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I.   INTRODUCTION 

The difficulty is to detach the framework of fact—of absolute fact—from 
the embellishments of theorists… 

    The Memoirs of Sherlock Holmes 
 
Machine Learning (ML) is far from new. Indeed, research in this field has a pedigree 
that extends back more than fifty years, and often entails well-known methods from 
non-parametric statistics. But the pace of adoption of these techniques has picked up 
rapidly over the past 10 years, driven in large part by their impressive predictive capabilities. 

Accurate prediction, of course, is important. But for empirical economists, prediction by 
itself is not always enough. Questions concerning the effects of a particular policy, for 
example, present a fundamentally different problem; as the answers require us to estimate 
what would have happened in the absence of that policy stance. This is the central challenge 
of causal inference and has perhaps been a key reason why machine learning hasn’t made 
greater headway among economists. Predictions can be validated, and so lend themselves to 
ML techniques. Counterfactuals cannot, as we never get to see the path not taken.  

Nonetheless, there is a swiftly expanding literature (“causal machine learning”) that has 
endeavored to take the strengths and innovations of ML methods and apply them to causal 
inference problems—leading to more precise, less biased, and more reliable estimators of 
causal effects.  

This paper will provide a gentle introduction to some leading research in this area, taking a 
concrete task as an example—assessing the impact of a hypothetical financial crisis on output 
growth. Focusing mainly on recent work on Causal Forests (Athey and others, 2018), the 
paper will use an ML approach to provide plausible estimates of the average impact of a 
crisis, as well as estimates of how that impact varies from country to country. Moreover, the 
paper will exploit recent advances in the interpretation of complex (“black box”) models to 
show how machine learning can provide valuable insight into the factors underlying these 
different country-level effects, with particular attention to potential thresholds and 
interactions.  

Section II of this paper will outline some ways in which the machine-learning literature has 
addressed issues of causal inference, while section III will focus in particular on the intuition 
behind the Causal Forest algorithm. Section IV will apply this tool to the estimation of the 
cost of financial crises, and will draw on recent advances in ML visualization, exploration, 
and explanation to investigate not only the different country-by-country cost of a crisis, but 
also the particular factors that may make a crisis worse in some countries compared to others. 
Section V briefly outlines ways in which the causal forest approach can be extended to other 
types of problems, and section VI then concludes.  
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II.   A MACHINE-LEARNING APPROACH TO CAUSAL INFERENCE 

More has been learned about causal inference in the last few decades than 
the sum total of everything that had been learned about it in all prior 
recorded history 

     Gary King, 2007 
 

A.   Estimating Causal Relationships: Predicting the Counterfactual 

The theoretical gold standard for estimating the causal impact of an event (or policy 
intervention) is a randomized controlled experiment. But for most questions in economics, 
experiments are often impractical, unethical, or simply impossible. So, a large share of 
empirical work relies on observational data. Unfortunately, estimating the causal effect of an 
event or policy from this type of data is problematic, as we never see the counterfactual—we 
never see what would have happened had a different policy been chosen. This is what 
Holland (1986) calls the “fundamental problem of causal inference.” (Box 1)  

The literature on deriving causal relationships from observational data is vast, and essentially 
examines strategies to build a convincing proxy for this unobservable counterfactual.2 For 
example, with a large enough dataset, one strategy might be to simply measure the average 
outcome for those subjects that experienced the event and compare it against the average for 
those that did not. This strategy, however, demands that we observe all “confounding 
factors” (i.e., factors correlated with both the outcome and the likelihood of the event). 
Conditional on these observed confounders, the intervention (“treatment”) is essentially as 
good as randomly assigned, and so the average difference between “treated” and “untreated” 
groups can be taken as a valid proxy for a causal effect. 

In a standard regression framework, conditioning on these confounders is typically done by 
including a pre-identified set of “control” variables. But in a deeper sense, such conditioning 
strategies are essentially constructing a credible prediction of the counterfactual. For 
example, the standard “propensity score” approach of Rosenbaum and Rubin (1983) 
calculates the conditional probability of a particular treatment given a set of observed 
covariates. The “propensity score matching estimator” then predicts the missing 
counterfactual for each actual observation; by using the closest observation from the other 
group, according to its propensity score (Abadie and Imbens, 2006). What makes causal 
inference particularly challenging, however, is that these counterfactual predictions can never 
be validated—we are not predicting an outcome that will become known at some future point 
in time, we are instead predicting a potential outcome that will never be known. In this 
context, it is important that such predictions are at least as plausible and persuasive as 
possible. 
 

                                                 
2 For a survey of this literature, see Imbens and Rubin (2015), and Morgan & Winship (2015). 
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Box 1. The Fundamental Problem of Causal Inference 
Estimating causal relationships is difficult, as we never get to see the path not taken. Suppose we 
wanted to estimate the impact of a new medicine on a particular subject. To answer that question, we 
need to measure what happens when the subject takes the medicine, and compare that to what happens 
when she fails to take the medicine. But this is impossible. We can only ever see one of these 
outcomes, not both. Causal inference, therefore, essentially entails arriving at a plausible estimate of an 
unobserved (and fundamentally unobservable) counterfactual.  

 
The best we can do is to construct (perhaps implicit) experiments in which similar people take 
different paths. An idealized experiment, for example, would entail identical twins, where the 
subjects are assumed to be the same in every particular. If one twin takes the medicine and the other 
does not, then the second (untreated) twin serves as the counterfactual. In the same vein, if we had a 
group of essentially similar subjects, then the average outcome for those who did not take the treatment 
would serve as the counterfactual for those who did. The difference in the average outcome between 
the treated and untreated subjects would then be the treatment effect for that particular group. We 
could then use that average to predict the likely effect for other subjects with the same characteristics. 
As an extension, if we wanted to estimate the likely effect for people with a different set of 
characteristics, we would need a different set of experiments; each with a matched set of subjects, all 
of whom share those characteristics. This is the core idea behind strategies to estimate individual 
treatment effects, both from specially designed experimental studies, and from observational data—
both of which sort subjects into well-matched sub groups. 

If, instead, we are interested in the average effect for a broader, more heterogenous population, 
estimation requires that the treatment be allocated randomly. This is the core idea behind the 
Randomized Controlled Experiment (RCT), where randomization ensures that both treated and 
untreated groups are alike on average, so that any idiosyncratic differences are cancelled out when 
comparing outcomes between the two groups. In observational studies, of course, treatment is almost 
never random, so we need to account statistically for all the ways the groups might be systematically 
different. 
 
 
1 Twin studies have long been a staple in public health and behavioral science. See McGue and others (2010). 
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B.   Machine Learning: Making Better Predictions 

There is no broadly accepted consensus on the definition of machine learning. As a general 
guide, the field has its origins in computational statistics, and is chiefly concerned with the 
use of algorithms to identify patterns within a dataset (Kuhn and Johnson, 2016). The actual 
algorithms can range from the simplest OLS regression to the most-complex “deep learning” 
neural network; but ML is distinguished by its often single-minded focus on predictive 
performance—indeed, the essence of machine learning is the design of experiments to assess 
how well a model trained on one dataset will predict new data (Box 2).  

In this regard, the growing popularity of ML techniques stem from their ability to discover 
complicated patterns that have not been specified in advance. In economics in particular, the 
world is complex, and everything is connected. For some problems, this is less of a concern, 
as we are able to build empirical models that can successfully focus on specific economic 
relationships. For other problems, simple models are often insufficient. As an illustration, 
predicting a financial crisis is a very challenging problem—the rare onset of a crisis is likely 
shaped by the interaction of a range of economic drivers, and there is no theoretical 
consensus on how these drivers come together to trigger a crisis. So, specifying a suitable 
model a priori is difficult. Instead, a useful predictive model should be able to efficiently sift 
through a broad range of potential independent variables, identifying the relationships, 
thresholds, and interactions that are most reliably and robustly informative.  

Machine-learning does this well. Random Forests (RF), for example, has proven to be one of 
the most popular and successful general-purpose algorithms currently available (Box 3). 
Random Forests can handle a range of different predictor types (binary, categorical, 
numerical) and the algorithm implicitly incorporates an element of variable selection—
automatically sifting through a broad range of covariates, and focusing on those with the 
greatest predictive power. Moreover, RF can also be applied to a wide range of modeling 
tasks, ranging from classification, to regression, to cluster analysis. Further, when applied to 
prediction problems, the performance of the procedure is generally impressive. Although 
there is no single algorithm that will dominate in all applications (known in machine-learning 
parlance as the “no free lunch theorem”), Random Forests will usually do well and will often 
take less time and effort to train than most alternatives. 
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Box 2. Better Predictions Through Regularization: Penalized Regression and LASSO 
Fitting is easy. Prediction is hard. So, focusing on in-sample fit is often an 
inadequate guide to predictive performance. Indeed, within machine-learning it 
is stressed that in-sample fit tells us little of value, other the number of 
parameters in a model (it is always possible to boost the fit by adding 
parameters). The danger is that a model with a supposedly good in-sample fit 
may in fact be modeling idiosyncratic noise. When taken out of sample, then, 
the model will perform poorly. We say that such a model is “overfit,” and this is 
the core issue that machine learning seeks to address.  

Regularization is aimed at preventing overfitting. A penalized (or 
“regularized”) regression seeks to balance in-sample fit against a penalty term 
that depends on the magnitude of the regression coefficients. A standard OLS 
regression with many covariates will typically produce parameters with a large 
variance, making the model unreliable. Adding a penalty term, however, causes 
the coefficients for unimportant variables to shrink towards zero, and so allows the model to identify those variables 
most strongly associated with the outcome. This LASSO (Least Absolute Shrinkage and Selection Operator) penalty, 
in particular, will often assign a coefficient of exactly zero, effectively dropping that variable from the regression. 
Within the penalty term, a tuning parameter, lambda (λ) is used to control the strength of the penalty. The higher the 
value of lambda, the greater the degree of regularization, and the more coefficients are reduced to zero. A key choice 
for the researcher, then, is to select the value of lambda that optimizes likely predictive performance.  

 
Estimating future performance: Holdout validation. The process of predicting how a model will perform on new 
data is called model validation. In holdout validation, the data is split into a training and testing set. The model is 
generated using only the training set, and is then asked to make predictions using only the test set. Comparing these 
predictions with actual outcomes gives the validation error, which can then be used to choose between different 
models, or indeed to select the ideal value for the tuning parameter lambda (λ).  

Estimating future performance: Cross validation. As an alternative, cross 
validation takes advantage of the entire data set. The basic idea is simple: 
(i) First divide the entire dataset into K folds (say, K=3), take one of those folds 
and set it aside as a test set. (ii) Using the remaining (2) folds as a training set, 
estimate the model, and then use the test set to determine the model’s prediction 
error. (iii) Repeat this procedure using all combinations of the test and training 
sets, producing an array of (3) validation errors associated with that particular 
model, which then provides a gauge of its average out-of-sample performance. 
Once again, this metric can be used to help choose between different types of 
models or to find a tuning parameter value (λ) that optimizes out-of-sample 
performance.  In machine-learning, these settings are called “hyperparameters,” 
and are tuned to minimize the cross-validation error. 
 
 
3 Although cross validation aims to provide a good estimate of out-of-sample performance, best practice in machine learning often 
employs an additional explicitly quarantined evaluation set, which then provides a final indicator as to how the model will likely 
perform when predicting future (unknown) data. 

RSS LASSO  Penalty

Train Train Test

Train Test Train

Test Train Train
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C.   An Emerging Synthesis: “Causal” Machine Learning 

Traditionally, prediction and causal inference have been treated as two very separate 
problems. Prediction asks what usually happens, given a particular set of circumstances.  
Causal inference asks instead what would happen if we intervened in the system? The focus 
of the second question is quite distinct, and for problems where we cannot run experiments, 
the challenge of teasing out an answer from observational data is arguably more difficult.3 

Until recently, the divide between causal analysis and prediction mirrored a similar divide 
between traditional econometrics and machine learning.4 Econometrics has generally focused 
on explanation, with particular attention to issues of causality, and a premium placed on 
parsimonious models that are easy to interpret. A “good” model in this framework is mostly 
assessed according to statistical significance and in-sample goodness-of-fit. Machine 
learning, on the other hand, has focused more on prediction, with emphasis instead on a 
model’s accuracy rather than its interpretability. A “good” machine-learning model, then, is 
determined by looking at its likely out-of-sample success. 

Over the past few years, however, the distinction between machine learning and 
econometrics has narrowed significantly. This is most obvious for applications such as 
time-series analysis and forecasting, which are centered almost entirely on making accurate 
predictions.5 For causal analysis, however, the growing integration of machine learning stems 
from the fact that many estimation problems can be broken down into different steps, some 
of which resemble pure prediction problems. 

Take a standard instrumental variables (IV) problem, for example, where we are interested in 
the impact on Y of an endogenous treatment variable X. In some situations, there may be a 
broad range of potential instruments available (which can sometimes exceed the number of 
observations) leaving us with the question as to which set of instruments to use in 
constructing the IV estimator. Typically, the researcher will be forced to choose a relatively 
parsimonious subset of instruments, and then justify that choice based on prior knowledge or 
ad-hoc intuition. Belloni and others (2012) outline a procedure in which the selection of 
instruments is instead determined optimally through a machine-learning algorithm such as a 

                                                 
3 More formally, suppose we have two random variables (Y,X) distributed according to a joint probability 
distribution p(y,x). Prediction draws from the conditional p(y|x), which is the distribution of Y given that we 
observe that variable X takes value x. For causal inference, however, we want the distribution of Y if we were 
to set the value of X to x. This describes the distribution of Y we would observe if we intervened in the data 
generating process by artificially forcing the variable X to take value x, but otherwise simulating the rest of the 
variables according to the original process. Importantly, this data generating procedure is not the same as the 
joint distribution p(x,y). See Pearl (2009). 

4 See Breiman (2001a) for a discussion on the different cultures associated with the two fields. 

5 For example, see Tiffin (2014) for an application of machine-learning techniques to nowcasting in data-poor 
emerging markets. 
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LASSO regression (Box 2)—in this case, the ML technique is introduced only in the first-
stage regression, which is a simple predictive relationship. 

A similar, if more complicated, opportunity arises in the case where the treatment variable is 
exogenous, but where there are a large number of potential confounding variables, only some 
of which are actually important. Often, of course, we may not know a priori which variables 
are important and which ones are not. Including all variables in the regression runs the risk of 
overfitting, where spurious relationships can potentially be given a causal interpretation. 
Failing to control for key confounders, on the other hand, will bias the estimated impact of 
the treatment.  

One machine-learning solution (A) might be to run a LASSO-style regression that 
automatically selects the most important confounders (based on their ability to predict the 
outcome). In an alternative solution (B), Wyss and others (2014) outline a procedure that 
uses machine-learning to estimate the propensity score for each observation (with covariates 
in this case selected on their ability to predict the likelihood of inclusion in the treatment set). 
In both cases, the predictive strengths of machine-learning are exploited to improve those 
components of inference that can be reduced to pure prediction.  

As an extension, Belloni and others (2014b) note that, ideally, potential confounders should 
be selected based on their association with both the outcome and the treatment variable (as it 
is this joint association that is the source of bias for the treatment effect). They therefore 
outline a double-selection procedure, where they first use a LASSO regression to select 
covariates correlated with the outcome, and use a similar LASSO regression to select 
covariates correlated with the treatment. They then take the union of both sets of covariates, 
and include them as controls in a standard OLS regression; showing that the resulting 
estimator of the treatment effect is potentially much improved over a naive estimate 
stemming from solution (A). 

All of the machine-learning modifications outlined above are focused primarily on estimating 
the average treatment effect (ATE) for the sample as a whole. Often, however, we may also 
be interested in exploring whether that effect differs from subject to subject—determining, 
for example, whether financial crises tend to have more of an impact in some countries rather 
than others, and investigating the factors that may make that impact worse in a particular 
instance. It is in the estimation of these heterogeneous treatment effects (HTE) where the 
predictive strengths and flexibility of machine learning can be leveraged to their fullest 
extent.  
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Box 3. Better Predictions Through Ensembles: Decision Trees and Random Forests (Cont.) 
Tree-based methods provide an intuitive, easy-to-implement way of modeling complex 
relationships. At core, these methods are based on the notion of a decision tree; which aims to deliver a 
structured set of yes/no questions to predict a particular outcome. One of the key attractions of decision 
trees is that they can take an extremely complex, non-linear problem, with a wide range of potential 
predictor variables, and reduce it to a procedure that is easily understood by a non-technical user. 
Imagine a flowchart, where each level is a question with a yes or no answer. Following the chart, and 
answering the questions one by one, eventually the chart will give a solution to the initial problem. That 
is a decision tree. The challenge for the algorithm is to come up with the right questions.  

A traditional econometric method would usually center around a logit or probit model. But decision 
trees take a very different approach. Rather than fitting a linear regression, they are focused instead 
around the repeated partitioning of the predictor space into two sets, starting with an initial split that 
decreases the prediction error the 
most: i.e., the algorithm considers 
every possible split on every 
possible predictor variable, and 
chooses the one split on the one 
variable that best separates the 
sample into the two most 
dissimilar subsamples (based on 
the predicted outcome). These 
binary partitions then continue 
until the termination of the tree, 
and are recursive—i.e., each 
subsequent split only considers 
the subsample under which it 
falls, rather than the whole 
dataset. The result is an efficient 
set of yes/no questions that can 
quickly sort any individual 
instance into an appropriate group 
of similar observations.  

A regression tree is a type of 
decision tree, which is designed 
to approximate a continuous 
real-valued function. Essentially, 
by sorting the dataset into groups 
of similar observations, it 
provides a non-parametric 
estimate of the expected outcome 
for any individual within that 
group.  
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Box 3. Better Predictions Through Ensembles: Decision Trees and Random Forests (Concl.) 
Decision trees are computationally efficient, and work well for problems where there are important 
nonlinearities and interactions. Trees tend not to work as well if the underlying relationship is linear, but 
even then, they can reveal aspects of the data that are not apparent from a traditional linear approach 
(Varian, 2014). 

The Random Forest (RF) algorithm (Breiman, 2001b) is an “ensemble” technique that modifies the 
decision-tree approach to 
minimize the problem of 
overfitting. One problem with 
decision trees is that they often 
provide models that fit the training 
sample extremely well, but 
perform poorly when making out-
of-sample predictions. A common 
solution is to shorten or “prune” 
the tree by imposing a penalty for 
an overly long/complex structure 
(analogous to the penalty term (λ) 
in Box 2). As an alternative 
solution, the RF algorithm 
modifies the decision-tree approach—instead of focusing on a single tree, it uses the data to grow 
numerous (unpruned) trees and then combines the results. 

The first Random Forest modification is the use of bootstrap aggregation (or “bagging”). In bagging, 
an individual tree is built on a random sample of the dataset, roughly two thirds of the total observations—
the remaining one-third are referred to as out-of bag (OOB) observations and can be used to gauge the 
accuracy of the tree. This is repeated hundreds or thousands of times. When asked to predict the most 
likely outcome of a new instance, then, the RF algorithm will feed that instance through each of these 
thousands of individual trees, and will aggregate their predictions; say by taking the average. The fact that 
none of the trees is pruned means that each individual tree is a weak model that will have a hard time 
distinguishing the dataset’s underlying signal from statistical noise. However, by building a large 
ensemble of (weak) individual trees, the algorithm is essentially exploiting the law of large numbers to 
average out the noise, leaving only the signal. 

The second modification is to take a random sample of the set of predictors at each split. In the case 
of highly correlated predictors, and particularly in the event of a single driving predictor, bagging by itself 
can be insufficient, as it may simply produce multiple versions of the same tree. To get around this 
problem, RF introduces an added element of randomization—at each split, the algorithm only considers a 
random subset of the available set of predictors (usually the total number of predictors divided by three). 
By randomizing the predictor space, the RF algorithm effectively guarantees that the trees that go into the 
final collection will be relatively diverse. Again, each tree on its own will be a weak model, as it is grown 
on a deliberately limited dataset. But the essence of the RF approach is that, by combining a large number 
of (uncorrelated) weak models, we can end up with an aggregate prediction that is surprisingly strong. 
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III.   USING RANDOM FORESTS FOR CAUSAL INFERENCE:  THE CAUSAL FOREST 

Am I right in thinking that the method of multiple correlation analysis essentially 
depends on the economist having furnished, not merely a list of the significant 
causes, but a complete list? … If so, this means that the method is only applicable 
where the economist is able to provide beforehand a correct and indubitably 
complete analysis of the significant factors. 

      J.M.Keynes, 1939 

A.   The Standard Problem 

Consider a researcher who wishes to study the impact of a binary treatment (W) on a 
particular outcome (Y), but who suspects that the estimate may be biased by a (potentially 
large) set of confounding variables (X). A simple solution would be to regress Y on a dummy 
version of W, and to control for enough confounding variables (X) so that, conditional on 
these variables, the likelihood of being in the treatment group can be assumed to be 
independent of the outcome. There is, of course, no way of testing this assumption, so the 
choice of control variables must be defended on theoretical grounds or on the basis of the 
researcher’s domain expertise. The coefficient τ, then, is an estimate of the average treatment 
impact for the sample.  

 
 
But the potential confounding role of particular variables is not always obvious a priori, 
which means that there is always a chance that the wrong variables may be omitted and that 
the estimate of τ is biased. Similarly, there is also the possibility that the influence of these 
variables may be nonlinear, with potential threshold effects, changing slopes, or key 
interactions between the variables themselves. The researcher might try to allow for such 
effects within a linear regression; but all thresholds, interactions, and higher-order 
polynomial terms would then have to be specified in advance—and the cost of getting this 
wrong is, again, a biased estimate of the treatment effect (τ). Moreover, trying to include all 
potential interactions and thresholds would run the risk of overfitting, as the number of 
possibilities would in most cases be quite large. 

Also, suppose the researcher was additionally interested in how the impact of the treatment 
might change in different circumstances; perhaps to study how the costs and benefits of a 
particular policy might vary for different subjects, or perhaps to gauge differing degrees of 
vulnerability for subjects who may all be at risk of the same event. Within the linear 
regression framework, the researcher could interact the treatment dummy with certain 
variables of interest—if the interaction term is significant, then the treatment effect depends 
on the level of that variable. But again, the researcher would have to specify these 
interactions in advance, and the main determinants of potential heterogeneity may not always 

𝑌𝑖𝑖 = 𝜏(𝑖𝑖) × 𝑊𝑖 + 𝑿𝒊𝛽+ 𝜀𝑖𝑖
Interact?

How many?
Higher order terms?
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be obvious, a priori. Further, the factors that shape the impact of an event or policy may not 
act in a linear manner, so the researcher would have to specify any potential thresholds or 
interactions up front, with the same problems and risks. 

B.   The Causal Forest 

One possible solution is to take advantage of machine learning’s flexibility to identify 
well-matched subgroups. The estimated effect for any individual instance, then, would be the 
average effect for the subgroup to which they belong.   

The causal forest is a random forest made up of honest causal trees.6 These are similar to the 
decision trees outlined in Box 3. However, a typical regression tree recursively partitions the 
data by repeatedly asking, “what variable and what particular split would best separate the 
data into the two most dissimilar sets, by outcome?” The tree then arrives at a sequence of 
splits that efficiently sorts the whole dataset into bins (“leaves”), where the average outcome 
in each bin serves as the predicted outcome for all its members.  

But we are not primarily interested in the outcome by itself. We are interested instead in the 
impact of a treatment on that outcome for an individual observation—and again, this impact 
can never be measured directly, as a single observation cannot both be treated and not 
treated. So, the causal tree takes a modified approach, and focuses on the average difference 
in outcomes between treated and non-treated observations within each leaf of the tree. 
Compared to a regular decision tree, the causal tree uses a splitting rule that explicitly 
balances two objectives: first, finding the splits 
where treatment effects differ most, and 
second, estimating the treatment effects most 
accurately. So, as the causal tree partitions the 
data it asks, “Where can we make a split that 
will produce the biggest difference in 
treatment effects, but which will still give an 
accurate estimate of the effect?” As a result, 
each terminal leaf of a causal tree represents a 
custom-made artificial experiment; in which 
the subjects of the experiment are as similar as 
possible; and where the average effect for that 
specific group helps predict the individual 
effect for future observations with the same 
features.  

In addition, the procedure provides for valid confidence intervals and inference. 
Asymptotically, this requires that each tree is “honest.” The basic idea is that you cannot use 
the same outcome data to both partition the tree and estimate the average impact—you have 
to choose one or the other. So, the causal-forest algorithm divides the data in two: half for 
determining the splits for the tree, and half for populating that tree with observations and then 

                                                 
6 Athey & Imbens (2016); Athey, Tibshirani, & Wager (2018); Wager & Athey (2018). 
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estimating the treatment effect in each leaf. For an individual tree, it might seem that this 
procedure throws away half the data. But the RF algorithm typically builds thousands of 
individual trees, and uses a new bootstrap sample for each tree; so ultimately the algorithm 
ends up exploiting all the data for both splitting and estimation.7 

IV.    CASE STUDY: THE IMPACT OF A FINANCIAL CRISIS ON GROWTH   

It is essential to distinguish between triggers (the particular events or factors that 
touched off the crisis) and vulnerabilities (the structural weaknesses in the 
financial system and in regulation and supervision that propagated and amplified 
the initial shocks)… subprime losses were clearly not large enough on their own 
to account for the magnitude of the crisis. Rather, the system's vulnerabilities, 
together with gaps in the government's crisis-response toolkit, were the principal 
explanations of why the crisis was so severe.  

Ben Bernanke, 2010 

A.   Risk vs. Vulnerability 

Although often treated synonymously, crisis risk and crisis vulnerability are conceptually 
distinct. To take a common illustration, consider two neighboring houses on the Florida 
seaboard. Both face the same risk of a tropical storm or hurricane. But a sturdy house made 
of concrete is less vulnerable to a storm than a fragile house made of light weatherboard.  

Of course, the situation for financial crises maybe less clear cut, as events do not always 
result from exogenous acts of nature, but may instead reflect the decisions of forward-
looking actors—each of whom has information and incentives that are shaped by the actions 
of others. But the distinction is valuable nonetheless. Financial crises all reflect some 
confluence of an underlying economic vulnerability and a specific crisis trigger.8 The 
underlying vulnerability can be something like an asset-price bubble or balance-sheet 
mismatch, but the trigger can be almost anything—political turmoil, terms of trade shocks, or 
even contagion from other countries (IMF, 2010). 

Distinguishing empirically between triggers and vulnerabilities is difficult, and most studies 
implicitly combine the two—defining crises as those episodes in which an unpredictable 
trigger has also had a large impact, and so effectively exploring only those cases where 
underlying vulnerabilities are significant. This approach has formed the basis of the Early 

                                                 
7 Wager & Athey (2018) also note that it is possible to build honest trees without double splitting, by training a 
classification tree that predicts the treatment assignment (W), rather than a regression tree that predicts the 
treatment effect (τ). The leaves of the resulting “propensity tree” include well-matched training observations 
based on their likelihood of inclusion in the treatment set, allowing for the propensity score matching approach 
of Rosenbaum and Rubin (1983), noted above. 

8 In other fields (e.g., security assessment), the trigger is often called a “threat,” so that “crisis risk” combines 
the likelihood of an event (threat level) with the impact of that event (vulnerability). (Crisis Risk = Threat × 
Vulnerability). 
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Warning Systems (EWS) literature, which accelerated sharply in the wake of the emerging-
market turbulence of the 1990s.  

Traditional early-warning models aim to anticipate crises ahead of time, and have typically 
relied on two approaches: discrete-choice (logit or probit) regression (see Eichengreen and 
Rose, 1998); or the signaling approach pioneered for the Fund by Kaminsky and Reinhart 
(1999). These have a number of advantages, including their ease of interpretation and 
widespread acceptance. But they also have a number of potential shortcomings: such as 
frequently large gaps between in-sample fit and out-of-sample predictive performance; or 
difficulty in coping with a large number of complex predictors. 

As noted earlier, however, machine learning is well-suited to deal with these types of 
problems, and has featured more and more prominently in the crisis-prediction literature. The 
2000s, for example, saw a marked pick up the exploration of non-linear decision trees for 
crisis forecasting, including in the Fund (Ghosh and Ghosh, 2003). And the use of machine 
learning tools has similarly flowered in the wake of the Global Financial Crisis, particularly 
in the examination of advanced-economy banking crises.9  

But the above models focus primarily on prediction. What if, instead of concentrating on the 
likelihood of a crisis shock, we were instead interested in gauging a country’s exposure to 
that shock once it arrives. The latter question is more closely associated with the concept of 
vulnerability; and in a forward-looking world where the probability of a trigger may not be 
entirely exogenous, the factors that shape the arrival of that trigger are perhaps not the same 
as those shaping the ultimate cost of the crisis. Of course, estimating the impact of a crisis 
requires that we also estimate what would have happened if the crisis had not occurred—
which requires a more causal framework. 

B.   Estimating the Cost of a Crisis 

In the economics literature, empirical studies into the impact of financial crises have typically 
taken one of two approaches: i) a dummy-variable approach; or ii) a comparison of actual 
post-crisis growth to a pre-crisis trend. The former generally draws on a cross-country panel 
regression, and uses the coefficient of a crisis dummy to indicate the growth cost of a crisis.10  
Adequately controlling for potential confounding variables, then, the estimated 
counterfactual is an average for the sample as a whole.  

But some crises are more severe than others, so the second method takes a more country-
specific approach; estimating the output loss for each country by measuring the gap between 
that country’s actual growth and the rate that would have been expected based on prevailing 
trends. The identification of this trend, then, defines the counterfactual. Unfortunately, there 
                                                 
9 See Savona and Vezzoli (2015), Alessi and Detken (2018). 

10 See Huchison and Noy (2002), or Demirgüç-Kunt and others (2006). 
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is no well-established method to do this. Some studies simply project a linear trend of recent 
GDP, excluding the years immediately prior to the crisis (Abiad and others, 2009). Some 
take the trend from an HP filter (Laeven and Valencia, 2018), while others use more detailed 
time-series forecasting techniques (Cerra and Saxena, 2008). In any event, results are often 
sensitive to the method chosen.  

Moreover, few of these studies have then gone on to explore which factors are most 
important in shaping the scale of the output loss, and so have little insight to offer countries 
that have not (yet) experienced a crisis. The closest in spirit to the current paper is the study 
by Abiad and others (2009), who use Bayesian Model Averaging (BMA) to cope with a large 
number of potential confounding variables, in circumstances where theory provides an 
insufficient guide as to which variables belong in the real regression. The data and 
computational requirements of BMA, however, are formidable, so the authors use the 
procedure primarily as a robustness check on smaller-scale OLS regressions, which 
themselves consider only one or two variables at a time.11 Further the authors do not consider 
potential non-linear links between any of their variables and crisis-related output losses. 

In the sections below, we will use a causal-forest framework to estimate the impact of 
financial crises on growth. The “treatment” in this case is the crisis. The “outcome” is the 
short-run trajectory of growth immediately following the crisis. Considering a broad range of 
potential covariates, and considering also any potential nonlinearities or interactions, the 
causal forest provides an individual-country counterfactual—drawing on the experience of 
similar countries to estimate what would have happened to output growth in that country had 
the crisis been avoided. Similarly, for any country under consideration, the model provides 
an estimate of the hypothetical cost of a financial crisis, even if that crisis is itself unlikely. 

C.   Data  

The financial-crisis “treatment” variable is taken directly from Laeven and Valencia (2018), 
who provide a standard crisis definition that can be applied consistently across a broad range 
of countries.  Under their classification scheme, financial crises meet two sets of criteria: 
evidence of significant financial distress; and a significant policy intervention. The Laeven 
and Valencia dates are widely used in the literature, placing this model well in the broader 
context of research on financial crises. Crisis frequencies are broadly consistent across 
income groups, averaging one crisis every 30 to 45 years. But crisis patterns have varied 
considerably over time, with events in the 1980s and 1990s concentrated mainly among 
emerging markets (EM) and lower-income countries (LIC), and with crises since 2000 
clustered mainly during the GFC and mostly among advanced economies (AE). 

                                                 
11 Although they share many similarities, Bayesian Model Averaging is not equivalent to ensemble 
machine-learning (such as random forests), and typically performs less well at prediction. (Minka, 2000) 
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The outcome variable is the cumulative rate of output growth in the two years immediately 
following the crisis (including the crisis year)—this is typically the amount of time taken for 
growth to revert to pre-crisis trend (Demirgüç-Kunt and others, 2006). 

For our set of possible confounding covariates, we make few a priori assumptions and 
instead consider a broad range of variables across a variety of sectors (financial, external, 
fiscal, real). While we have endeavored to ensure the widest possible coverage, data 
availability poses a significant constraint—there are many potentially informative variables 
with short histories (financial soundness indicators) or limited country coverage (housing 
prices), or both. Balancing these considerations, our final dataset includes 46 variables over 
1985–2017, and covers 107 countries from both emerging markets and advanced economies, 
for a total of over 3300 observations. Details of the included variables are provided in 
Annex 1. A key feature of our dataset, however, is that crises represent a very small minority 
of our sample (around 2½ percent of all observations). Although the Random Forest 
algorithm is relatively robust to this problem, a large imbalance may nonetheless hamper the 
ability of the algorithm to accurately estimate the impact of a crisis. (More concretely, with 
an extremely imbalanced dataset, there is a chance that an individual bootstrap sample will 
contain few or even none of the minority class). We therefore improve the balance of the 
dataset by resampling, raising the overall proportion of crises from 2½ percent to almost 
10 percent.12 For the model, all covariates are lagged by one period to ensure that they are not 
themselves affected by the treatment.  

D.   Results: Explaining a “Black Box” Model 

Individual Estimates 

The estimated impact of a financial crisis for a sample of countries is presented in Figure 1—
again, the aim of the model is not to predict the likelihood of a crisis, but instead to estimate 
the likely cost of a hypothetical crisis, if one were to occur. The figure shows the potential 
cost for these countries in 2015 (the cutoff year in the dataset), although it would also be 
possible to provide an estimate for any country, in any year. 

For the sample as a whole, the average cumulative cost of a crisis is estimated at 
7.2 percentage points of growth over two years; which is broadly consistent with previous 
studies. Hutchison and Noy (2002) suggest a 2-year cost of 6–7 percentage points, while 
Demirgüç-Kunt and others (2006) estimate a 2-year cost of 7½ percentage points. The 

                                                 
12 There are many ways of tackling class imbalance, but typical resampling solutions involve either: 
oversampling (increasing the number of minority-class observations) or downsampling (decreasing the number 
of majority-class observations). We use a synthetic oversampling technique (SMOTE), which creates synthetic 
samples that are similar to existing minority observations, rather than simply generating new copies that are 
exactly the same as the minority observations. This ensures that the new oversampled observations accurately 
reflect the topology of the dataset surrounding each minority observation, while also minimizing the risk of 
overfitting (Chawla and others, 2002). 
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baseline estimate in Abiad and others (2009) is slightly lower (4½ percentage points) 
but interestingly, when the counterfactual trend is calculated using the growth projections 
of Fund country desks, the estimate from the Abiad study is closer to ours, at almost 
8 percentage points. 

As illustrated by the figure, the cost of a hypothetical crisis varies significantly from country 
to country. Conditional on a crisis occurring, some countries would face a significant drop in 
growth, while others would get off relatively lightly. In addition, as noted above, the causal 
forest also provides confidence intervals for each estimate, and these intervals also vary from 
country to country.13 Intuitively, the algorithm calculates a country’s estimated crisis impact 
by gathering similar countries into a group, and then comparing those who had a crisis to 
those that did not. This process is repeated across thousands of bootstrapped samples, and the 
different estimates are then aggregated. If there are many countries with the same 
characteristics, then the groups for that country will be broadly the same for each sample, and 
so the model will be relatively confident about the final estimate. If the country has few 
comparable peers, however, then the bootstrapped groups for that country will tend to be 
more diverse, and so the confidence interval will be wider.  

Figure 1. Causal Forest Predictions (Select Countries) 
 

 

                                                 
13 For a formal treatment of the calculation of confidence intervals within the causal forest framework, see 
Athey and others (2018). 

Impact of a Financial Crisis (% of GDP)

Source: IMF VE Database, author’s calculations
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Predicting the Severity of a Hypothetical Crisis 

Having determined the individual treatment effect (ITE) of a crisis for each country, the next 
obvious question is why some countries are supposed to have a more costly crisis than others. 
But the causal forest model consists of thousands of individual trees, each of which is highly 
nonlinear, making it difficult to determine the key drivers behind any particular prediction.  

In this context, a parallel strand of the machine learning literature has focused on methods to 
make complex (“black box”) models as transparent and accessible as possible.14 These can be 
applied to any model, simple or complex, and essentially rely on repeated simulation—
altering the value of a particular input variable, and keeping track of what happens to the 
model’s output. With enough well-chosen simulations it is possible to gain an intuitive 
understanding of: which variables in the model are most important; the effect of each 
variable in shaping any individual prediction; and the effect of each variable over a large 
number of possible predictions. 

For our purposes, we are predicting the cost of a hypothetical crisis (rather than its 
likelihood) and want to explore which variables feature most prominently in determining that 
cost. There are a range of methods available, but an increasingly popular technique has its 
origins in cooperative game theory (Box 4). In particular, Shapley values capture the 
contribution of each individual covariate to the difference between the actual prediction, on 
the one hand, and the mean prediction for the sample, on the other.15 These values are 
consistent and additive, and so allow for a complete breakdown of the factors behind any 
particular prediction. Moreover, Shapley values are the only estimators with a solid 
theoretical basis. In interpreting these results it should be stressed that the values are tailored 
to each specific instance. For example, two countries may have the same value for a 
particular covariate (e.g., current account deficit), but nonetheless may have different 
Shapley values, as that variable may matter more for one of the countries, owing to its own 
particular circumstances (e.g., high external debt).   

As an illustration, we include Shapley-value breakdowns for a couple of countries in 
Figure 2. To repeat, the model says nothing about the likelihood of either of these countries 
experiencing a crisis. It simply outlines the impact of a hypothetical crisis, if it were indeed 
to occur. Compared to the “average” crisis, for example, the model suggests that Australia 
would experience a relatively mild episode, with an output loss of only 4.6 percentage points 
(compared to a sample average of 7.2 points). The chart shows the five most important 
factors that prompt the model to assign this lower estimate, chief among which are 
Australia’s flexible exchange rate, low manufacturing share, and high trade openness. Other 
                                                 
14 See Molnar (2019) for a survey. 

15 Sometimes misinterpreted, the Shapley value is the average contribution of a particular covariate value to the 
prediction, across all possible coalitions of variables. It is not the difference in prediction when we remove the 
variable from the model. 
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mitigating factors include Australia’s fiscal space (as proxied by moderate government 
consumption over the past five years) and relatively small output gap—again, these are all 
pre-crisis initial conditions.  

Box 4. Assigning the Blame: Shapley Values 
Prediction is hard. Explaining a prediction is even harder. This is particularly problematic in the 
case of complex models, where certain variables (e.g. oil prices) may only matter for certain types of 
countries (e.g. oil importers), or where the impact of a particular variable (current account deficit) may 
depend on the value of another variable (external debt), or indeed where the final prediction is the 
result of an ensemble of thousands of sub models. In such circumstances there is often some tension 
between a model’s accuracy and its interpretability. In response, various methods have been proposed 
to help users interpret the predictions of complex models, and one of the most promising has its origins 
in cooperative game theory.  

Shapley Values initially came out of a core question in game theory: in a coalition of multiple 
players with differing skill sets, what is the fairest way to allocate a collective payoff? One solution is 
to imagine the players joining in sequence, and then keeping track of their marginal contribution. But 
what if some players, say Alice and Bob, have similar skill sets? Then, it might be the case that Alice 
would have a higher marginal contribution if she joined the 
group before Bob, as she would be the first one to provide 
their overlapping skill set. When Bob joined, his marginal 
contribution would be lower. The Shapley Value concept 
was developed in response to this problem, and can be 
understood as finding each player’s marginal contribution, 
averaged over every possible sequence in which the players 
could have been added to the group. To take the simplest 
example, suppose Alice and Bob are sharing a taxi, and 
Alice lives on the route to Bob’s house. Their marginal 
contribution to the cost of the taxi ride will depend on the 
order in which their claims are considered. The Shapley 
Value, however, will average these contributions over all 
conceivable sequences (in this case there are only two) to 
arrive at the fairest possible allocation.  

This concept can be used to explain the 
contributions of different variables to an 
individual prediction. The “payoff” is the actual 
prediction for a particular instance less the average 
prediction for the entire dataset. The “players” are the 
values of each variable that fed into that prediction, 
which “collaborate” to produce the overall payoff. 
Shapley Values divide this prediction (payoff) among 
the variables (players) in a way that fairly represents 
their respective contributions. In the case of a crisis, 
for example, where a country’s estimated cost is 
higher than for the sample as a whole, Shapley Values 
will indicate which variables prompted the model to 
assign a higher cost for that country, and will provide 
a quantitative guide as to each variable’s relative 
contribution.  
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China, on the other hand, would be expected to experience a more severe crisis, mostly 
owing to the country’s high manufacturing share (the model suggests that the manufacturing 
sector is relatively more sensitive to a disruption in financial flows). Additional worrisome 
factors include rapid GDP growth, a sharp increase in China’s terms of trade, and volatile 
inflation, although the cost of the crisis may be ameliorated slightly by the potential 
availability of fiscal space. 

 
Figure 2. Shapley Values: Impact of a Banking Crisis on Output Growth 

 
Aggregate Findings 

With similar breakdowns available for every observation, we can then explore which factors 
tend to be most important for the sample as a whole. For example, Figure 3 plots individual 
Shapley values for the entire dataset. Variables which are more important in driving the 
model’s predictions will tend to have a wider variance in their individual contribution—
unimportant variables will have little impact, either positive or negative, and so will have 
Shapley values clustered around zero.  

The chart shows the 12 most important variables, with higher ranked variables placed at the 
top.16 For example, it seems that exchange-rate flexibility is the most important factor overall 
in shaping the impact of a banking crisis, with greater flexibility associated with a smaller 
output loss (consistent, perhaps, with the shock-absorber role highlighted in Edwards and 
Yeyati, 2003). 

                                                 
16 Variables are ranked according to the mean absolute value of their respective Shapley values. 
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Also important is the share of manufacturing in each country’s economy, as well as the 
cumulative amount of public-consumption spending in the 5 years prior to the crisis, and the 
country’s degree of trade openness. For manufacturing, the distribution seems somewhat 
skewed, suggesting that the impact of this variable may be nonlinear—with the 
manufacturing share only having an effect if it exceeds a certain threshold, at which point a 
larger share is associated with a more severe episode.17 Similarly for trade openness, it 
appears that openness has little effect except for countries below a certain threshold, at which 
point relatively closed countries will tend to have more costly crises. Public spending is also 
skewed, but displays a less obvious mapping with the severity of a crisis. This is consistent 
with a more hump-shaped relationship, with both excessively high and excessively low levels 
of spending associated with more costly crises (perhaps owing to the fact that they may 
indicate a potential lack of fiscal space going forward). 

Figure 3. Distribution of Shapley Values 

 
 

Having identified the most important variables for the model as a whole, the machine-learning 
literature has also developed techniques to summarize each relationship in more detail. A 
comprehensive exploration of each variable is beyond the scope of this paper, but we can 

                                                 
17 The importance of a country’s manufacturing share is consistent with the general argument of Rajan and 
Zingales (1998) on the role of financial development in promoting growth—that financial development 
disproportionately helps firms or industries that depend on external financing (i.e., non retained funds). 
Manufacturing firms are relatively exposed in this regard (Balta and Nikolov, 2013), and so may tend to suffer 
the most from a sharp disruption in the financial system. 
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illustrate some of these techniques by delving deeper into the relationship between exchange-rate 
flexibility and the likely cost of a crisis.  

Figure 4 below (top left) presents a partial dependence plot (PDP) for the exchange-rate variable, 
which shows the effect of that variable on the predicted impact of a crisis—partial dependence 
works by marginalizing the model’s output over the distribution of all non-exchange-rate 
variables. As suggested in Figure 3, a greater degree of flexibility is associated with a milder 
episode. 

Figure 4. Exploring the Role of Exchange-Rate Flexibility 
 

 
Sources: IMF VE Database; author’s calculations. 
 

We can also use simulation techniques to explore potential interactions and nonlinearities. 
Figure 4 (top right) summarizes the degree to which each variable interacts with others, 
based on the variance-decomposition procedure introduced by Friedman and Popescu 
(2008)18,19 In our case, even though the partial dependence plot for exchange-rate flexibility 
                                                 
18 Interactions between features are measured via the decomposition of the prediction function: If a feature j has 
no interaction with any other feature, the function can be expressed as the sum of the partial function depending 
only on j and the partial function depending on all features other than j. Any variance not explained can be 
attributed to the interaction and is used as a measure of interaction strength. 

19 The PDP procedure used in this paper, as well as all Shapley-value implementations and variance 
decompositions, are drawn from the “iml” package in R, authored by Molnar (2018). 
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appears relatively monotonic, the procedure suggests that the effect of this variable is 
nonetheless strongly influenced by the level of other variables. Digging deeper, we can use 
the same decomposition procedure to explore which interactions are most important in this 
regard (Figure 4, bottom left). The results suggest that the impact of flexibility on the cost of 
a crisis is shaped by a country’s level of financial development, with the potential shock-
absorber role of the exchange rate significantly reduced for countries with a lower level of 
development (Figure 4 bottom right). 

V.   FURTHER RESEARCH 

This paper is not intended as a major contribution to the literature on financial crises. Instead, 
the goal has been to provide a gentle introduction to some recent advances in machine 
learning—advances that promise to be directly applicable to the challenges routinely faced 
by policy-oriented economists. In our case, we have chosen financial crises as an illustrative 
application, but other possibilities are much more wide ranging, and will likely be limited 
only by the availability of suitable data 

To the best of our knowledge, we are the first to apply the causal-forest algorithm to a 
macroeconomic dataset, but more micro-level data might allow for similar individual-level 
analysis of potential interventions (such as labor-market reforms, changes to tax policy, and 
so on).  

We should also note here that the causal-forest algorithm is not limited to analysis of binary 
interventions. In the event of a continuous treatment variable, for example, the procedure is 
modified easily—in each leaf of the causal tree, instead of calculating the difference in 
outcomes, the algorithm instead calculates the covariance between the treatment variable and 
the outcome variable. The end result for the individual treatment effect, then, is an estimate 
of the partial impact of a one-unit increase in the treatment variable. Similarly, if the 
researcher suspects that the variable of interest is endogenous, the causal forest can 
accommodate an instrumental-variables approach, in which the quantity calculated in each 
leaf is simply the IV estimator.20 In the latter case, the procedure is called “instrumental 
forests.” 

VI.   CONCLUSION 

Traditionally, prediction and causal inference have been treated as two very separate 
problems. Most of the prediction literature assumes that predictions are made by a passive 
observer who has no influence on the outcome. Causal inference, on the other, explicitly asks 
what would happen if we actively try to intervene in the system; or equivalently, what 
interventions most likely led to a particular outcome. The distinction is subtle, but 

                                                 
20 This is �𝑐𝑐𝑐𝑐𝑐𝑐(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)� � 
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fundamental—a crowing rooster may be a good predictor of an impending sunrise, but 
intervening on the rooster won’t in itself stop the sun from rising. 

In this context, the machine-learning literature has typically concerned itself mostly with 
prediction, but has recently focused more and more on issues of causality—prompted in part 
by a growing realization that many problems originally thought to be predictive (e.g., what 
happens to online sales if we increase a particular form of advertising) actually entail the 
discovery of a more causal relationship. 

Causal discovery, of course, is a vital part of empirical economic analysis, and this paper has 
provided a gentle introduction to some recent advances in the growing field of “causal 
machine learning.” Focusing mostly on the Causal Forest algorithm, and taking the costs of a 
financial crisis as an illustrative example, the paper has endeavored to show how such 
techniques can produce plausible results—the estimated average impact of a crisis, for 
example, is consistent with previous estimates, as is the potential role for exchange-rate 
flexibility or financial development in shaping the cost for any particular country. Further, 
these techniques can also allow for a significantly richer discussion of potential thresholds 
and non-linearities; to an extent that is usually not feasible using more traditional 
econometric methods. More generally, by enabling the consideration of a rich set of variables 
and interactions, and allowing for a more tailored assessment of the individual circumstances 
of each country, these techniques can provide an invaluable complement to the techniques 
currently employed by economists, both within the Fund and beyond. 
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ANNEX I 
 
Data are taken from the Fund’s Vulnerability Exercise Database, with variables chosen 
to ensure a broad coverage: across sectors, across countries, and across time. The final 
dataset includes 46 variables over 1985-2017, and covers 107 countries from both emerging 
markets and advanced economies, for a total of over 3364 observations. 
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