-fit all the parametric distributions and observe that, again, the beta distribution is the

one better capturing the underlying sampled density.

4.2 Evaluating the Accuracy of Density Forecasts

The literature on density evaluation proposes two main approaches to assess the quality of a density

forecast. The first approach includes methods that assess the absolute performance, that is how accu-

rate is the specification of the conditional predictive density. These methods include the probability

integral transform (PIT) (see Diebold et al., 1999 and Rossi and Sekhposyan, 2019, among others) and

entropy measures. The second approach evaluates the relative performance, comparing competing pre-

dictive densities. Examples of this second approach include testing the equal predictive ability based on

logarithmic scoring rules and expected shortfall and longrise.33. This section presents the tests and the

results based on both approaches.

4.2.1 Probability Integral Transform

As explained in Rossi (2014), “a PIT is the cumulative probability evaluated at the actual, realized

value of the target variable. It measures the likelihood of observing a value less than the actual real-

ized value, where the probability is measured by the density forecast.” That is, very small outcomes

corresponding to 1 percent and 5 percent of the left tail of their probability forecasts would be assigned

PIT values of 0.01 and 0.05, respectively. Similarly, an outcome in the middle of the probability distri-

bution would be assigned a PIT value of 0.5, and large outcomes that are expected to occur with little

33The relative performance can also be tested using the Kullback-Leibler Information Criterion (KLIC). See Amisano
and Giacomini (2007) for a comparison between scoring rules and the KLIC
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Figure 8: Forcing the Mode of the Predictive Density of Global GDP Growth

(Four-quarter ahead forecast, percent)

(a) Unconstrained fitting
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(b) Constrained fitting
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Notes: The panels present the predictive density for 2019q4. The red
line denotes the fitting of the skewed-t distribution; the green line denote
the fitting of the asymmetric t distribution; the grey line denotes the fit-
ting of the kernel; the blue line denotes the fitting of the best parametric
fit among the beta distribution, the skewed-normal distribution, and the
Weibull distribution; the grey bars denote the sampled density; and the
vertical dashed line denotes the IMF, WEO projection for 2019q4.

probability would be assigned PIT values close to one.

Diebold et al. (1999) show that, for correctly specified probability forecasts, the PIT values should

be uniform, independent, and identically distributed. The uniformity property can then be used to ar-

gue that if, for example, we observe 30 out of 100 probability forecasts in the 5 percent probability re-

gion with PIT values between 0.01 and 0.05, the specification for the predictive density is misspecified.

This is because such outcomes would be highly unlikely if the probability forecasts were correctly spec-

ified. In fact, we should expect to find only 5 observations with PIT values below 0.05. In other words,

in this case the predictive density overestimates the likelihood of large negative outcomes. Thus, a test

of the correct specification of density forecasts simply involves plotting the empirical distribution of the
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PIT.34 If the PITs were uniform, their cumulative distribution function would be close to a 45-degree

line.

We report the results from the PIT test in Figure 9. Specifically, we show the empirical cumulative

distribution function of the PIT of world GDP growth four quarters ahead, as well as the theoretical

PIT (i.e., the 45-degree line) and the confidence bands around it.35 The results indicate that the em-

pirical distribution of the PIT is within the confidence band for all quantiles, even for the most conser-

vative confidence band based on 10 percent critical values. This suggests that the approach followed in

this paper has a satisfactory out-of-sample accuracy and that it generates robust predictive distribu-

tions that capture well upside and downside risks.

Figure 9: Probability Integral Transform Test

(Four-quarter ahead forecast)
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Notes: The blue line denotes the empirical cumulative distribution func-
tion of the PIT, the red line denotes the theoretical cumulative distribu-
tion function of the PIT, and the black dash, dash-dotted, and dotted
lines denote the confidence bands constructed off alternative critical val-
ues from Rossi and Sekhposyan (2019).

4.2.2 Entropy Measures

Another way of assessing the out-of-sample accuracy is to compute downside and upside entropy met-

rics. These compare the probability assigned to extreme growth outcomes by the conditional density to

the probability assigned by the unconditional density. In other words, entropy corresponds to the extra

probability mass that the predicted density assigns to the extreme right and left tail outcomes relative

to the probability of these outcomes under the unconditional density. Following Adrian et al. (2019b),

we define the upside entropy, LUt , and the downside entropy, LDt , of ĝyt`h
pyq relative to f̂yt`h|xt

py|xtq

as:

34Testing for independence of the PIT can be done via a correlogram of the PIT, as explained in Diebold et al. (1999).
35Rossi and Sekhposyan (2019) derive the critical values for probability forecasts computed using a rolling scheme,

assuming uniformity and independence of the PIT.
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LDt pf̂yt`h|xt;ĝyt`h
q “ ´

ż F̂´1
yt`h|xt

p0.5|xtq

´8

´

logĝt`hpyq ´ logf̂yt`h|xt
py|xtq

¯

f̂yt`h|xt
py|xtqdy (12)

LUt pf̂yt`h|xt;ĝyt`h
q “ ´

ż 8

F̂´1
yt`h|xt

p0.5|xtq

´

logĝt`hpyq ´ logf̂yt`h|xt
py|xtq

¯

f̂yt`h|xt
py|xtqdy (13)

where F̂yt`h|xt
py|xtq is the cumulative distribution associated with f̂yt`h|xt

py|xtq and F̂´1
yt`h|xt

p0.5|xtq

is the conditional median.

Figure 10 shows the evolution of the upside and downside entropy measures for the four-quarter

ahead global GDP growth forecast. To perform this test, we fit the parametric distribution that min-

imizes the Kolmogorov-Smirnov distance between the empirical distribution and the parametric one.

Compared to the unconditional density, the conditioning factors contribute to a higher probability of

worse global GDP growth outcomes in the run-up to the global financial crisis. However, when the

global financial crisis erupted, the conditional density shows fatter tails, indicating a significant increase

in uncertainty. In fact, as the mode quickly shifted to worse outcomes, the conditional density shows

an increased probability of a return to pre-crisis growth as well as an increase probability of a further

worsening. During the euro area crisis, downside entropy remained high, suggesting that our condition-

ing factors contributed to predict higher downside risks compared to the unconditional density. Finally,

while upside and downside entropy comove to some extent, downside entropy is more volatile than up-

side entropy.

Figure 10: Growth Entropy

(Four-quarter ahead forecast, value of upside and downside entropy)
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Notes: The blue and red lines denote the upside and downside entropy,
respectively, calculated relative to the unconditional distribution.

4.2.3 Expected Shortfall and Longrise

A complementary piece of information is given by the expected shortfall and longrise. These convey in-

formation about the tails of the predictive density. Differently from the entropy measures, the expected
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shorfall and expected longrise are absolute measures. Hence, if both the conditional and unconditional

distribution have large left tails, the downside entropy will be low and the expected shortfall will be

high. We compute the expected shortfall,SF , and longrise, LR, for a certain probability π as:

SFt`h “
1

π

ż π

0

F̂´1
yt`h|xt

pτ |xtqdτ (14)

LRt`h “
1

π

ż 1

1´π

F̂´1
yt`h|xt

pτ |xtqdτ (15)

Figure 11 report the expected shortfall and longrise, for the 5th and 95th percentiles respectively,

over time for the four-quarter ahead global GDP growth forecast. In line with the results obtained with

the entropy metrics, when the downside entropy spikes up at the time of the global financial crisis the

expected shortfall also moves quite significantly. This also happens in correspondence of the euro area

crisis. Such similarity between the downside and upside entropy measures and the expected shortfall

and longrise reveals non-Gaussian behavior of the global GDP growth predictive density.

Figure 11: Expected Shortfall and Longrise

(Four-quarter ahead forecast, value of expected shortfall and longrise)
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Notes: The blue and red lines denote the expected longrise and expected
shortfall computed at the 95th and 5th percentiles, respectively.

4.2.4 Log Scores

Log scores allow to test the predictive density against a benchmark performance (see Corradi and Swan-

son, 2006 and Amisano and Giacomini, 2007). In particular, they compare ex-post what was the prob-

ability associated ex-ante with the realization f̂tpyt`hq. In other words, they evaluate the accuracy of a

forecast distribution, given that a certain outcome was observed.

Consider a stochastic process yt`h and its density forecast in period t, f̂t. The likelihood score

function S is defined as:

Spf̂t, yt`hq “ logf̂tpyt`hq (16)

26



The null hypothesis of equal performance between two density forecasts f̂tpyt`1q and ĝtpyt`1q can

be formulated using the score differential dlst`1 “ Spf̂t, yt`1q ´ Spĝt, yt`1q. Let d̄m,n be the average of

the score differences between quarters m and n “ T ´m. To test the null hypothesis H0 : Er ¯dm,ns “ 0

against the alternative Ha : Er ¯dm,ns ‰ 0 (or ă 0 or ą 0), the following Diebold and Mariano (1995)

test statistic can be used:

tm,n “
d̄m,n

b

σ̂2
m,n{n

where σ̂2
m,n is a heteroskedasticity and autocorrelation-consistent variance estimator of σ2

m,n “

Varp
?
nd̄m,nq, which satisfies σ̂2

m,n ´ σ
2
m,n

p
Ñ 0.

We test for equal performance between the conditional predictive density and the unconditional

one. The results from the test indicate that the average logscore difference between the two predictive

densities is 0.7 and that null hypothesis of equal performance is rejected at the 95 percent confidence

interval. This confirms the better performance, in relative terms, of the conditional predictive density.

5 Conclusions

In the past few decades, the use of predictive densities and the associated fan charts became common

in many central banks and policy-making institutions. Predicting the global GDP growth density poses

a series of challenges as countries’ GDP growth dependent on each other. That is, country aggregates

are subject to tail dependence: when one country suffers a negative shock, other countries are more

likely to suffer negative shocks as well. Besides, the low frequency of GDP data and the relatively short-

time frame of GDP series for some large economies further complicate the estimation of predictive den-

sities.

In this paper, we propose a novel approach to obtain the predictive density of global GDP growth,

which relies on a bottom-up probabilistic model that estimates and combines single countries’ predic-

tive densities. At the cost of a few assumptions, our proposed method characterizes the probability of

each state of the world allowing for inter-dependencies across large economies, potential amplification

effects stemming from regional dynamics, and the endogenous reaction of other economies at different

points of the joint distribution. Importantly, it circumvents the problem of density aggregation by em-

ploying sampling techniques, which allow to preserve the consistency needed to perform ex-post aggre-

gation. Also, our approach incorporates country-specific information, while remaining agnostic about

the data generating process at the country level and on the cross-country dependency.

Our results suggest that the obtained density provides generally accurate forecasts of the central

tendency of global GDP growth and describes well the risks around it. Moreover, density evaluation

exercises point to a satisfactory out-of-sample performance.
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Appendix A. Sample and Data Sources

Table 1 lists the economies in the sample along with each economy’s share of world output as of

2018q4, and Table 2 lists the data sources used in the paper.

Table 1: Sample

Economy PPP share in 2018q4

Large economies 45.25
China 18.66
Euro area 11.40
United States 15.19

Regional leaders 22.22
Brazil 2.50
India 7.74
Japan 4.12
Mexico 1.90
Russia 3.12
South Africa 0.58
United Kingdom 2.26

Smaller economies 19.50
Argentina 0.68
Australia 0.97
Belarus 0.14
Canada 1.36
Chile 0.36
Colombia 0.55
Croatia 0.08
Czech Republic 0.29
Denmark 0.22
Hong Kong SAR China 0.35
Hungary 0.23
Indonesia 2.58
Israel 0.25
Jordan 0.07
Kazakhstan 0.38
Korea 1.65
Malaysia 0.75
Moldova 0.02
Norway 0.29
Peru 0.34
Philippines 0.70
Poland 0.90
Romania 0.38
Serbia 0.09
Singapore 0.42
Sweden 0.41
Switzerland 0.41
Taiwan Province of China 0.92
Thailand 0.98
Turkey 1.70
Ukraine 0.29
Venezuela 0.23
Vietnam 0.52
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Table 2: Data Sources

Variable Source

Business confidence Federal Reserve Economic Data for the US; and Haver Ana-
lytics for other countries

Consumer confidence Federal Reserve Economic Data for the US; and Haver Ana-
lytics for other countries

Commodity terms of trade Gruss and Kebhaj (2019)
Economic policy uncertainty Baker et al. (2016)
Financial Condition Index Federal Reserve Economic Data for the US; and IMF, Money

and Capital Market Department database for other countries
Geopolitical uncertainty Caldara and Iacoviello (2018)
Import demand IMF, Global Assumption Dataset
Industrial production Fred for the US; and Haver Analytics for other countries
Population IMF, World Economic Outlook
PPP share IMF, World Economic Outlook
Purchasing managers’ index Haver Analytics
Real effective exchange rate IMF staff calculations
Real GDP IMF, World Economic Outlook
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