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Abstract

We develop a framework to nowcast (and forecast) economic variables with machine
learning techniques. We explain how machine learning methods can address common
shortcomings of traditional OLS-based models and use several machine learning models to
predict real output growth with lower forecast errors than traditional models. By combining
multiple machine learning models into ensembles, we lower forecast errors even further. We
also identify measures of variable importance to help improve the transparency of machine
learning-based forecasts. Applying the framework to Turkey reduces forecast errors by at
least 30 percent relative to traditional models. The framework also better predicts economic
volatility, suggesting that machine learning techniques could be an important part of the
macro forecasting toolkit of many countries.
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Deus ex machina (noun)
de-us ex ma-chi-na | 'da-as-, eks- 'md-ki-na

“An unexpected power or event that saves a situation that seems without hope, especially in
a play or novel.”

—Oxford Dictionary

I. INTRODUCING MACHINE LEARNING

Traditional forecasting methods often provide poor macro forecasts. Techniques based
on ordinary least squares (OLS) struggle to overcome several issues, including collinearity,
dimensionality, predictor relevance, and nonlinearity. Some state-of-the-art forecasting
models, including dynamic factor models, can help address collinearity and dimensionality
problems, but do not address predictor relevance and nonlinearity problems. As a result, even
state-of-the art forecasting models often result in large forecast errors. Furthermore, dynamic
factor models perform particularly poorly when the variable to be predicted is volatile, such
as output growth in many emerging market and developing economies.

Machine learning (ML) methods present an alternative to traditional forecasting
techniques. ML models can outperform traditional forecasting methods because they
emphasize out-of-sample (rather than in-sample) performance and better handle nonlinear
interactions among a large number of predictors. ML methods are specifically designed to
learn complex relationships from past data while resisting the tendency of traditional
methods to over-extrapolate historical relationships into the future. Indeed, a literature is
beginning to emerge which suggests that ML methods often outperform traditional linear
regression-based methods in terms of accuracy and robustness.>

We develop a framework to use ML methods for macro forecasting. We use the
framework to nowcast (and forecast) economic growth in Turkey and are able to reduce
forecast errors by at least 30 percent relative to traditional models. Importantly for Turkey
and other countries with volatile economies, the framework also better predicts large swings
in the growth rate, suggesting that machine learning techniques could be an important part
the macro forecasting toolkit of many countries. We also attempt to improve transparency
and interpretability of ML forecasts by uncovering the contribution of each predictor to
individual forecasts.

2 For example, Smeekes & Wijler (2016) and Carrasco & Rossi (2016) find that penalized ML methods tend to
outperform traditional factor models in terms of forecast accuracy. The former also show that ML methods are
more robust to model misspecification. Tu & Lee (2018) show that traditional factor models tend to be inferior
to supervised factor models that perform variable selection. Kim & Swanson (2014) assess the predictive
accuracy of both traditional, ML and ‘hybrid’ forecasting methods and find that the latter two dominate in most
settings. Tiffin (2016), Jung et al. (2018), and Richardson et al. (2018) use different ML methods to forecast
GDP growth for several countries. Smalter Hall (2018) employs ML methods to forecast unemployment in the
United States and Medeiros et al. (2018) forecast inflation in Brazil.



II. THE BASICS OF FORECASTING—A BIAS-VARIANCE TRADEOFF

All forecasting methods aim to minimize expected forecast errors. Forecasting consists of
selecting a function that maps indicator data to a forecast while minimizing a particular loss
function. Suppose a researcher wants to forecast a variable y; (e.g., real GDP growth) using
K predictor variables summarized in the K X 1 vector X, with the h-step ahead forecast of y,
denoted as y;,p:

Vern = f(Xe) + €c4n

where €, is an error term. The goal is to forecast y;,, by choosing the function f(-) that
minimizes the average loss:

min L (yeen- f(X0)
where L(-) is a loss function that assigns relative weights to different forecast errors. If the
loss function is quadratic, for example, the expected loss to minimize by picking the function
F(X,) = V7 can be decomposed as (James et al., 2013):

E(f(X)-Vean)?) = [EGan)- f XD + Var[yeaa] + gf (D
exp. squared forecast error squared bias variance irreducible error

where the first term on the right-hand side is the squared bias of the forecast, the second term
is the variance of the forecast and the third term is the idiosyncratic contribution of the error
term to total loss.

The optimal forecast uses the past to predict the future without over-extrapolating.
Minimizing the loss function (1) amounts to picking the function f(X,) that minimizes the
expected sum of the squared bias and the variance of the forecast. Unfortunately, it is typically
impossible to reduce both terms simultaneously (Annex I). This bias-variance tradeoff is a
central concept in both the forecasting and the machine learning literatures (James et al.,
2013). In general, more complex forecasting models exhibit lower bias, because they better
capture nuances in the mapping from X to y,,,.> However, as complex models provide
sharper predictions, they are also more likely to capture perturbations (or ‘noise’) in the
historical data that are uninformative for future predictions. This tendency, known as
‘overfitting’, increases the variance of forecasts, potentially resulting in higher forecast errors.

3 There is no universal definition of complexity in the ML literature, as the degree of complexity often depends
on the nature of the underlying learning model. Common sources of complexity are the number of included
variables (e.g., penalized linear models), the number of parameters a model ‘learns’ (e.g., random forest), the
number of relationships specified (e.g., neural networks), and the number of observations used per individual
prediction (e.g., nearest neighbors).



A. Shortcomings of OLS-Based Forecasting Methods

Forecasting methods based on OLS struggle to optimize the bias-variance tradeoff. Suppose
the predictors are mean zero and the error term is i.i.d. N(0, 0?) and independent of X, (Stock &
Watson, 2006). With OLS, the expected loss under the quadratic loss function becomes:

E((F60-385)) = [EGmm- FOOP + (XX, 2+ 1o @

and several issues arise, including:

e Collinearity. The variance of the OLS forecast is increasing in the degree of
correlation between predictors. To see this, note that the expected value of the inner
product X;'X; (for a given observation) equals the covariance of X;. The more
correlated the predictors are, the higher this covariance.

e Dimensionality. The variance of the OLS forecast is increasing in the number of
predictors, K. To see this, suppose the predictors X; are orthogonal such that

%Zfﬂ X:X{ = Ix (a K X K identity matrix). In this case it can be shown that (Stock &
Watson, 2006):

— — cKo?
577 ~ (& (7). <5

where c is a constant. For a given number of historical observations, T, the variance of
the forecast is proportional to the number of predictors.

e Predictor relevance. Related to dimensionality, irrelevant predictors unambiguously
increase the forecast error because they do not reduce bias, but increase the forecast
variance by increasing X, X;.

¢ Nonlinearity. If the data-generating process (DGP) is non-linear, the OLS forecast is
biased. To see this, note that the first term on the right-hand side of (2) is minimized at
zero if f(X;) = E(¥¢+n), Which is the case if the underlying model is linear, i.e.,

f(Xt) = B'X;.

State-of-the-art forecasting techniques such as dynamic factor models can address some
of these issues. Specifically, factor models (Annex II) aim to address collinearity and
dimensionality by summarizing the variation in the predictor data using a small set of
orthogonal factors.* In particular, if the selected indicators capture the underlying forces that
affect the forecasted variable, and there is a high degree of co-movement among indicators,
this variation can be explained by a small set of latent variables (Sargent & Sims, 1977).

4 For a detailed review, see Stock & Watson (2006, 2011, 2012, 2017) and Bai & Ng (2008).



Factor models do not, however, address predictor relevance or nonlinearity. In
attempting to summarize the information content of a large number of predictors into a small
number of factors, there may be settings where the predictors follow a factor structure, but
the factors do not predict the forecast variable (Tu & Lee, 2018). While factor models can
help reduce dimensionality, they do not provide a means to identify the most relevant
predictors. Furthermore, factor models rely on the assumption that the DGP follows a linear
factor structure, which may not necessarily be the case.

B. The Advantages of Machine Learning Methods

Unlike traditional forecasting techniques, ML methods are specifically designed to
optimize the bias-variance tradeoff. In particular, ML models can address the above issues
with which traditional forecasts have struggled because they select predictors to optimize out-
of-sample (rather than in-sample) performance and are better able to handle nonlinear
interactions among a large number of predictors (Annex III). In this study we focus on three
specific ML methods: Random Forest; Gradient Boosted Trees; and Support Vector Machines.

Random Forest (RF) is an algorithm that uses forecast combinations of multiple
decision trees to construct an aggregate forecast. The key elements of RF include:

e Decision trees. A decision tree is an algorithm that repeatedly separates categorical data
into two groups, with each split chosen by the algorithm to yield the largest reduction in
the forecast error of the variable of interest. Regression trees are a type of decision tree
used for predicting a continuous variable and are particularly well suited for nonlinear
relationships. A regression tree minimizes the forecast error by repeatedly splitting the
continuous data into two groups, with a prediction for each group that is based on the
mean of that group’s data (Hastie et al., 2009).° Decision trees can be as complex (i.e.,
long) as needed to fit to the in-sample data well. However, they often ‘overfit’ the in-
sample data at the expense of out-of-sample performance Also, decision trees use local,
rather than global, optimization which can create path dependence and model
instability. Modifications to the basic decision tree, such as random sampling, are often
made to prevent overfitting and improve model performance.

e Random sampling. RFs modify the decision tree approach in two ways to maximize the
information content of the data by using subsamples of observations and predictors.
First, they use bootstrap aggregation (‘bagging’) by building each individual tree on
only a random sample of the observations in the training data. Second, at each split in
the tree, the RF algorithm uses only a random subsample of the predictors. Bagging
therefore generates a large number of uncorrelated trees. Individually, the trees tend to
have low bias but poor out-of-sample accuracy due to high variance (i.e., they overfit

5> Formally, regression trees pick regions R,,, and region predictions c,, (for M different regions) and:
min{lecm}%zl Yy — Xm=1 cml (X¢ € Ryp)I?



on the training data). However, for a large enough number of uncorrelated trees, these
errors tend to average out to zero. RF is one of the most popular ML algorithms
available because it is computationally easy to use and requires almost no tuning of
model parameters. This makes it an ideal algorithm for forecasting on time-series data
with relatively few observations.

Gradient Boosted Trees (GBT) is an algorithm that constructs sequential decision trees
to learn from previous trees’ errors. Just like the RF, GBT combines individually-weak
trees into a robust forecast. The algorithm starts out by training an initial decision tree on the
historical data. It then uses the prediction errors from the first tree to train a second tree. In
turn, the errors from the second tree are used to train the third tree, etc. After the final
iteration, the algorithm uses the sum of the individual predictions for the final forecast.®
Whereas RF combines relatively deep trees with low bias and high variance, GBT combines
relatively shallow trees with high bias and low variance. As each subsequent tree targets the
bias from the previous tree, the bias errors of subsequent trees tend to sum towards zero,
resulting in an overall prediction with both low bias and low variance.

Support Vector Machine (SVM) is an algorithm that constructs hyperplanes to
partition predictor combinations and make a point forecast for each of the sections.
Unlike tree-based algorithms, SVM is similar to kernel regression with a penalty imposed on
the use of coefficients (i.e., penalized kernel regression). Formally, SVM regressions find the
function f(X;) = X;'B + b and observation-specific slack constants {; and {; that minimize
BB+ CY(C+T;), subjecttoy; — f(X;) < €+ {; and f(X;) —y; < € + ;. The complexity
parameters € and C govern the acceptable margin and the penalty imposed on observations
that lie outside this margin. The cost parameter, C, mainly determines the degree of model
complexity. If C = 0, the algorithm disregards individual deviations and constructs the
simplest hyperplane for which every observation is still within the acceptable margin €. For
sufficiently large C, the algorithm will construct the most complex hyperplane that predicts
the outcome for the training data with zero error, i.e. the algorithm will fit the training data
perfectly. Through cross-validation, SVM finds the optimal value of C that balances this
bias-variance tradeoff and maximizes out-of-sample accuracy on the historical data.

I11. A FRAMEWORK FOR MACRO FORECASTING WITH MACHINE LEARNING
A. Limiting Preselection

We apply the framework to Turkey, a country for which traditional forecasting
techniques have been unsatisfactory. We collect a database of country-specific and global
indicators, with 234 separate series in total (Tables A5.1 and A5.2). The data consist of an
array of mixed-frequency (monthly and quarterly) leading and coincident indicators from

% Let F;(X.) denote the in-sample prediction from the first decision tree. The second tree thus constructs the tree
that solves ming,(x,) X[ye— F1 (X¢)- F,(X.)]? , the third tree solves ming, x,) X[y~ Fi (Xp)- F,(X,) — F3(X)]?
etc. With three trees, the final forecast equals F, (X,) + F,(X,) + F5(X,).



Haver Analytics. We then apply some basic transformations to each raw indicator. In
addition to deflating nominal indicators where appropriate and including 12 lags, we include
two transformations of each indicator series. For stationary variables (e.g., capacity
utilization, consumer confidence), we use the level and quarter-on-quarter difference. For
non-stationary variables (e.g., production, money) we take first- and second-order log
differences. Moreover, we construct several indicators such as the sovereign term spread,
sovereign yield spread, the US sovereign term spread, and the US high yield spread.’

We use hard thresholding to help address the dimensionality problem of a large set of
predictors. More data is not always better and can increase forecast errors even when using
dimensionality reduction techniques (Boivin & Ng, 2006). Hard thresholding (Bai & Ng,
2007) consists of regressing the forecast variable on its lags and each individual indicator and
selecting all indicators with an absolute t-statistic above a certain threshold. In this case, the
threshold is obtained by comparing out-of-sample performance of forecasts across a range of
thresholds and choosing the threshold that delivers the lowest forecast errors.

B. Identifying Complementary Algorithms

The chosen ML models (RF, GBT, and SVM) are relatively simple and accessible. All
three models require little parameter tuning and are thus less likely to overfit than other types
of ML models.® In addition, all three models are computationally relatively inexpensive.

The three models are also complementary. We combine the individual ML models into
several ensembles. Ensembles can lower forecast errors relative to any of the individual
models by producing a single, weighted forecast of the individual models. Ensembles tend to
outperform individual forecasts, especially when the models are relatively independent yet
similar in forecast accuracy (Timmermann, 2006). In this case, we combine the forecasts of
the three models using equal weights (Ensemble 1), inverse root mean squared error (RMSE)
weights (Ensemble 2) and inverse-RMSE rank weights (Ensemble 3).

Our ensembles combine the best aspects of the individual models. More complex ML
methods such as SVM tend to overfit when training data is relatively limited (e.g., short time
series), resulting in predictions that are sensitive to small perturbations in the leading
indicators. As such, SVM acts as a counterweight against GBT and RF, which tend to

7 A common drawback of assembling a large dataset is that many series may have missing observations for a
significant period of time. ML techniques offer a way to impute missing values in order to take advantage of all
available indicators and observations. Specifically, the algorithm we use initially imputes the missing values
with each indicator’s median, then runs a Random Forest. It then replaces the missing value of an indicator with
the weighted average of the non-missing observations, where the weights are the proximities (i.e., the fraction
of final nodes shared by two observations) of the random forest.

8 Avoiding overfitting to a complex model is our main reason for not deploying neural networks, which tend to
require large datasets for good performance. Indeed, in Jung et al. (2018) elastic net tends to outperform
recurrent neural networks when forecasting GDP growth. We avoid linear penalized regression methods such as
ridge, LASSO and elastic net because they are sensitive to large, unexpected changes in predictor values that are
not in the training dataset. As a result, forecasts using these methods tend to be unstable for datasets like ours.
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outperform during stable periods of growth, whereas the SVM is more likely to pick up the
effect of extreme shocks.

C. Evaluating Performance and Interpreting Results

To evaluate model performance, we use rolling out-of-sample forecasts. This method
provides an intuitive test of how the models would have performed in the past. Specifically,
for each individual nowcast, we split the historical data available at the time of the nowcast
into a training set and a test set and use cross-validation techniques to tune the parameters of
the model (Annex III). Once calibrated, we then run the model using all historical data
available at that time to obtain each individual nowcast, and ultimately assess the
performance of the model.

We also assess the importance of each predictor by constructing variable importance
measures for each of the ML models. To improve transparency and interpretability of our
ML forecasts, we identify the contribution of each predictor to individual forecasts. Shapley
Values provide an intuitive summary of each variable’s contribution to the forecast’s
deviation from its historical mean (Annex IV).

IV. RESULTS—MORE ACCURATE FORECASTS

Individual ML methods can improve forecast performance. Figure 1 plots the RMSE of

the benchmark factor quel nowc.ast, against the Figure 1. Nowcast RMSE
RSME of the three machine learning models

(RF, GBT and SVM) for the 2012— 2019 Benchmark

period.” The benchmark has a RMSE of 1.66, ¥

. .. GBT
which corresponds to a mean absolute deviation

of about 1.2 percentage points per nowcast.
Using RF, GBT, or SVM reduces the RMSE by
24,22, and 18 percent, respectively. We find
similar improvements for the forecast models
(Figure A5.1), where the RF and GBT
outperform the benchmark by 18 and 22 percent.

SVM
Ensemble 1 (equal)

Ensemble 2 (MSE)

Ensemble 3 (MSE rank)

o

03 0.6 0.9 12 15 18
RMSE, 2012-2019

ML methods not only increase average accuracy, but also better predict economic
volatility. Figure 2 plots the rolling out-of-sample nowcasts against actual quarterly real GDP
growth. While the forecasts of the benchmark factor are relatively stable, the three ML
methods all better predict the large growth swings seen in 2014, 2016 and 2018-19. Figure 3
plots the RMSE for the different nowcast models for ‘volatile’ quarters only, where we define a
volatile quarter as one with a more than 3 percentage points higher or lower growth rate than

 We compare the performance of the ML models and ensembles against a more traditional forecasting model.
As a benchmark, we use a static dynamic factor model (DFM). We employ three factors, as is standard in the
DFM literature (Barhoumi et al., 2013).
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the previous quarter. In this setting, SVM outperforms any of the models, improving upon the
factor model by 39 percent. Moreover, the ML methods tend to move closer to the actual

quarterly growth rate as we get closer to the end of the quarter. These patterns are similar in
case of the forecast (Figure A5.2).

Figure 2. Individual Model Nowcasts vs. Actual Real GDP Growth
(percent, quarter on quarter seasonally adjusted)

7 7
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The accuracy of ML methods increases with the availability of training data. Figure 4
plots the smoothed root-squared (or absolute) error of the benchmark model and the ML
methods. Relative to the benchmark, nowcast errors decrease substantially over time as more
data become available to train and test the models. From 2012 to 2019, RF and GBT gain
roughly 60 percent in accuracy relative to the benchmark, while the SVM lowers errors by
almost 80 percent. Again, we observe similar patterns for the forecast (Figure AS.1).

Figure 3. Nowcast RMSE, Volatile Quarters Figure 4. Nowcast Smoothed RSE

2.0
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GBT SVM
SVM 10 \\
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Different ML methods have different strengths, making them ideal as combinations in
ensembles. RF seems to have good predictive performance overall, but does not fully capture
the large swings in growth (Figure 2). Predictions from GBT are a bit more volatile, but also
better capture the large swings in growth. SVM appears best at capturing the large swings,
but at the expense of even more volatility.

Ensembles exploit the different strengths of the individual ML models to further
improve predictions. Figure 5 plots the RMSE of the three ensemble nowcasts and the
benchmark factor model for the 2012-2019 period. The ensembles differ little in terms
overall performance. All outperform the benchmark by about 33 percent, which is an
improvement of at least 9 percentage points compared to the individual models. The
outperformance of the ensembles is also more stable over time.

Figure 5. Ensemble Model Nowcasts vs. Actual Real GDP Growth
(percent, quarter on quarter seasonally adjusted)

@ Ensemble 1
—e— Actual

e Benchmark (DFM)
—e— Actual

AN isoanmwhuo-w
o
A WMN 2O =N WAMULIO N

e Ensemble 3
—e— Actual

@ Ensemble 2
—e— Actual

oo
AWN 2O _2MNMDWHSMUCO N
oo

w2 O-=2MNMDWHAUUON

Measures of variable importance can improve the economic interpretability of the
predictions. Using nowcasts for Turkey as an illustrative example:

o First, we construct variable importance measures for Ensemble 1 (equal weights
between RF, GBT and SVM), which are model-specific estimates of the relative
importance of predictors in generating the forecasts.!® These are scaled from 0 to 100 in

10 We use R package caret.
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ascending order of relative importance. Figure 6 plots the 25 most importance
predictors for the Turkey nowcast model in July 2019. In addition to the previous
quarter’s GDP growth, the nowcast mainly relies on changes in the stock market,
imports, business confidence, unemployment and the manufacturing PMI.

e Second, we use Shapley Values to decompose recent Turkey nowcasts into
contributions of different predictor categories. Figure 6 also plots the Shapley Values
by categories for three Turkey nowcasts. Relative to the historic mean, lower
production indicators and higher inflation contributed to lower forecasts in all months.
Over time, the nowcast mainly deteriorated due to worsening financial conditions and
consumption indicators.

Figure 6. Variable Importance and Shapley Values
Shapley Value Contributions

(perecentage point deviation from historical mean)
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V. CONCLUSIONS

Machine learning techniques can improve forecasting performance relative to
traditional models. Techniques based on OLS struggle to overcome several issues,
including collinearity, dimensionality, predictor relevance, and nonlinearity. As a result, even
state-of-the art forecasting models often result in large forecast errors, especially when the
variable to be predicted is volatile, such as output growth in many emerging market and
developing economies. ML models can outperform traditional forecasting methods because
they emphasize out-of-sample (rather than in-sample) performance and better handle
nonlinear interactions among a large number of predictors. ML methods are specifically
designed to learn complex relationships from past data while resisting the tendency of
traditional methods to over-extrapolate historical relationships into the future.
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ANNEX I. THE BIAS-VARIANCE TRADEOFF

We demonstrate the bias-variance tradeoff with two simple examples. Suppose a researcher
has T periods of historical data on y,,, and a set of predictors, X;. The least complex model
would simply forecast the historical mean of y,, ;. Doing so leads to substantial bias as it is
unlikely that y,, , is constant over time. However, the variance of this simple forecast is
minimized. At the other extreme, a forecaster could pick one historical observation that it
believes to be most representative (‘closest’) to the current environment in terms of X;, and
use this observation’s historical outcome as the forecast. Such a complex forecast will have
low bias but high variance.

The K-Nearest Neighbors algorithm is one way to minimize the bias-variance tradeoff. The
two extreme types of forecasts described above are examples of the K-Nearest Neighbors
(KNN) algorithm. This ML method uses observations in the historical data closest to X; to
form the forecast y,,;, which is formally defined as (Hastie et al., 2009):

1
Yt+h = E Yn
NENk (X¢}

where Ng (X,) is the neighborhood of the forecast defined by the K closest points n in the
historical sample. This neighborhood is usually constructed using the Euclidian distance.
KNN has a convenient closed form expression for expected loss:

E((f(Xt)_yt+h)2) = [f(Xt) - %ZnENK(Xt) Yn]z +o” (% + 1)

which nicely summarizes the bias-variance tradeoff. The squared bias (first term on RHS) is
monotonically increasing in K as observations ‘farther’ from X, tend to be less informative
for the forecast. The variance (second term on RHS) is monotonically decreasing in K. As a
result, the K that minimizes forecast errors tends to be somewhere in between the two
extreme cases. Figure 1.1 expresses this bias-variance tradeoff visually.

Figure 1.1. Model Complexity and the Bias-Variance Tradeoff

Optimal
complexity

Toral error

Variance

Error

Model complexity

Source: Smalter Hall (2018)
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ANNEX II. STATIC DYNAMIC FACTOR MODELS

Traditionally, the factor model literature assumes predictors take the form (Stock & Watson,
2006; Smeekes & Wijler, 2016):

Xpe = ALi(L) fe + e

where xy; is the predictor k time series observed at time ¢ with zero mean and unit variance.
ft isa @ X 1 vector containing latent factors and e;; is a idiosyncratic disturbance term.
A;(L) is a lag polynomial of order Ky, , often referred to as the “dynamic factor loadings.”
Both the factors and disturbances are assumed to be uncorrelated at all leads and lags. We
also assume the forecast variable admits a factor structure:

Vern = Ay (L)' fe + €yt

the single forecasting equation for Y;,, from (X) takes the form:

Vesn = B +y(L) Vi + €ryn

where (L) is a lag polynomial, and €, is a conditional mean zero disturbance term. (Y)
can be estimated using MLE, although this is computationally demanding and only consistent
under somewhat restrictive assumptions. As a result, it is standard in the macro forecasting
literature to rewrite the dynamic factor model summarized in (X) and (Y) in its static form,
which can be estimated using principal components analysis (PCA).

If the lag polynomials S (L) and A;(L) have finite order Kp, we can rewrite (X) and (Y) as
(Stock & Watson, 2006):

Xt == AFt + ut
Vesn = Br'Fe + y(L)Ye + Vein

Where A and F; represent unobserved factor loadings and factors. u; is an error term that is
i.i.d. N(0,02) and independent of F,. We can now recast estimating the general model as
(Smeekes & Wijler, 2016):

_ _ YVe+n = fAF +up) + €y
For a given estimated A and F;, a static factor model assumes f(-) is linear and thus runs

OLS such that:
v = FN)'B
In this case, expected mean loss can be decomposed as:

—= = = V(U t+
E ((f(Xt)‘}’thi{w)z) = [E(yt+h)_f(Xt)]2 + (FtA)’(FtA)(u+6h) + V(ue + €c4n)
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ANNEX III. MACHINE LEARNING AND CROSS VALIDATION

Any ML algorithm can be cast as a series of general steps. ML methods are designed to find
the optimal degree of complexity of a model that maximizes out-of-sample forecast accuracy.
Suppose a researcher can pick f(-) from a class of models (e.g., linear, nearest neighbors).
Given the model class, we can represent this as the researcher selecting parameters f§ and a:

minL (yeon = (X0 B)) st B €0(@)

where f determine the specific function within the model class, and « are ‘tuning
parameters’ or ‘regularizers’ that determine the potential model complexity by constraining
to be in @(a). The table below summarizes o and B of popular ML algorithms. Any ML
algorithm consists of the following steps:

(a) For every degree of model complexity a, find the model configuration 3 that
maximizes forecast accuracy on the training data.

(b) Forecast on the test data using this model configuration f3.

(c) Across all possible a, pick the degree of model complexity o that maximizes forecast
accuracy on the test data.

This process of finding the optimal model parameters is called cross validation (CV). With
CV, the entire data set is split into multiple subgroups (‘folds’), which are all used as separate
test sets. In this paper, we use 10 folds to tune the model complexity parameters.

Class Model B o (most common)
Linear oLs Linear coefficients # of variables (e.g., forward stepwise regression)
Ridge L, norm penalty
LASSO L, norm penalty
Elastic Net Overall penalty, LASSO/ridge weight
Tree-based Decision tree Splits Depth, # of leaves, observations per leaf
Random Splits, aggregation rule (...), # of variables, observations per bootstrap
forest
Boosted Trees | Splits (...), # of iterations
Prototype methods KNN Sets of nearest | K, weighting of neighbors
neighbors
Support Vector Machines | Linear Linear coefficients Cost
Polynomial Coefficients Cost, scale, degree
Exponential Coefficients Cost, decay factor
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Figure A3.1. Decision Tree Example

R X, Stock Market <1%
e Growth, t-1 ’
X,: US term premium, t-1 X3: Real GDP growth, t-1
>0% <0% >0% <0%
}’1:30/n,i’z= 3.5% V3= 1%, V4= 2% Vs=2%, ys= 1.5% X, US term
2 3 4
¥ =3.25% § =1.5% § =1.75% premium, t-1
>0% <0%
Y7=0%, yg= 0.5%  ¥7=-1%, yg= 0%
1 1
§ =0.25% § =0.5%

Notes: Figure plots a hypothetical decision tree nowcasting real GDP growth at time ¢ using lags of real GDP
growth, stock market growth, and the US term premium. Each leaf contains two training observations, and the
trained decision tree predicts the average observed GDP growth of these two observations.

Figure A3.2. Random Forest Example

Tree 1: t = 1,2,3 Tree 2: t = 2,3,4 Tree 3: t = 1,3,4
|- Stoc 3. Redl X;:US
Market GDP term
Growth, growth, premium,
= X,:US = X;: Stock i | X3: Real
term Market GDP
premium, Growth, Cmo growth,
y,=3% -1 y,=1% =] y1=3% -1
y3=1% y;3=-1% V3=1% Y4=-1%

y2:10/0 y3:0%

Notes: Figure plots a hypothetical decision Random Forest nowcasting real GDP growth at time ¢ using lags of
real GDP growth, stock market growth, and the US term premium. Each tree uses different observations and
considers different variables at each split. In this example, each leaf contains only one training observation. The
trained RF predicts the average of the GDP growth rates of the leaves that the new observation belongs to.
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ANNEX IV. INTERPRETING FORECASTS: SHAPLEY VALUES

Shapley Values can help with the interpretation of the results of ML forecasts. Shapley Values
are a concept from coalitional game theory that measures the contribution of each player in a
game when the game’s payoff depends on interactions (‘coalitions’) between the players
(Shapley, 1953). They are constructed as the mean of each player’s marginal contributions for
every possible combination of other player’s actions. In the context of ML methods, Shapley
Values measure each variable’s contribution to an individual prediction’s deviation from the
histori