
WP/19/145 

Climate Disaster Risks – Empirics and a Multi-Phase 
Dynamic Model

by Stefan Mittnik, Willi Semmler, and Alexander Haider 

IMF Working Papers describe research in progress by the author(s) and are published 

to elicit comments and to encourage debate. The views expressed in IMF Working Papers 

are those of the author(s) and do not necessarily represent the views of the IMF, its 

Executive Board, or IMF management.   



© 2019 International Monetary Fund WP/19/145 

IMF Working Paper 

Research Department 

Climate Disaster Risks – Empirics and a Multi-Phase 

Dynamic Model* 

Prepared by Stefan Mittnik, Willi Semmler, and Alexander Haider 

Authorized for distribution by Chris Papageorgiou 

July 2019 

Abstract 

Recent research in financial economics has shown that rare large disasters have the potential 

to disrupt financial sectors via the destruction of capital stocks and jumps in risk premia. 

These disruptions often entail negative feedback e˙ects on the macroecon-omy. Research on 

disaster risks has also actively been pursued in the macroeconomic models of climate change. 

Our paper uses insights from the former work to study disaster risks in the macroeconomics 

of climate change and to spell out policy needs. Empirically the link between carbon dioxide 

emission and the frequency of climate re-lated disaster is investigated using cross-sectional 

and panel data. The modeling part then uses a multi-phase dynamic macro model to explore 

this causal nexus and the e˙ects of rare large disasters resulting in capital losses and rising 

risk premia. Our proposed multi-phase dynamic model, incorporating climate-related disaster 

shocks and their aftermath as one phase, is suitable for studying mitigation and adaptation 

policies.  

JEL Classification Numbers: C61, Q54, Q58, H5 

Keywords: climate economics, disaster risk, macro feedbacks, multi-phase macro model, 

monetary and financial policies, environmental economics 

Author’s E-Mail Address: SemmlerW@newschool.edu 

* The basic structure of this paper was developed while Willi Semmler was a visiting scholar at the IMF

Research Department. The authors would like to thank Chris Papageorgiou, Prakash Loungani and their

colleagues for many helpful insights and comments.

IMF Working Papers describe research in progress by the author(s) and are published to 

elicit comments and to encourage debate. The views expressed in IMF Working Papers are 

those of the author(s) and do not necessarily represent the views of the IMF, its Executive Board, 

or IMF management.   

mailto:SemmlerW@newschool.edu


  

 

Contents                                      

1. Introduction ........................................................................................................................... 3 

2. Empirics of disaster frequency and severity .......................................................................... 6 

3. A model of disaster shocks and financing contractions .......................................................20 

3.1.   A three-phase Model ...................................................................................................20 

3.2.   Results of the three-phase model .................................................................................23 

3.3.   The use of bond financing ...........................................................................................27 

4. Other policies for the green transition and disaster management ........................................32 

5. Conclusion ............................................................................................................................34 

References ..................................................................................................................................36 

Appendix 

A.1. Fixed effects Coefficients for Panel Model ........................................................................41 

A.2. Empirics of climate disaster cost ........................................................................................41 

A.3. Base line macro dynamic model .........................................................................................42 

Tables  

1.   Poisson Regression with robust standard errors by region ...................................................17  

2.   Disaster frequency in relation to CO2 concentration in the atmosphere ..............................18 

3.   Change in disaster frequency in relation to CO2 concentration in the atmosphere ..............19 

4.   Parameters defining weak and strong shocks for the three time periods .............................23 

 

Figures  

1.   Frequency of droughts between 1976 and 2017 by region ..................................................8 

2.   Frequency of floods between 1976 and 2017 by region.......................................................9 

3.   Frequency of landslides between 1976 and 2017 by region ................................................10 

4.   Frequency of storms between 1976 and 2017 by region ......................................................11 

5.   Frequency of wildfires between 1976 and 2017 by region ..................................................12 

6.   Frequency of extreme temperatures between 1976 and 2017 by region ..............................13 

7.   Frequency of climate related disaster (total) between 1976 and 2017 by region .................14 

8.   Annual CO2 mole fraction increase (in parts per million) from 1976 until 2017 ................15 

9.   Government debt in a three-phase model, red: weak shock, blue: strong shock ..................24 

10. Government capital in a three-phase model, red: weak shock, blue: strong shock ..............25 

11. Private capital stock in a three-phase model; red: weak shock, blue: strong shock .............26 

12. Fossil fuel consumption in a 3-stage model, red: weak shock, blue: strong shock ..............27 

13. Path of consumption in a three-stage model; red: weak shock, blue: strong shock .............28 

14. Carbon Tax Policy and Issuance of Climate Bounds ...........................................................31 

 



1 Introduction

Much recent research in the economics of climate change has utilized modern statistical
and econometric methods to study the links between GDP growth, greenhouse gas (GHG)
emission, global warming, and climate-related disasters. Additional research, for example
by the IMF (2017), has shown that in particular low income countries and regions will be
vulnerable to climate related disasters. At the same time they have only little economic
and financial capacity to adapt.1

Similar research on large disaster risk has been undertaken in financial economics, espe-
cially since the financial crisis 2007/9 and the subsequent world-wide recession. In particular
the destruction of capital stocks and jumps in risk premia after rare large economic and
financial crisis are investigated in great detail. For example, Rietz (1988) studies rare mar-
ket crashes and their effect on equity risk premia. Barro (2006) uses as disaster measure
the decline of GDP growth, while Barro and Ursua (2008) and Gabaix (2011) investigate
the decline of consumption spending due to large disaster. Barro (2006) and Gourio (2012)
measure disasters in terms of loss in total factor productivity (TFP) and declines in the
capital stock. The latter is formally introduced in these models as a sudden increase in
the capital depreciation rate. The proportionality of output and capital losses can then
be demonstrated in an “AK” growth model (Barro, 2006). Usually strong persistence of
disaster shocks is assumed which results in long run effects of such shocks, see Catalano
et al. (2018). Recent literature frames this issue in the context of DSGE models. Numerical
solution methods for solving DSGE models with disasters – by measuring disasters as phys-
ical capital and output losses – have been developed by Fernandez-Villaverde and Levintal
(2016). Disasters are then mainly modeled as highly persistent shocks with mean reversion
after the event.

Economic and financial studies on rare large crashes were undertaken with the intention
of demonstrating the effect of financial disasters on asset prices and returns. Researchers
intended to show that the equity premium puzzle and volatile discount rates can be resolved
with reference to rare large disasters.

There is also a significant strand of literature on climate disasters focusing on physical
destruction of countries and regions. The focus has been on destruction caused by rare large
disasters and on slow temperature increases and its negative effects on long-run productivity
(IMF, 2017). Particularly important is the study by Burke et al. (2015) which explores

1See Bernard and Semmler (2015); see also IMF (2017) and Burke et al. (2015).
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the non-linear effects of climate change based on the work of Gumbel (1958). A related 
study is given by Cantelmo et al. (2017), where climate disaster losses are introduced in 
a macroeconomic model as capital losses, implying some long-run persistent effect. Here 
fiscal p olicy i s s uggested f or d isaster m anagement. The r ole o f public c apital f or disaster 
management is stressed by Adam and Bevan (2014) and Bevan and Adam (2016). The 
effects of rare large disasters on risk premia, credit cost, credit spread and credit constraints 
will be analyzed in the context of our model.2 In addition, fiscal, monetary and financial 
policy interventions will be introduced to study disaster management approaches in detail. 
To the best of our knowledge this has not been done in climate disaster studies.

Although the causes of disaster risk arising from climate change differ from disaster risk 
originating in large financial crises, the effects may be s imilar. In both cases actual output 
may recover in the short run, but potential capacity is reduced, while physical, public and 
human capital will be destroyed, causing persistently low growth in the future. This effect 
is often referred to as a hysteresis effect of shocks. In this context some authors suggest to 
work with multiple equilibria models, allowing for trapping probabilities and poverty traps 
after the disaster event, see Kovacevic and Pflug ( 2011). Moreover, due to large temporary 
shocks and capital losses, risk premia and borrowing cost for credit are likely to rise steeply. 
Increased credit constraints will be the result and the affected country or region may face 
a trapping probability allowing for a very slow recovery only.

Both research areas are concerned with similar policies – policies addressing the miti-
gation and reduction of long run causes of disasters and how to deal with after-the-event 
situations. In terms of policies, balancing the competing, yet often complementary, needs of 
climate change, mitigation and adaptation becomes a complex problem. Different policies 
may be substitutes in the short run, but complements in the long run: active mitigation 
policies may reduce the risk of large disasters, but they are expensive and their benefits may 
only accrue in the long run. At the same time adaptation policies may solve short-term 
problems in a more satisfactory way, but their costs increase strongly if mitigation policies 
remain underfunded.

We address these important policy issues by presenting some empirical results first. We 
explore the link between rising carbon dioxide levels in the atmosphere and the frequency 
of climate disasters in seven regions: East Asia and Pacific (EAS), Europe and Central Asia 
(ECS), Latin America and the Caribbean (LCN), Middle East and North Africa (MEA),

2Relevant literature on monetary policy and climate change are McKibbin et al. (2017) and Fratzscher 

et al. (2017).
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North America (NAC), South Asia (SAS), and Sub-Saharan Africa (SSF). We also present 
a modeling framework on the occurrence of large disasters in a multi-phase dynamic macro 
model. In this context we discuss the role of monetary and financial policies in dealing with 
those disasters.

In doing so we build on a macro model developed by Bonen et al. (2016), Maurer et al.
(2018) and Semmler et al. (2018) which allows for studying the issue of large climate-
related disaster shocks and climate change policies. Our model explicitly solves for fiscal 
and financial resources to deal with trade-offs of mitigation and adaptation p olicies. These 
policies are operationalized as time varying shares of public capital in support of carbon-
neutral productivity-enhancing infrastructure, mitigation and adaptation capital. In those 
model variants carbon intensity of the energy resources is not taken as a side-product of 
production. Instead we endogenize carbon intensity by linking emissions to the extraction of 
a non-renewable resource (e.g., fossils fuels), and show how renewable energy can be phased 
in through public-sector investment, thereby phasing out fossil energy. This allows us to 
combine contemporary ‘social cost of carbon’ (SCC) approaches, as used in an Integrated 
Assessment Model (IAM), with the resource extraction models of Hotelling (1931) and 
Pindyck (1978) and extended by Maurer and Semmler (2011). Moreover, the macro model 
presented here extends the recent modeling advances that allow agents to respond to climate 
change by combining mitigation and adaptation actions, see Ingham et al. (2007), where 
mitigation might reduce vulnerability. The solution method of solving the multi-phase 
model is presented in Maurer et al. (2018).

Climate finance p olicy –  we mainly explore t he i ssue o f s caling up c limate investment 
through bond issuance – suggests scaling up the process of initiating bond financing a t a 
certain stage of climate policies and then reducing accumulated debt by an income tax in 
a later stage. Therefore we propose combining in a more general way fiscal, financial, and 
monetary policies for tackling climate change. Our approach gives rise to a three-phase 
model, first u sing t axation a nd fi scal to ols, fo llowed by  sc aling up  in vestments by  bond 
financing, concluded by a  final stage of  bond repayment for debt re duction. A single stage 
model, described in appendix A.3, is contrasted with such a multi-phase model. We also 
explore the economic and financial impacts of large disasters and study the impact of fiscal, 
financial and monetary policy tools on mitigation as well as on adaptation.

The remainder of the paper is organized as follows. Section 2 presents some empirics 
on the causal link between rising carbon dioxide levels – to a large extent due to economic 
expansion – and climate risks, measured as the number of climate disasters for a given
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year (disaster frequency). Section 3 introduces the multi-phase dynamic decision problem 
and applies it to a three-phase macro model with phase-specific c limate d isasters, fiscal, 
monetary and financial p olicies. S ection 4  p rovides s ome d iscussion o n b roader policies 
including fiscal and monetary policy tools of mitigation and adaptation p olicies. Section 5 
concludes.

2 Empirics of disaster frequency and severity

We study the frequency of climate disasters within regions in this section. The empirics of 
climate disasters will lay the groundwork for the theoretical model of section 3.

There are numerous disaster studies in the economics of climate change. Those studies 
have looked at climate disasters and the physical destruction they cause for region and 
country groups, resulting from rare extreme weather events as well as from gradual tem-
perature increases. Negative impacts of gradual temperature increases on productivity are 
studied by IMF (2017). Noteworthy is the study by Burke et al. (2015) which relates to 
the work of Gumbel (1935, 1958) on extreme value theory and the non-linear effects from 
climate change.

A related study is given by Cantelmo et al. (2017), which represents one of the few 
papers on the macroeconomics of climate disasters where losses are measured as capital loss, 
implying some long-run persistent effect. Similar to our work, the role of public capital for 
disaster management is stressed in Adam and Bevan (2014) and Bevan and Adam (2016). 
Moreover, there are the studies by Hochrainer-Stigler et al. (2014) and Kovacevic and Pflug 
(2011) which include considerations on disaster insurance and trapping probabilities. Our 
empirical approach is closely related to Thomas et al. (2013) and Thomas and Lopez (2015). 
They study the increase of climate-related disasters and anthropogenic climate change based 
on panel models for count data and find a  positive relationship between disaster frequency 
and disaster risk factors caused by man-made GHG emission. More specific s tudies, for 
example on flooding disasters in Bangladesh, are undertaken, by Hochrainer et al. (2009).

It is worth contrasting the way probability theory is defining ( exogenous) r are large 
events with our set up. Studies based on a probabilistic approach weigh the (low) proba-
bility of large disaster events with the size of the losses. In our context, however, we see 
disaster probabilities being driven endogenously by rising vulnerabilities due to a rise in 
CO2 emission. Our empirical approach mainly builds on the EMDAT database provided by
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the Centre for Research on the Epidemiology of Disasters (CRED).3 The database provides 
observations on different kinds of natural and technological disasters. Following Coronese 
et al. (2018) we identify six types of natural disasters which are related to climate change: 
floods, droughts, landslides, wildfires, storms, and extreme temperature.

As disaster data is known for being subject to several data issues, such as under-
reporting for disasters in the more distant past (Guha-Sapir et al., 2013), data preparation 
becomes a vital issue. We only use data starting in 1976 to deal with the most severe 
data distortions. In addition, we focus on the number of disasters/disaster frequency.4 Our 
dependent variable is constructed by summing up the number of climate related disaster 
for the six categories mentioned above for a given year and region.5

Before studying the relationship between CO2 emission and climate related disasters in 
more detail, we present some stylized facts based on the EMDAT database. Figures 1-7 
show the number of climate related disasters, as defined above, for the time period between
1976 and 2017.

Figure 1 depicts the number of droughts for each region in the database between 1976 
and 2017. No strong trending behavior is observed. For the Middle East and North Africa, 
North America, and South Asia the occurrence of droughts is limited for the given time 
horizon. In fact, the EMDAT database does not report any droughts for the Middle East 
and North Africa since 2010. For the other regions the pattern is volatile, especially for 
Sub-Saharan Africa were the number of droughts varies strongly over the sample period. 
East Asia and Latin America and the Caribbean also show very volatile patterns. Europe
and Central Asia, on the other hand, do not follow this pattern. A large spike is given for 
this region in 2000 when 10 droughts were reported. The second largest value for Europe 
and Central Asia are given in 2004 and 2017 with only 4 occurrences each.

3https://www.emdat.be/; EMDAT reports events which cause at least 10 deaths, affect at least 100 
people, or prompt a declaration of a state of emergency or a call for international assistance as a disaster.

4Data on real climate disaster cost is provided in appendix A.2. Figures 15 and 16 show severe data 
issues for climate disaster cost. We regard the number of climate disasters as the more reliable indicator 
and therefore focus on it in this section.

5In our empirical analysis we focus on the seven regions identified by the World 
Bank Atlas method: https://datahelpdesk.worldbank.org/knowledgebase/articles/ 

906519-world-bank-country-and-lending-groups
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Figure 1: Frequency of droughts between 1976 and 2017 by region. Regional classification follows
the World Bank classification system. Source: Authors’ estimates based on data from EMDAT.

In contrast to droughts, an upward trending behavior can be observed for floods for 
almost every region with the exceptions of North America and the Middle East and North 
Africa. These patterns are shown in Figure 2. A strong increases in flooding d isasters is 
very pronounced for East Asia and for Sub-Saharan Africa. However, Sub-Saharan Africa, 
East Asia, South Asia, and Europe and Central Asia show a downward pattern for the most 
recent years. The number of floods reached their maximum in Europe and Central Asia in 
2005, while the maximum was obtained ins Sub-Saharan Africa in 2007. For East Asia the 
highest value was realized in 2006 and in South Asia in 2005.
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Figure 2: Frequency of floods between 1976 and 2017 by region. Regional classification follows the
World Bank classification system. Source: Authors’ estimates based on data from EMDAT.

The next graph (Figure 3) shows the number of landslides for our seven regions between 
1976 and 2017. The number of landslides per year is flat in North America and in the Middle 
East and North Africa where the number of observations per year never surpasses a value 
of one. In East Asia we observe an upward trend but, as before, there has been a decreasing 
number of reported incidents in the most recent past. In fact, the highest reported value is 
found in 2013 when 13 landslides were reported. For Europe and Central Asia and Latin 
America and the Caribbean no discernible pattern is given. The number of landslides per 
year is volatile but there is no trend. A small upward trend in landslides may be observed 
in South Asia. Here the year-on-year change is very large again. For Sub-Saharan Africa 
the data suggest an increasing number of landslides per year for the region since the late 
1990s.
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Figure 3: Frequency of landslides between 1976 and 2017 by region. Regional classification follows
the World Bank classification system. Source: Authors’ estimates based on data from EMDAT.

Figure 4 illustrates an upward trend of storms in East Asia since the 1970s. A similar
pattern, although not as strong as in East Asia can be observed for Latin America and the
Caribbean, North America, and Sub-Saharan Africa. On the other hand, no upward trend
is observed in Europe and Central Asia, the Middle East and North Africa and Sourth Asia.
In Europe and Central Asia a large spike is given in 1990 when 66 storms were recorded.
The second largest value is given in 2005 with (only) 26 reported incidents.
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Figure 4: Frequency of storms between 1976 and 2017 by region. Regional classification follows
the World Bank classification system. Source: Authors’ estimates based on data from EMDAT.

The number of wildfires i s d epicted i n F igure 5 . Wildfires ar e ve ry li mited fo r most 
regions. The maximum value for South Asia is attained in 1999 with 4 wildfires. I n the 
Middle East and North Africa a similar pattern can be observed. The number of wildfires is 
very small. Sub-Saharan Africa also reports very small numbers. The number of wildfires 
is considerable higher in Europe and Central Asia where a maximum of 16 is reached in 
2000. In North America the largest value is observed in 2002 with 9 wildfires. For East 
Asia the number of wildfires is again limited although it is higher than for the Middle East 
and North Africa, Latin America and the Caribbean and in Sub-Saharan Africa. Finally, 
the number of wildfires is also very limited in Latin America and the Caribbean.
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Figure 5: Frequency of wildfires between 1976 and 2017 by region. Regional classification follows
the World Bank classification system. Source: Authors’ estimates based on data from EMDAT.

Figure 6 reports the number of observations on extreme temperature events. As can be
seen from the figure the number of observations is very limited for all regions but Europe
and Central Asia. In fact, the number of observations for this disaster category is below 10
for each year for all regions but Europe and Central Asia. For Europe and Central Asia an
increase in the number of observations can be observe in Figure 6, although the pattern is
rather erratic. Still, 43 extreme temperature events were reported in Europe and Central
Asia in 2012. The second highest value was attained in 2005 with 22 reported incidents.
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Figure 6: Frequency of extreme temperatures between 1976 and 2017 by region. Regional classi-
fication follows the World Bank classification system. Source: Authors’ estimates based on data
from EMDAT.

As mentioned above, the six categories just described are summed up for every year and 
region and classified as climate related disasters h ere. The results are shown in Figure 7 for 
our seven regions. We observe a clear upward trend for most regions. In Europe and Central 
Asia an upward trend is clearly given up until 2005. In the following years the number of 
observations decreased somewhat. On the other hand, the trend for East Asia and Latin 
America and the Caribbean is increasing over the entire sample period. A similar pattern is 
observed for Sub-Saharan Africa. Here a small decrease for the most recent years becomes 
visible again. The number of disasters decreases from an all-time high of 74 observations 
in 2007 to 39 climate related disaster in 2017. In contrast to theses patterns, the trend in 
the Middle East and North Africa and in North America is not as pronounced, although 
we observe a positive trend in North America. Finally, in South Asia an upward trend is 
observed as well.
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Figure 7: Frequency of climate related disaster (total) between 1976 and 2017 by region. Regional
classification follows the World Bank classification system. Source: Authors’ estimates based on
data from EMDAT.

Lastly, Figure 8 shows the annual increase in carbon dioxide in the atmosphere expressed
as a mole fraction in dry air. The data is provided by the Mauna Loa Observatory and
shows the growth (first differences) of the collected data between 1976 and 2017. Data
collected at the Mauna Loa Observatory is intended to represent carbon dioxide levels in
the atmosphere for the northern hemisphere. However, the annual increase based on the
Mauna Loa data is very similar to the global annual increase and is therefore used for the
southern hemisphere as well in this study.6 In the following empirical analysis we will focus
on the data shown in Figure 8 and its relationship with the total number of climate related
disaster, represented by Figure 7.

6See https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html for more details on the data.
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Figure 8: Annual CO2 mole fraction increase (in parts per million) from 1976 until 2017. The data
is provided by the Mauna Loa Observatory.

The link between GHG concentration in the atmosphere in general, and CO2 concentra-
tion in particular, and the increased frequency of natural disasters is well documented, see 
Thomas et al. (2013) for an overview. IPCC (2012) argue that increased GHG emission, 
leading to increasing concentration in the atmosphere, alters climate variables, especially 
temperature and precipitation levels. These changes in climate variables increase the fre-
quency of climate-related hazards. Growth in CO2 concentration in the atmosphere there-
fore only represents an indirect effect on climate-related disasters. However, focusing on 
CO2 instead of changes in temperature and precipitation has certain merits. As Miller et al.
(2014) point out, the increasing concentration of GHG (and aerosols) represents the main 
perturbation to the earth’s climate. In addition, long-lived GHG like CO2 show only small 
geographic variations and can be easily measured at few sites with low levels of uncertainty. 
Therefore changes in CO2 concentration lend themselves to the empirical analysis in this 
section. In contrast, changes in surface temperature (anomalies) show high levels of geo-
graphic variation, are more volatile and affected by numerous factors, such as the El-Niño
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Southern Oscillation, solar variability, and volcanic activity (IPCC, 2013; Lean and Rind,
2008).7

In addition to the growth in CO2 concentration, we add the lagged value of disaster
frequency as a regressor. We do this to take non-stationarity of our dependent variable
into account. As the effects stemming from an increase in CO2 concentration may be slow
moving we add the current increase and 17 lags of it to our model. However, the number
of observations is limited. We therefore sum up the current increase in CO2 concentration
and our 17 lags in one variable (Sum of CO2 increases in Tables 1, 2 and 3). By using
current and lagged increases in CO2 from the Mauna Loa Observatory as a proxy for the
global average, Sum of CO2 increases represents the sum of all CO2 added and removed
from the atmosphere for a given year by human activities and natural processes.8

Table 1 shows the results of Poisson regressions for each region with robust standard
errors. As can be seen from the table, the Sum of CO2 increases coefficient is positive and
statistically significant for 6 out of 7 regions, with Sub-Saharan Africa being the exception.

In Table 2 we report the results of linear fixed effects panel regressions with individual
effects (i.e. regional effects) to control for contemporary regional change. As increases in
CO2 do not vary between regions for a given year, time fixed effects cannot be applied in
our panel regression. Once again we regress the number of disaster events for a given year
on its lagged value and on the sum of the current and 17 most recent increases in CO2

levels in the atmosphere. Standard errors are adjusted for heteroskedasticity and (cross-
sectional) serial correlation (Arellano, 1987). We observe a positive influence of increases
in CO2 on the frequency of natural disaster (column Complete Data-Set).9 In addition, we
also estimate the same model for large disasters only (column Large Disaster Data-Set).
Following Thomas and Lopez (2015) we only retain disasters which affect at least 1,000
people or lead to 100 deaths here. As can be seen from the column Large Disaster Data-
Set, the result of the now unbalanced panel confirms the results of the models discussed
before. Although we observe the Sum of CO2 increases coefficient decrease in size in the
second panel model, it remains positive and statistically significant.10

7Thomas and Lopez (2015) include average temperature deviations as a regressor in explaining the
frequency of intense climatological disasters and do not find any significant effect. Atmospheric CO2 levels,
on the other hand, are significant in their analysis.

8See again https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html for more details.
9Similar results were obtained in a GLM panel model based on a Poisson and a negative binomial model.

The results are not reported here.
10Results on the fixed effects coefficients can be found in the appendix.
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Table 2: Fixed effects Panel with heteroskedasticity and serial correlation robust standard errors.
Dependent variable represents the number of disaster events for a given year (Disaster Frequency).
Independent variables include the lagged value of dependent variable (Disaster Frequencyt-1) and
the sum of the current and 17 most recent increases in CO2 concentration in the atmosphere,
expressed as a mole fraction in dry air (ppm) (Sum of CO2 increases). Standard errors are given
in parenthesis. Model Complete Data-set considers all disasters in the EMDAT database. Model
Large Disasters Data-set only includes disasters with at least 1,000 affected or 100 people killed.

Dependent variable:

Disaster Frequency

Complete Data-set Large Disasters Data-set

Disaster Frequencyt-1 0.517∗∗∗ 0.618∗∗∗

(0.071) (0.071)

Sum of CO2 increases 0.947∗∗∗ 0.626∗∗∗

(0.168) (0.168)

Observations 280 277
R2 0.526 0.624
Adjusted R2 0.512 0.612
F Statistic 150.216∗∗∗ (df = 2; 271) 222.036∗∗∗ (df = 2; 268)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Lastly, we also estimate the panel model with the change in disaster frequency as 
the dependent variable. The right-hand side variables do not change and are the same 
as in Table 2. As we are estimating a model with change in disaster frequency as the 
dependent variable and change in CO2 concentration, as well as the lagged value of disaster 
frequency as independent variables, this model mimics an error-correction model. Evidence 
on co-integration between disaster frequency and CO2 concentration is inconclusive for our 
data, but the number of observations is rather limited. The results of this estimation are 
reported in Table 3. Once again, we observe a positive relationship between increases in 
CO2 concentration in the atmosphere and (change in) the frequency of disasters.
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Table 3: Fixed effects Panel with heteroskedasticity and serial correlation robust standard errors.
Dependent variable represents the first difference of the number of disaster events for a given year
(Diff Disaster Frequency). Independent variables include the lagged value of dependent variable
(Disaster Frequencyt-1) and the sum of the current and 17 most recent increases in CO2 concen-
tration in the atmosphere, expressed as a mole fraction in dry air (ppm) (Sum of CO2 increases).
Standard errors are given in parenthesis. Model Complete Data-set considers all disasters in the
EMDAT database. Model Large Disasters Data-set only includes disasters with at least 1,000
affected or 100 people killed.

Dependent variable:

Diff Disaster Frequency

Complete Data-set Large Disasters Data-set

Disaster Frequencyt-1 −0.483∗∗∗ −0.382∗∗∗
(0.1047) (0.0713)

Sum of CO2 increases 0.947∗∗∗ 0.627∗∗∗

(0.2732) (0.1677)

Observations 280 277
R2 0.242 0.190
Adjusted R2 0.219 0.166
F Statistic 43.215∗∗∗ (df = 2; 271) 31.395∗∗∗ (df = 2; 268)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3 A model of disaster shocks and financing contractions

Next we present a dynamic multi-phase macro model with a focus on the causes and effects 
of rare large disasters. We propose a dynamic multi-phase macro model which includes a 
disaster phase. Though it is in the spirit of an IAM, it is rather based on a larger scale 
macro model which allows for tax and credit finance of climate p olicies. The model exhibits 
feedback effects by credit flow dynamics affecting c limate variables and t he r eal s ector as 
well.

As in earlier small scale models which allow for thresholds and poverty traps, such 
as Azariadis and Stachurski (2005) and Semmler and Ofori (2007), we permit for shifts 
into a model phase characterized by a persistent disaster regime.11 In earlier, simpler 
models increasing returns to scale, financial market and financing co nstraints, insucient 
insurances with high deductability, and migration of skilled labor and entrepreneurs led to 
economies ending up in poverty traps. Prolonged disaster phases and very slow recovery 
phases may be the result then.

A larger macro model with such a phase of a prolonged disaster and log-in of self-
enforcing feedback effects and declining growth will be presented next. The model will be 
of higher dimension than the models just mentioned. This will allow us to include consider-
ations pertaining to climate related monetary and financial p olicies. We will also model the 
linkages which were explored in the previous sections. The model version presented here is 
derived from the baseline model of appendix A.3 where details of notations and definitions 
can be found. This kind of a multi-phase model is technically further explored in Maurer 
et al. (2018) where the solution method is explained in detail.

3.1 A three-phase Model

Our dynamic macro model should trace the following linkages: economic production and 
growth leads to the extraction and usage of fossil fuel, which will give rise to CO2 emission, 
and increasing temperature.12 These effects will reduce economic growth and economic 
welfare. Mitigation and adaptation policies may be pursued by monetary and financial

11In more recent stochastic models with trapping probabilities such a regime is also referred to as a 
trapping region (Kovacevic and Pflug, 2 011). For modeling e ndogenous c atastrophic r isk, s ee Crépin and 
Nævdal (2019).

12We do not model the resulting temperature effects since changes in temperature, as well as in precipi-
tation levels, are mainly due to GHG emission as discussed in section 2. Therefore we are focusing on CO2 

emission as the most significant man-made GHG.
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instruments. Those are activated by the public sector and the monetary authority. Yet,
the rise of credit and debt financed growth raises the usual question concerning sustainable
debt which has to be controlled for in the long run.

In our three-phase model, allowing for disaster shocks, the above nexus is used, but split
up into three phases. The first phase of our model can be considered as a stage of mitigation
and adaptation policy financed through taxation. We model a second phase with small and
large disasters reducing capital stock and increasing risk premia for credit financing. We
focus on a model version with different types of shocks, implying disasters of different
impact sizes. In the model we admit that adaptation policies can reduce vulnerability and
thus reduce the occurrences of extreme events. Still, the occurrence of such an event will
give rise to a multi-phase model.

In the first stage the model is the same as the single stage model in appendix A.3. The
objective function is given by equation (1):

W (T,X,U) =

∫ T

0
e−(ρ−n)t

(
C (α2eP )

η
(
M − M̃

)−ε
(ν2g)

ω

)1−σ
− 1

1− σ
dt . (1)

It is subject to the following dynamics:

K̇ = Y · (ν1g)β − C − eP − (δ disK + n)K − uψR−ζ , (2)

Ṙ = −u, (3)

Ṁ = γ u− µ(M − κM̃)− θ(ν3 · g)φ, (4)

ḃ = (rr − n)b− (1− α1 − α2 − α3) · eP + ςkg, (5)

ġ = α1eP + iF − (δ disg + n)g + ςkg. (6)

Here K is private (green) capital, R is the stock of the non-renewable resource, M is the
atmospheric concentration of CO2, b is government’s debt, and g is public capital. In 
contrast to the single phase model, a second stage – caused by a possibly large disaster 
shock inflicting persistent capital l osses13 –  i s explicitly modeled h ere. The strong disaster

13One might think of passing beyond a tipping point in climate change, as in Greiner et al. (2010), where 

a sequence of disasters is likely to occur.
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shock, for example, is modeled by defining δ disg = δ disK jumping from 0.1 to 0.17.14 We
also account for a jump of the risk premium, moving from r = 0.04 to rr = 0.12. We allow
for a weak shock as well and compare the effects with the strong shock. Table 4 lists the
parameters for both types of shocks. Although there is some mitigation and adaptation
policy in the first stage, in our BAU period, only now, in the second stage, additional
credit (bond) financing will be added, ςkg, affecting the debt dynamics in equation (5) but
providing also additional finance in equation (6).

In the third stage, again with the same objective function, we have no additional bond
issuing any longer. Bonds are paid back by a tax rate τ on income, but the economy might
face some persistent effects on their risk premia. Thus in the third phase the state equations
are subject to the dynamics:

K̇ = Y · (ν1g)β(1− τk)− C − eP − (δK + n)K − uψR−ζ , (7)

Ṙ = −u (8)

Ṁ = γ u− µ(M − κM̃)− θ(ν3 · g)φ, (9)

ḃ = (rrr − n)b− (1− α1 − α2 − α3) · eP − Y · (ν1g)βτk, (10)

ġ = α1eP + iF − (δg + n)g. (11)

Thus, in the third stage capital losses do not occur any longer, but the previous increase
in leveraging of private and public capital might still lead, in the case of the strong shock,
to a considerably high risk premium of rrr = 0.10. We assume here that the risk premium
could have been lowered by monetary policy, but would still be high due to the aftereffects
of the disaster shock. By way of exemplifying our three-phase model, we pre-fix the first
period from t0 = 0 to t1 = 13, the second period from t1 = 13 to t2 = 23, and last period
until T = 40.15

Table 4 contains a description of parameters defining weak and strong shocks, affecting
the second phases of our model. For weak shocks the depreciation shocks for public and
private capital are smaller in phase two. In addition, risk premia are also smaller in the
weak shock scenario, in particular in phase two and three.

14Note that given the quality and heterogeneity of the data it is very hard to undertake more precise
parameter calibration. We therefore do some robustness tests with different parameter constellations.

15A model version with time varying switching points can be found in Maurer et al. (2018).
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Table 4: Parameters defining weak and strong shocks for the three time periods.

Time period: t1–t2 t2–t3 t3–T
risk rate, weak shock r = 0.04 rr = 0.08. rrr=0.05
risk rate, strong shock r = 0.04 rr = 0.12. rrr=0.10
weak shock: σK , (σG) 0.1, (0.075) 0.12, (0.12) 0.1, (0.075)
strong shock: σK , (σG) 0.1, (0.075) 0.17, (0.17) 0.1, (0.075)

3.2 Results of the three-phase model

The parameter shifts of table 4 are used in our subsequent simulations, whereby the effects 
are drawn in red lines for weak shocks and in blue lines for strong shocks. Note that 
overall, for all variables continuous growth is more successfully achieved without strong 
shocks. Overall, looking at figures 9-13, we observe that the red line is (except for the fossil 
fuel resource and stock of CO2) above the blue line.

Note that in the figures 9-13 the red l ine being above the blue l ine holds for consump-
tion, private capital and public capital stock. This implies for a small shock that the 
economy can continuously grow with high borrowing, financing c limate related infrastruc-
ture investments, and appropriate mitigation and adaptation policies. Thus, to overcome 
negative externalities, arising from CO2 emissions due to production, there is also a strong 
evolution of debt, since this is co-financing t he mitigation a nd a daptation p olicies. With 
this prolonged growth process we can also observe a strong extraction of fossil fuel and a 
built up of a stock of CO2 emission (which is however counteracted through the climate 
policy measures).

Yet, with a stronger disaster shock occurring, represented by the parameters of the 
strong shock in table 4, which generates a significantly stronger and longer disaster period, 
consumption stays low, private and public capital stock stays low and so does debt. Conse-
quently, because of lower growth and a smaller increase of capital stocks, the extraction of 
fossil fuel and the stock of CO2 emission is declining. This result is in line with empirical 
studies, see Cohen et al. (2018), who show that in times of a negative output gap emissions 
are declining.

Looking at details of the figures 9 -13 w e o bserve i n fi gure 9 th at al though stronger 
disasters generate lower debt, they also generate smaller expansions of capital stocks, and 
much lower consumption levels. On the other hand, for weaker shocks more effective mit-
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Figure 9: Government debt in a three-phase model, red: weak shock, blue: strong shock

igation and adaptation policies, through the usage of financial s ources, ς kg, w ith t he aim 
of preventing disasters generate higher debt, but lower debt to capital ratios and higher 
welfare, see below. For strong shocks, as a consequence debt is rising steadily since risk 
premia are increasing.

Although public and private capital rise in phase one, both are suffering from the disaster 
shocks in phase two.

Though debt is still rising, see figure 9, given the persistent disaster e ffects16 public and 
private capital is damaged and we see their size shrinking after 13 periods (see Figures 10 
and 11).

As a result of strong shocks, allocation towards investment in private capital, K, read-
justs, as the second phase – with green bond issuance – nears, see Figure 11. Yet in the 
period after t1 capital stocks fall. Yet, this is not so for a weak shock where capital (and

16Note that we could define a  s equence o f h ighly c orrelated d isaster s hocks, a s i t i s d one i n Catalano 

et al. (2018), which gives roughly the same results.
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Figure 10: Government capital in a three phase model, red: weak shock, blue: strong shock

consumption) are rising.
For a strong shock, both, g and K, decline in the second period, they remain low for a 

while as long as the disaster effects persist. Only in a later stage public and private capital 
are recovered, see Figures 10 and 11. The rise of public and private capital in this later 
period is due to additional bond financing accelerating mitigation and adaption initiatives. 
Note that in the third phase, the repayment stage of bonds, through income taxes τk, sets 
in. For a weak shock both private and public capital stay high.

With our initial conditions, the plots in the Figure 12a remain constant after the first 
phase, while the stock of emitted M becomes high (figure 1 2b), i n p articular f or weak 
shocks, which entails a negative externality (a destructive) effect on welfare. Note also that 
the vulnerability of disasters is reduced with greater public capital, see equation (1).

Thus, when the level of the stock of CO2 emission, M , becomes high, welfare of house-
holds is reduced, see equation (1). The result of a rise of private (green) capital and public
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Figure 11: Private capital stock in a three-phase model; red: weak shock, blue: strong shock

capital supporting the increase of mitigation effort and renewable energy, is preventing the 
stock of fossil fuel to be extracted to a greater extent. We observe this pattern until t = T 
, in particular for weak shocks and continuous growth, with both K and g building up, as 
depicted in figures 1 0 a nd 1 1, i n t he s econd a nd t hird p eriod. On t he o ther h and, f or a 
strong shock, figure 12b shows that the C O2 emission i s only r ising s lightly and the stock 
of fossil fuel energy (the trajectory in figure 1 2a) i s o nly f alling s lightly a nd much fossil 
energy remains unexploited.

Turning to the welfare implications of the disaster shock effects on consumption in the 
three-stage model, figure 1 3 i llustrates t he r esults. U nlike i n a  model o f a  s ingle phase, 
see Maurer et al. (2018), where naturally consumption continuously rises without disrup-
tion (no disaster occurrence), in the current disaster driven multi-phase model there are 
intertemporally considerable consumption losses which will only rise slightly when CO2 

emission is reduced and the stock of private (green) capital is rising again. Our computed
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Figure 12: Fossil fuel consumption in a 3-stage model, red: weak shock, blue: strong shock

(a) Total Remaining Fossil Fuel Stock (b) Total Carbon Dioxide Emissions

value functions show that welfare in case of weak shock is V = 26.46, and in the case of a 
strong shock we have V = −36.26.

Regarding debt sustainability we see that in terms of the debt-to-capital-stock ratio, 
b/K, the ratio is higher for strong shocks (b/K = 0.33) compared to weak shocks (b/K = 
0.25), although debt levels are increasing more strongly in the weak shock scenario, as 
shown above.

Note that in our proposed framework, emissions are modeled as having direct (dam-
aging) effects on welfare, see Appendix A.3, which better encapsulates the multitude of 
economic, health, migration, and intrinsic environmental losses expected from insuciently 
abated climate change. The model also incorporates societies’ adaptive responses to climate 
change through the use of public funds and credit flows to a lleviate the d isutility o f emis-
sions. In our three phase model rare disasters and long run gradual effects can be studied 
which are likely to have a considerable effect on productive capacity such as physical, in-
frastructural and human capital. In particular we have studied the effect on consumption, 
as shown figure 13.

3.3 The use of bond financing

In general, however, even with active fiscal and financial policies, consumption may fall due 
to externalities from economic activities, entering as disaster risk in the welfare function. 
Let us specifically look at financial markets and credit flows. The amplified disaster risk

27



Figure 13: Path of consumption in a three-stage model; red: weak shock, blue: strong shock

and actual disasters affect private and public capital stocks directly. In particular risk 
premia are affected detrimentally. On the other hand, the recovery can be accelerated by 
the support of climate bonds and reduced credit constraints and risk premia. Thus, due to 
bond issuance – bonds that have to be repaid later on by an income tax – output, private 
and public capital and consumption, can rise again after the disaster stage. As discussed 
bond issuing has significant b enefits si nce it  he lps sc aling up  mi tigation, ad aptation, and 
recovery policies.

We build heavily on the financing t ools s uch a s ( long) maturity b onds h ere. Though 
details on such financing mechanism are discussed in Flaherty et al. (2017) and Gevorkyan 
et al. (2016), we want to highlight a few specifics a nd p ractical d imensions r elevant in 
our three-phase modeling context. We have argued that credit (bond) financing allows for 
better control and scaling of climate policies. Thus financing m itigation a nd adaptation 
policies as well as financing recoveries after disasters is improved by bond financing.
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With respect to mitigation policies, bond financing c an s timulate t he d ecelerating of 
greenhouse gas emissions in a timely manner, allows for energy eciency, changes in energy 
mix in industrial production, services, transportation, and food production, and permits 
the development of new renewable energy sources, energy transportation grids, and infras-
tructure networks.

Regarding adaptation it can provide funds which can help in reducing frequency and 
severity of disasters, assist in the reduction of extreme events which arise from increased 
local frequency – and possibly severity – of storms, coastal flooding, d roughts, extreme 
temperature events, and helps reversing slow long-run impacts from extreme weather events, 
global water cycles, deterioration of air quality, oceanic warming, shrinking of sea ice cover, 
deterioration of snow cover and glaciers, and sea level rise. It could also be used for building 
up early warning systems – which has been done with respect to financial crises – but which 
could also act to reduce vulnerability in the case of climate disasters (Thomas et al., 2013).

Bond financing can also be used for climate related infrastructure concerning the above 
suggested green mitigation and adaptation policies as well as for sustainable water man-
agement, sustainable land use, biodiversity conservation, grids for renewable energy, clean 
transportation, and protection of coastal and other areas from flooding a nd destruction, 
thus also reducing vulnerability.

Bond financing is l ikely to be less ecient for recovery policies, but it is expected to be 
very effective in rebuilding public infrastructure. Other monetary and credit policies are 
likely to be more suitable as recovery policies. This will be discussed below.

Concerning types of bonds there are government-backed bonds and a variety of mu-
nicipal government bonds, for example for investments in renewable energy projects, and 
green bonds issued by the business sector. Often these are asset-backed securities which are 
similar to traditional bonds by generating some future revenue stream. Covered bonds are 
a type of asset-backed security that are guaranteed by the issuing agency. Bonds could also 
be bundled, as soft and hard bonds, and low and high risk bonds, that might be packaged 
and sold as investment vehicle– though given some recent experiences the latter might be 
limited.

Various types of agencies have been actively providing bond financing. Agencies issuing 
green bonds fall into three general categories: private businesses, governments and munici-
palities, and multilateral agencies. The particular bond characteristics tend to vary by type 
of issuer. Numerous municipalities in developed and developing countries have turned to 
green bonds as a means of raising green funds. Some investment banks and other financial
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institutions have also taken note, and have introduced green bonds as part of their offer-
ings. There are also multilateral agencies issuing green bonds for example the World Bank,
which substantially helped funding climate policies through issuing bonds for developing
countries.17 The number of green bonds issued, as well as the proportion of global GHG
emissions which are covered by carbon tax policy, has thereby increased dramatically in
recent years. Figure 14 shows this development since 1990.18 The figure shows that both
series have been growing strongly in recent years: starting between 2011 and 2013 we wit-
ness a clear upward trend for both series as more and more countries are introducing carbon
tax policies to tackle climate change.

Lastly, one might ask whether the current macro and monetary policy environment
might be conducive to phase in such green bonds? In particular long maturity bonds,
because of low interest rates, low risk premia and low expected inflation rates should make
long-term bonds a good sell. Furthermore, bonds are now largely inflation adjusted, such
as US TIPS to protect long term bonds. It is expected that the current and future interest
rates will stay low for quite a while and this, together with low term premia, and low
expected inflation rates, is likely to keep the expected future term structure flat.

Concerning the buyers’ side – households’ preferences for those bonds – it looks certain
that green bonds will be considered safe long term assets for households, whereas assets
from fossil fuel appear to be stranded assets, possibly triggering financial meltdowns, see
Battiston et al. (2017). On the other hand, world-wide, funds of $80 to $100 trillion or
more are available as part of large scale portfolios of wealth funds, university endowments,
insurances and pension funds and they could include climate bonds as part of their portfolio.

17An additional idea is to issue diaspora bonds, see Gevorkyan (2008).
18We want to thank Arkady Gevorkyan for providing us with the data for figure 14.
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Figure 14: Carbon Tax Policy and Issuance of Climate Bounds. The left hand scale measures the
proportion of global GHG emissions covered by carbon tax policy. The green bars represent their
values over time. The right hand scale measures the amount of climate bonds issued in USD (in
millions). The blue line represents their value over time. Amount of climate bonds issued is reported
only up until 03/20/2019. The number of issued bonds for 2019 is interpolated for the remaining 9
months. No data is available for the years 1993-1995, 1997-1999, 2001-2003 and 2005-2006. Source:
Climate Bond Initiative, World Bank.
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4 Other policies for the green transition and disaster man-
agement

Mitigation and adaptation policies and disaster risk prevention and recoveries may also be
supported more directly by monetary policy. Important aspects of the use of monetary
policy in support of climate policy are discussed in Fratzscher et al. (2017), McKibbin et al.
(2017), and Monnin (2018). The latter also includes discussions on the role of the financial
sector at large, including banks and central banks.19

Monetary polices could also be more supportive with respect to climate bonds. For
example, if central banks accept green bonds as collateral, they could stimulate climate
finance. There is some virtuous cycle: Central banks prefer rated bonds as collateral and
rating firms try to rate climate bonds and they rate those bonds higher if they are accepted
by central banks as collateral. On the other hand there exists a carbon foot print index
of equity which may not only help issuing green bonds, but aid in preventing a fire sale of
fossil fuel assets. Central banks could also ease credit flows after disasters,20 in particular
to overcome bottlenecks in the supply of goods and services, in infrastructure, transport
and other private and public sectors.

In terms of fiscal and financial policies there is a policy trade-off between the use of funds
allocated to climate related infrastructure, for mitigation of GHG emissions and against
extreme events to ameliorate local damages from such events. Harmful events might occur
in spite of mitigation, but the probability of an extreme and harmful event is reduced with
greater mitigation efforts. The optimal mix and the state and time dependencies of those
policies are studied in our model variant, but it is also shown that the constraints are
relaxed through borrowing and bond issuing. Our model also suggests that besides issuing
bonds, grants from donors and development aid, tax and government expenditure can be
used for climate related infrastructure and for mitigation and adaptation policies.

However, since the major burden of future disasters will probably be located in devel-
19We want to note that after the 2007-9 meltdown a lot of literature has been generated on the prevention 

and mitigation of financial disasters through financial market regulation, such as regulation on requirements 
for needed capital buffers for banks, system risk supervision, restriction of proprietary trading, policies 
on to big to fail, etc. Monetary and financial p olicies h ave b een d eveloped t o p revent a nd t o adapt 
when vulnerabilities and financial d isasters r isks o ccur. M onetary p olicy h as m oved f rom conventional 
to unconventional monetary policy with large asset purchasing programs, in particular bond purchasing 
programs, see Faulwasser et al. (2018), and also Gross et al. (2019).

20There is literature that views credit flows a s a  major d river f or e xpansions a nd c ontractions. For a 

survey, see Faulwasser et al. (2018).
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oping and low income countries, there will be significant financing bottlenecks. Although
we have introduced a large set of policy measures which can be calibrated to country- and
institution-specific circumstances, those are not all applicable to low and middle income
countries. For details on limitations of bond issuing and credit expansions in low income
countries, see UNCTAD (2018) and Banga (2018). Thus, one also needs to consider other
types of policies so that those countries or regions do not fall into a poverty trap. This is in
particular relevant for small low income countries with restricted opportunities in achieving
scale effects from credit expansion and bond issuing.

Indeed, much recent research places emphasis on the changing level of risk and vulnera-
bilities faced by developing countries as they allocate investment toward growth strategies,
adapting to climate change and emissions mitigation. Recent research on climate disaster
risk by Burke et al. (2015) and IMF (2017) demonstrate that low and middle income coun-
tries are affected the most. This research also shows that in particular low income countries
will be more vulnerable to climate related disasters, as well as suffering from gradually de-
teriorating productivity. In addition, they also lack the economic and financial capacity to
adapt. Some estimates suggest that indirect losses might be even greater than direct losses
for low income countries.

There is more specific work to be done with respect to financing in low income countries.
Adam and Bevan (2014) and Bevan and Adam (2016) suggest, given the credit constraints
in low income countries and high risk premia for insurances, that there are not only direct
disaster impacts but also indirect long run effects and those countries lack the finance for
rapid adaptation and reconstruction. The studies examine sovereign disaster risk insurance,
increased taxation, and budget reallocation as alternative financing mechanisms. This
is especially important for countries where increased borrowing, either through the bond
market or banks, is impractical as pointed out by Banga (2018) and Marto et al. (2017).

Others, such as Catalano et al. (2018), stress the importance of preventive actions
and of policy buffers, designed to enhance resilience to shocks. Furthermore the ease of
borrowing constraints, greater reserves, and reserve fund accumulation is suggested. Low
income countries and regions have limited access to issuing climate bonds and exercise little
borrowing power. Besides tax increases Catalano et al. (2018) suggest risk pooling through
self-insurance or some collective insurance schemes, grants from donors, and build up of
financial buffers and disaster funds for contingencies. Yet, as they stress, the issue of debt
sustainability, as we have discussed above, needs to be addressed as well.

Indeed a broader concept of risk pooling could also aim at mechanisms of private or
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public insurance schemes, multilateral safety nets, regional catastrophic insurance schemes,
and so on. Others have suggested that, beside donor grants, fiscal and financial policies
and risk pooling and insurance funds, monetary policy should step in to provide for disaster
affected regions and countries with low interest rate loans and sufficient credit flows to allow
for reconstruction and recovery to avoid hysteresis effects on productive capacity.21

5 Conclusions

In this paper we relate the extensive research on financial crises disasters, and their trig-
gered macro feedback effects, to climate disaster risk, using modeling insight of the former
studying the latter. In the former literature the impact of rare large disasters on the fi-
nancial sector, output and consumption losses is studied. A particular focus lies on the
destruction of capital stocks and a jump in risk premia after rare large economic and fi-
nancial crises events. Much recent research in the economics of climate change has also
explored the link between GDP growth, greenhouse gas emission, global temperature rise,
and climate-related disasters. Yet, to the best of our knowledge, the macroeconomic ef-
fects, such as a decline of output, loss of capital value and sudden jumps in risk premia and
borrowing constraints have not been addressed in detail.

Our dynamic macroeconomic framework links economic growth to GHG emissions, the
use of a CO2-emitting non-renewable resource such as fossil fuels, temperature rise and the
vulnerability to climate disasters. Following up the issue whether climate disaster risks
have increased, in terms of frequency and severity is not an easy task. A conclusive answer
whether we can observe an increase in the likelihood of extreme outcomes and an increase
in the probability of potentially irreversible and catastrophic damages – as suggested by
Weitzman (2009) – could not be convincingly provided given the quality and quantity of
the data. We might see stronger links for some types of disasters, but not for others and
we might observe these patterns only for certain groups of countries and regions.

Moreover, quantifying the link between the likelihood of extreme outcomes and catas-
trophic damages depends on the definition of vulnerability. Higher vulnerability might be
given by the link between GHG emission and temperature rise – increasing the vulnerability
to disasters. But vulnerability is also defined by how much adaptation has taken place, and
how effective it has been. Vulnerability, however, is also affected by early warning systems,

21Which means to avoid trapping probabilities as discussed in Kovacevic and Pflug (2011).
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precautionary measures and disaster preventing infrastructure. Thus, an increased fre-
quency can be accompanied by lower severity resulting from reduced vulnerability. Thus,
successful adaptation policy may reduce the severity of more frequent disasters. Such a
feedback nexus is incorporated in our macro model, but could not be tested directly.

We thus used a dynamic multi-phase macro model with mitigation and adaptation
policy built in – which are likely to counteract the vulnerability of disaster risk arising from
GHG emission and temperature rise. Beside financial instruments such a credit and climate
bonds, other policies such as monetary policy were considered, particularly the effect of the
latter on credit constraints and risk premia. We have shown that mitigation and adaptation
policies as well as disaster risk prevention and recovery can be significantly supported by
many tools, including insurance and monetary policies. A sufficient implementation of those
measures might help supporting a green transition but may also aid in preventing sudden
climate-related financial market instabilities.
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A Appendix

A.1 Fixed effects Coefficients for Panel Model

The following table contains the fixed effects coefficients for our panel model in Table 2.

Table 5: Fixed Effects for Table 2. Dependent variable represents the number of disaster events
for a given year (Disaster Frequency). Independent variables include the lagged value of dependent
variable (Disaster Frequencyt-1) and the sum of the current and 17 most recent increases in CO2
concentration in the atmosphere, expressed as a mole fraction in dry air (ppm) (Sum of CO2 in-
creases). Standard errors are given in parenthesis. Model Complete Data-set considers all disasters
in the EMDAT database. Model Large Disasters Data-set only includes disasters with at least
1,000 affected or 100 people killed.

Dependent variable:

Disaster Frequency

Complete Data-set Large Disasters Data-set

EAS 7.6949 4.7931
(4.5543) (3.3237)

ECS -6.9858 -11.4663
(4.6638) (3.8024)

LCN -5.8552 -5.1752
(4.6501) (3.4959)

MEA -22.6248 -15.7693
(5.2799) (4.0410)

NAC -15.9695 -10.4356
(4.9672) (3.7610)

SAS -12.6648 -7.8858
(4.8411) (3.5922)

SSF -10.4200 -6.8432
(4.7600) (3.5461)

A.2 Empirics of climate disaster cost

Figure 15 depicts results on the logarithm of real – deflated by the GDP deflator – estimated 
damages between 1976 and 2017. Due to a lack of data we are not showing results by regions 
here, but worldwide aggregated data only. As can be seen from the figure, d ata o n real 
damages is hard to analyze because of many missing values. Indeed, for some disaster 
categories real damages are missing for certain years.
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Figure 15: Logarithm of estimated real damages for climate related disaster between 1976 and
2017 by disaster category.

Data shown in Figure 15 is summed up and plotted in Figure 16 as total estimated 
damage. Figure 15 shows that real damage costs increased for the disaster category storm 
in recent years. Fluctuations in storm related damages also dominate aggregated damage 
costs (Figure 16). Thus, given the severe data issues at hand, we focus on the number of 
disasters per year instead of disaster cost in our empirical analysis. Furthermore, societal 
changes, such as population and wealth increases, and exceptionally big disasters, e.g. 
Hurricane Sandy, may distort damage costs. In fact, Mohleji and Pielke (2014) argue that 
societal changes are sucient to explain increasing disaster damages (see also Bouwer, 
2011).

A.3 Base line macro dynamic model

As suggested above, our dynamic decision model should trace the following linkages: eco-
nomic growth leads to the extraction and use of fossil fuel, which will give rise to CO2 
emission, increasing temperature and reducing economic growth and economic welfare. Mit-
igation and adaptation policies may be pursued more or less successfully by fiscal and/or
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Figure 16: Logarithm of estimated real damages for climate disaster between 1976 and 2017; total.

financial instruments. Those are activated by the public sector and public capital. But the
rise of debt financed public capital raises the problem of sustainable debt which has to be
controlled for.

These features are embodied in the following baseline one-phase model that extends the
common IAM but can be turned into a multi-stage model, see section 3. Our extended
integrated assessment model has 5 state variables.

X = (K,R,M, b, g) ∈ R5, (12)

where K is private (green) capital, R is the stock of the non-renewable resource, M is the
atmospheric concentration of CO2, b is the government’s debt, and g is public capital. The
dynamic system of the IAM is defined according to

K̇ = Y · (ν1g)β − C − eP − (δK + n)K − uψR−ζ , (13)

Ṙ = −u, (14)

Ṁ = γ u− µ(M − κM̃)− θ(ν3 · g)φ, (15)
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ḃ = (r − n)b− (1− α1 − α2 − α3) · eP . (16)
ġ = α1eP + iF − (δg + n)g, (17)

The control vector is given by
U = (C, eP , u) ∈ R3, (18)

where C denotes consumption, eP is tax revenue, and u is the quantity of the resource R
extracted each period.

The first dynamic K̇ is the accumulation rate of private (green) capital K that produces
renewable energy and which drives output by the CES production function,

Y (K,u) := A(AKK +Auu)
α (19)

Ṁ

where A is multifactor productivity,22 AK and Au are eciency indices of private cap-
ital inputs K and (non-renewable) fossil fuel energy u, respectively. In equation (13), 
private-sector output Y is modified by t he i nfrastructure s hare a llocated t o productivity 
enhancement ν1g, for ν1 ∈ [0, 1]. This public-private interaction generates total output as 
Y (ν1g)β from which the economy consumes C, pays taxes eP , and is subject to physical 
δK and demographic n depreciation. The exponent β is the output elasticity of public 
infrastructure, ν1g. The last term in equation (13) is the opportunity cost of extracting the 
non-renewable resource u, where ψ and ζ are the scale and shape parameters that tie the 
marginal cost of u to the remaining stock of the resource a la Hotelling (1931).

Equation (14) indicates the stock of the non-renewable resource R, which depletes by u 
units in each period. The non-renewable resource emits carbon dioxide and thus increases 
the atmospheric concentration of CO2 at the rate γ in equation (15). The stable level of 
CO2 emissions is κ > 1 of the pre-industrial level M̃ , which is naturally re-absorbed into 
the ecosystem (e.g., oceanic reservoirs) at rate µ. The last term in equation (15) is the 
reduction of per-period emissions due to the allocation of 0 ≤ ν3 ≤ 1 of infrastructure g 
to mitigation projects.

The last two dynamics are the accumulation of debt b and public capital g. In equation 
(16) public debt grows at the fixed i nterest r ate r , a nd i s s erviced w ith t he s hare o f tax 
revenue eP not allocated respectively to capital accumulation, α1, social transfers, α2, or 
administrative overhead, α3 > 0. Thus, α4 ≡ 1 − α1 − α2 − α3. Equation (17) states that 
the stock of public capital, or total infrastructure, evolves according to the allocated tax 
revenue stream α1eP and funds paid in from abroad, iF (it may represent donations from 
outside donors). For developed countries we may assume iF = 0, but as positive for many 
developing countries. Concerning private capital, g, depreciates by δg and is adjusted for 
population growth, n.

22Here the multi-factor productivity A is taken as constant but it could be made time varying in order 

to capture the slow productivity decline as resulting from slow temperature increase.
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We assume throughout that the infrastructural allocations satisfy

νk ≥ 0 (k = 1, 2, 3), ν1 + ν2 + ν3 = 1. (20)

In later analysis, we either choose fixed values of ν1, ν2, ν3 or we consider the allocations as
additional optimization variables.

Using the state variable, X ∈ R5, and control variable, U ∈ R3, we write the dynamics
(13)–(17) in compact form as

Ẋ(t) = f(X(t), U(t)), X(0) = X0. (21)

The initial state vector X0 will be specified later. To this system we add the terminal
constraint

K(T ) = KT ≥ 0, (22)

the control constraint
0 ≤ u(t) ≤ umax, (23)

and the pure state constraint

M(t) ≤Mmax ∀ t ∈ [0, T ]. (24)

The terminal constraint restricts the final level of the capital stock to a predetermined non-
negative value, the control constraint prescribes an upper bound for the extraction rate,
and finally the state constraint places a cap on the total level of CO2 in the atmosphere in
each period.

Let us now define the objective functional, the social welfare functional. We maximize
the following functional over a given planning horizon [0, T ], where T > 0 denotes the
terminal time:

W (T,X,U) =

∫ T

0
e−(ρ−n)t

(
C (α2eP )

η
(
M − M̃

)−ε
(ν2g)

ω

)1−σ
− 1

1− σ
dt . (25)

The felicity (utility) function in (25) is isoelastic with four input components all in per 
capita terms: (i) consumption C; (ii) the share 0 ≤ α2 ≤ 1 of tax revenue eP used for direct 
welfare enhancement (e.g., health care); (iii) atmospheric concentration of CO2 M above the 
pre-industrial level M̃ ; and (iv) the share 0 ≤ ν2 ≤ 1 of infrastructure g allocated to climate 
change adaptation. Restricting the exponents η, ε, ω > 0 ensures social expenditures and 
adaptation are utility enhancing, and that carbon emissions directly reduce utility. This 
approach differs from other models that map emissions to temperature changes and then to 
reduced productivity-cum-output. We believe the direct disutility approach better captures 
the wide ranging impacts of climate change that may include health impacts, ecological loss
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and heightened uncertainty, in addition to reduced productivity which can show up in the
term A. Finally, note that the discount factor adjusts for the population growth rate, n,
from the pure discount rate, ρ, as all values are normalized by the population.

To summarize, our model gives rise to an optimal control problem OC(p), where the
social welfare, equation (25), is maximized subject to the dynamic constraints (21) and the
terminal, control and state constraints (22)–(24). For the multi-phase model, this has to
be augmented by an algorithm which solves phases of the model with different objective
functions and state variables and specifications, see Maurer et al. (2018).
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