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1 Introduction

“Response errors are problem in all research utilizing sample surveys. Significant rates

of response error have substantial implications for research on labor market dynamics,

since they result in spurious transitions between labor market states.” — James M.

Poterba and Lawrence H. Summers (1995)”

Accuracy in measuring the labor market is critical for policymakers. In the United States, the

Federal Reserve needs to adequately measure slack in the labor market to make monetary policy

decisions. Congress considers labor market conditions in implementing fiscal stimulus, training

programs, and unemployment insurance policies. However, classification error—in which survey

respondents misreport their true labor force status—in the U.S. Current Population Survey (CPS)

is found to be substantial (e.g. Abowd and Zellner, 1985 and Poterba and Summers, 1986).

In this paper, I propose a latent variable model to statistically infer workers’ true labor force

status from multiple periods of reported employment status without relying on any external

source in a similar spirit to Biemer and Bushery (2000), Feng and Hu (2013), Hu (2008) and

Hu (2017). I then study whether U.S. labor market dynamics change once measurement error

is corrected. In particular, I examine whether correcting for measurement error would change

the historical unemployment rate (stock analysis) and the degrees of the contributions of various

labor market flows to the unemployment fluctuations (flow analysis).

This paper finds that correcting for classification errors changes the U.S. labor market dy-

namics. Once measurement error is corrected, the U.S. unemployment rate is on average 0.8

percentage points higher than the official unemployment rate. For the flow analysis, measure-

ment error corrections proposed in this paper still support, but moderate, the previous literature’s

conclusion regarding the contributions of variabilities across different labor market flows to the

cyclical fluctuations in the unemployment rate. I find that the job finding probability plays a

more important role in explaining unemployment fluctuations (“outs of unemployment”) than the

job separation probability does (“ins to unemployment”), but the job separation margin matters

more than previously thought. The contributions of the job separation probability to the fluctua-
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tions of unemployment rate (“Ins”) increase to around 30 percent relative to the previous estimate

of 20 percent (Shimer, 2012). In sum, “outs” still win, but “ins” also matter. The results also

suggest that the importance of the participation margin (i.e. movement in and out of the labor

force) in explaining the fluctuations in unemployment is much less than previously estimated–

around 10 percent in this paper vs previous estimates of 20 to 30 percent in Elsby, Hobijn and

Sahin, (2015). Therefore, policymakers should also pay closer attention to the job separation

margin in mitigating the fluctuations in the unemployment rate, but less to the nonparticipation

margin.

This paper also compares different methods to correct measurement errors and their implica-

tions for analyzing the labor market flows. Specifically, I compare how the unemployment rate

changes depending on different error correction methods including the ones based on reinterview

surveys (i.e. Abowd and Zellner, 1985 and Poterba and Summers, 1986) and a statistcal method

from Feng and Hu (2013). The unemployment rate is higher once measurement error is corrected

by any of these methods. To quantify the contributions to business-cycle fluctuations in the un-

employment rate from job separation, job finding, and participation (flow analysis), I adjust flow

probabilities based on these alternative error correction probabilities. However, I find that some

classification error adjustment methods (e.g. Poterba and Summers, 1986, and Feng and Hu,

2013) could imply flow probabilities occasionally exceeding 100 percent while others being below

zero percent. I show that the latent variable approach with the first order Markov process as-

sumption for the true labor force status proposed in this paper would restrict the probabilities in

a reasonable range (between 0 and 100) and thus can be used for the flow analysis (e.g. Shimer,

2012 and Elsby, Hobijn and Sahin, 2015). I also verify the robustness of the first order Markov

assumption for the underlying true labor market transition. Even if the data generating pro-

cess does not follow the first order Markov process, the first order Markov process can generally

capture the underlying transitions for three months of labor market transitions.

The rest of the paper is organized as follows. Section 2 reviews different methods to correct

measurement errors. Section 3 presents a proposed latent variable model to correct measurement

errors, and its identification. Section 4 describes the Current Population Survey data which I use
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to estimate my model. Section 5 presents the main results of the model and compare the results

across different methods of correcting measure errors in estimating the true unemployment and

flow probabilities. Section 6 studies the role of a job finding, a job separation, or a labor force

participation margin in explaining unemployment fluctuations. Section 7 concludes.

2 Different Methods of Correcting Measurement Errors

The traditional approach to correcting reporting inaccuracies is for the CPS to reinterview re-

spondents to check their previous labor force status. Abowd and Zellner (1985) and Poterba

and Summers (1986), for instance, use the CPS reinterview surveys to calculate the classifica-

tion error probabilities by comparing the reported labor force status in the original CPS survey

with those in the reinterview survey. Table 1 and Table 2 show the reporting error matrix in

Abowd and Zellner (1985) and Poterba and Summers (1986), respectively. The (i, j)th entry of

the matrix shows the probability of reporting a labor force status j given that the “true” labor

force status is i. The off-diagonal elements show the classification error probabilities, and they

are substantial. For example, a large fraction of unemployed people (based on the re-interview

survey) misreported as being nonparticipants in the original interview.

While this reinterview survey is considered one of the most reliable ways to identify the extent

of misclassification in the CPS, there are several caveats to this approach. First, reinterview

surveys are not readily accessible to outside researchers. To my knowledge, the only available

reporing error matrices based on the reinterview surveys are from more than 30 years ago,

published in Abowd and Zellner (1985) and Poterba and Summers (1986). More importantly,

the reinterview surveys themselves are also subject to potential biases and classification errors.

For instance, the reinterviews are generally conducted for a small subsample and via telephone

while the original surveys were conducted in person. The time lag between the original interview

and the reinterview could be another source of potential reporting errors. Moreover, it is known

that workers’ responses in the reinterviews often differ depending on whether the respondents

have access to their original survey responses (Poterba and Summers, 1986).
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Table 1: Abowd & Zellner (1985) Reinterview Data: 1977:1-1982:4
(In percentage points) (Reported) Labor Force Status

(True) Labor Force Status In Original Interview
Determined on Reinterview Employed Unemployed Nonparticipation

Employed 98.78 0.19 1.03
Unemployed 1.91 88.57 9.52

Nonparticipation .50 .29 99.21

Table 2: Poterba & Summers (1986) Reinterview Data: 1977:1-1982:4
(In percentage points) (Reported) Labor Force Status

(True) Labor Force Status In Original Interview
Determined on Reinterview Employed Unemployed Nonparticipation

Employed 97.74 0.54 1.72
Unemployed 3.78 84.76 11.46

Nonparticipation 1.16 0.64 98.2

An alternative approach for correcting classification errors is to apply a latent variable model

to statistically infer workers’ true labor force status from multiple periods of reported employ-

ment status without relying on any external source (e.g Feng and Hu, 2013, Hu, 2008, and

Hu, 2017). The intuition behind this approach is that some irregularities in the labor market

transitions inform possible underlying measurement errors of labor market data. For instance,

if a person reports as being unemployed in the first month (U), moving out of the labor force

(O) in the second month, and moving back to unemployment (U) in the third month, there is

some chance that the true labor status in the second month is also unemployment (U) instead

of nonparticipation (O). Imposing some statistical assumptions on the true underlying labor

market transitions and how respondents misreport their true labor force (reporting error proba-

bilities), the labor market histories would be able to inform possible magnitudes of measurement

error. For instance, Feng and Hu (2013) use a variant of latent variable models to estimate the

reporting errors based on three months of data (i.e. first, second, and ninth months of labor

force states in the CPS) (Table 3). They show that the reported official unemployment rate is

underestimated by approximately 2.1 percentage points between 1996 and 2011. The current

paper follows this second latent variable approach to correcting misclassification but differs in

one of the assumptions–a first-order Markov process for the labor market transition.
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Table 3: Feng and Hu (2013) estimates of classification errors: January 1996-December 2009
(In percentage points) Reported Labor Force Status
True Labor Force Status

Employed Unemployed Nonparticipation
Employed 97.9 0.6 1.5

Unemployed 17.3 62.5 20.2
Nonparticipation 2.9 0.2 96.9

Source: Feng and Hu (2013, Table 1)

3 Model and Identification

This section presents a hidden Markov model (HMM), a latent variable approach, to estimate

measurement errors in the Current Population Survey. The identification results are borrowed

from Hu (2008), Feng and Hu (2013), and Hu (2017). Unlike Feng and Hu (2013), I assume that

the true labor force status (LFS) transition dynamics follow the first order Markov process.

Let Yt be the reported labor force status in month t where Yt is either 1 (employed), 2

(unemployed) or 3 (nonparticipation). Let Ỹt be the corresponding true labor force status in

t = 1, . . . , T̄ . I first make the following assumption to relate the reported labor force status with

the underlying true labor force status.

Assumption 1 (Conditional Independence): The probability distribution of the mis-

classification errors only depend on the true labor force status in the current period:

Pr(Yt|Ỹt, Yτ 6=t, Ỹτ 6=t) = Pr(Yt|Ỹt)

for all t and with τ 6= t.

I denote this 3 × 3 reporting error (misclassification) probability matrix as B with (i, j)th

entry being bij = Pr(Yt = j|Ỹt = i) where i, j ∈ {1, 2, 3} denotes employed (1=E ), unemployed

(2=U ), and nonparticipant (3=O), respectively. This assumption has been widely accepted in the

literature including the studies that use the reinterview survey (e.g. Abowd and Zellner, 1985,

and Poterba and Summers, 1986). Meyer (1988) compares Assumption 1 with an alternative

specification that estimates the probability of true labor force status conditional on the reported

labor force status, (i.e., Pr(Ỹt|Yt)). He argues that this alternative specification is less plausible
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as it would imply that a worker reported as employment and transitioned to unemployed would

have the same probability of being truly employed as an employed worker who continues to

be employed. Feng and Hu (2013) also test other specifications of Assumption 1 including the

reporting error probability also depending on i) the true labor force status in the previous period

(Pr(Yt|Ỹt, Yτ 6=t, Ỹτ 6=t) = Pr(Yt|Ỹt, Ỹt−1), ii) reported labor force status in the previous period

(Pr(Yt|Ỹt, Yτ 6=t, Ỹτ 6=t) = Pr(Yt|Ỹt, Yt−1)) and iii) both true and reported labor force states in the

previous period (Pr(Yt|Ỹt, Yτ 6=t, Ỹτ 6=t) = Pr(Yt|Ỹt, Ỹt−1, Yt−1)) and show that the estimations are

generally robust to these alternative specifications.

Assumption 1 allows one to express the probability of observing labor force status history

Pr(Yt+1, Yt, Yt−1) as follows:

Pr(Yt+1, Yt, Yt−1) =
∑
Ỹt+1

∑
Ỹt

∑
Ỹt−1

Pr(Yt+1|Ỹt+1)Pr(Yt|Ỹt)Pr(Yt−1|Ỹt−1)Pr(Ỹt+1, Ỹt, Ỹt−1) (1)

Assumption 2 (First Order Markov Assumption): The true labor force status Ỹt

follows a first order Markov process.

Pr(Ỹt+1|Ỹt, Ỹt−1, . . . Ỹ1) = Pr(Ỹt+1|Ỹt)

for all t.

I denote the probability of transitioning from true labor force status i to j as aij = Pr(Ỹt+1 =

j|Ỹt = i) for i, j ∈ {1, 2, 3}, and let A be a 3 × 3 matrix with its (i, j)th entry being aij. Feng

and Hu (2013) make a weaker assumption that the true labor force status nine months ago has

no additional predicting power for this period’s true labor force status once conditioned on this

period’s true labor force status: Pr(Ỹt+1|Ỹt, Ỹt−9) = Pr(Ỹt+1|Ỹt). I will return to the costs and

benefits of this assumption in the next section.

Using Assumption 2, equation (1) can be simplified to

Pr(Yt+1, Yt, Yt−1) =
∑
Ỹt

Pr(Yt+1|Ỹt)Pr(Yt|Ỹt)Pr(Ỹt, Yt−1) (2)
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By integrating out Ỹt+1, we obtain

Pr(Yt, Yt−1) =
∑
Ỹt

Pr(Yt|Ỹt)Pr(Ỹt, Yt−1) (3)

Now we can express equations (2) and (3) in matrix form. First, define ΦYt|Ỹt to be a transpose

of the measurement error matrix B and β·i ≡ ( b1i b2i b3i ) for i ∈ {1, 2, 3}.

ΦYt|Ỹt ≡


Pr(Yt = 1|Ỹt = 1) Pr(Yt = 1|Ỹt = 2) Pr(Yt = 1|Ỹt = 3)

Pr(Yt = 2|Ỹt = 1) Pr(Yt = 2|Ỹt = 2) Pr(Yt = 2|Ỹt = 3)

Pr(Yt = 3|Ỹt = 1) Pr(Yt = 3|Ỹt = 2) Pr(Yt = 3|Ỹt = 3)



= BT =


b11 b21 b31

b12 b22 b32

b13 b23 b33

 ≡


β·1

β·2

β·3


Each column of BT , vector β·i, captures the probability of a worker reporting a different labor

force status given his or her true labor force status i. Similarly, define αi· ≡ [ ai1 ai2 ai3 ] for

i = 1, 2, 3 so that the transition matrix of underlying labor force status, A, can be expressed as:

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ≡

α1·

α2·

α3·


αi· expresses the probability that a worker transitions from true labor force status i to different

true labor force states. Then, we can express the following diagonal matrix, D1|Ỹt using α and β

as:

D1|Ỹt ≡


Pr(Yt+1 = 1|Ỹt = 1) 0 0

0 Pr(Yt+1 = 1|Ỹt = 2) 0

0 0 Pr(Yt+1 = 1|Ỹt = 3)


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=


α1·β·1 0 0

0 α2·β·1 0

0 0 α3·β·1



Also define the probability of the true labor force status as πi ≡ Pr(Ỹt = i) and Π ≡(
π1 π2 π3

)
. Define a matrix

ΦỸt,Yt−1
≡

 Pr(Ỹt = 1, Yt−1 = 1) Pr(Ỹt = 1, Yt−1 = 2) Pr(Ỹt = 1, Yt−1 = 3)

Pr(Ỹt = 2, Yt−1 = 1) Pr(Ỹt = 2, Yt−1 = 2) Pr(Ỹt = 2, Yt−1 = 3)

Pr(Ỹt = 3, Yt−1 = 1) Pr(Ỹt = 3, Yt−1 = 2) Pr(Ỹt = 3, Yt−1 = 3)


= ATdiag(Π)B

Similarly, define the distribution of Yt and Yt−1 as:

ΦYt,Yt−1 ≡


Pr(Yt = 1, Yt−1 = 1) Pr(Yt = 1, Yt−1 = 2) Pr(Yt = 1, Yt−1 = 3)

Pr(Yt = 2, Yt−1 = 1) Pr(Yt = 2, Yt−1 = 2) Pr(Yt = 2, Yt−1 = 3)

Pr(Yt = 3, Yt−1 = 1) Pr(Yt = 3, Yt−1 = 2) Pr(Yt = 3, Yt−1 = 3)


= ΦYt|ỸtΦỸt,Yt−1

(4)

= BT︸︷︷︸
ΦYt|Ỹt

ATdiag(Π)B︸ ︷︷ ︸
ΦỸt,Yt−1

The distribution of Yt+1 = 1, Yt, Yt−1 can also be expressed as:

Φ1,Yt,Yt−1 ≡


φ111 φ211 φ311

φ121 φ221 φ321

φ131 φ231 φ333

 (5)

= ΦYt|ỸtD1|ỸtΦỸtYt−1
(6)

= BT︸︷︷︸
ΦYt|Ỹt

D1|Ỹt A
Tdiag(Π)B︸ ︷︷ ︸

ΦỸtYt−1

where φij1 ≡ Pr(Yt+1 = 1, Yt = j, Yt−1 = i) for i, j ∈ {1, 2, 3}.

Assumption 3: The distributions of the current reported labor force status conditional
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on different reported labor force status in the previous month are linearly independent. i.e.

Pr(Yt|Yt−1 = 1) is not a linear combination of Pr(Yt|Yt−1 = 2) and Pr(Yt|Yt−1 = 3) for all

Yt.

Assumption 3 implies that ΦYt,Yt−1 is invertible. This together with equation (4) implies that

ΦYt|Ỹt = BT and ΦỸt,Yt−1
= ATdiag(Π)B are invertible. We can now eliminate ΦỸt,Yt−1

from

equation (4) and (5).

Φ1,Yt,Yt−1 ≡ ΦYt|ỸtD1|Ỹt

(
ΦỸt,Yt−1

)
= ΦYt|ỸtD1|Ỹt

(
Φ−1

Yt|Ỹt
ΦYt,Yt−1

)
Φ1,Yt,Yt−1Φ

−1
Yt,Yt−1

= ΦYt|ỸtD1|Ỹt

(
Φ−1

Yt|Ỹt

)
= BTD1|Ỹt

(
BT
)−1 (7)

Assumption 4: A different true labor force status in this month leads to a different proba-

bility of reported labor force status in the next month and the distribution of the reported labor

force status in the next month conditional on true labor force status in this month is linearly

independent. i.e. Pr(Yt+1 = k|Ỹt = i) is different for k, i ∈ {1, 2, 3} and Pr(Yt|Ỹt−1 = 1) is not

a linear combination of Pr(Yt|Ỹt−1 = 2) and Pr(Yt|Ỹt−1 = 3) for all Yt.

This is equivalent to the condition that AB is invertible and that each item in Dk|Ỹt for

k ∈ {1, 2, 3} are distinct. This condition also implies that the eigenvalues of Φ1,Yt,Yt−1Φ
−1
Yt,Yt−1

in equation (7) are distinct. The uniqueness of the eigenvectors is guaranteed by the distinct

eigenvalues.

Assumption 5 (Ordering):

Individuals are more likely to report true labor force status than to report any other possible

labor force status.

Pr(Yt = i|Ỹt = i) > Pr(Yt = i|Ỹt = j) ∀i 6= j for i, j ∈ {1, 2, 3}

This ordering assumption is consistent with the reinterview survey results from Poterba and
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Summers (1986) and Abowd and Zellner (1985). Without this ordering assumption, we can only

identify up-to permutation or label swapping. This ordering assumption pins down the latent

variable, such as employment, unemployment, and nonparticipation.

We can also obtain the probability of being in true labor force status i in t, πi ≡ Pr(Ỹt = i),

as follows: 
Pr(Yt = 1)

Pr(Yt = 2)

Pr(Yt = 3)

 = ΦYt|Ỹt︸ ︷︷ ︸
BT


Pr(Ỹt = 1)

Pr(Ỹt = 2)

Pr(Ỹt = 3)


Since BT is assumed to be invertible, we can identify the distribution of the true labor force

status ( π1 π2 π3 ) by inverting ΦYt|Ỹt :


Pr(Ỹt = 1)

Pr(Ỹt = 2)

Pr(Ỹt = 3)

 =
(

ΦYt|Ỹt

)−1


Pr(Yt = 1)

Pr(Yt = 2)

Pr(Yt = 3)

 (8)

Lastly, from equation (4), we can obtain the transition matrix of true labor force status, A:

AT =
(
BT
)−1

ΦYt,Yt−1B
−1diag(Π)−1 (9)

This formula is similar to the misclassification adjustment method to flows in Poterba and

Summers (1986) shown later in equation (12). The difference is that equation (9) directly adjusts

the observed probabilities instead of flow levels as in Poterba and Summers (1986). Based on

the assumptions 1-5 and following Feng and Hu (2013), Hu (2008), and Hu (2017), the model is

identified. We can first estimate the reporting error matrix B by using the eigenvalue-eigenvector

decomposition in equation (7). We then can recover the distribution of true labor force status, Π,

using equation (8), and finally the transition matrix for true labor force status, A, using equation

(9).

The eigenvalue-eigenvector decomposition shown above and introduced by Feng and Hu

(2013) and Hu (2008) guarantees global identification results. In practice, the maximum likeli-
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hood estimation of the hidden Markov model (HMM), which only guarantees a local maximum,

produced the results in line with those based on eigenvalue-eigenvector decomposition method.

The results in eigenvalue-eigenvector decomposition method described above only uses a subset

of the sample–for which the labor force status in the third month is employed (i.e. Yt+1 = 1) and

the estimates change depending on which subsample is used. On the other hand, the maximum

likelihood estimation which only guarantees a local maximum uses the entire sample. Both are

generally similar but I have used the maximum likelihood estimation (MLE) procedure. With the

MLE, the adjustment procedure based on the error matrix in equation (9) becomes unnecessary

because the transition probabilities for the true labor force status and the reporting error matrix

are jointly estimated. Appendix 1 provides details of the maximum likelihood estimation (MLE)

and compare the misclassification matrices based on the eigenvalue-eigenvector decomposition

method and the MLE. Appendix 2 compares the global identification result by Feng and Hu

(2013) and Hu (2008) and the local identification result by Allman, Matias, and Rhodes (2009).

The next section discusses the costs and benefits of the first order Markov assumption.

3.1 Costs and Benefits of First Order Markov Assumption

A natural and primary way of analyzing aggregate labor market dynamics at business cycle

frequencies has been looking at the gross flows of workers between two consecutive months, which

is fully consistent with the first order Markov assumption for labor flows (e.g. Abowd and Zellner

1985, Poterba and Summers 1986, Blanchard and Diamond 1990, Mortensen and Pissarides 1994,

and Shimer 2005). Aggregate labor market indicators, such as the unemployment rate and the

employment rate, are stocks at a point in time. The evolutions of these stock variables can be

analyzed through the gross flows in and out of these stocks or movements of workers between

employment, unemployment, and nonparticipant, over two consecutive months. For instance,

Singh and Rao (1995) stress the importance of studying the gross flows between the two months

as follows:

“Gross labor flows are important to researchers and policy analysts for understanding

labor market dynamics... The monthly stocks tell us only what net changes, if any,
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there has been in the levels of employment, unemployment, and the counts of persons

outside the labor force. To determine how much “turbulence” lies behind the net

changes, one must go ... see how many persons are flowing back and forth between

groups regardless of their size (e.g., into and out of labor force and between employed

and unemployed within the labor force). Especially for policy purposes, it is useful to

know answers to questions like (a) what proportion of persons who are unemployed

in a given month are also jobless in the following month, what proportion find jobs,

and what proportion get discouraged and leave the labor force? and (b) How much of

the increase is due to persons losing or leaving jobs and how much is due to persons

not in the labor force starting to look for jobs?” (p. 478)

Calculating the proportion of workers in one labor force status, i , in one month who move to

another labor force status, j, in the next month is equivalent to calculating a first order Markov

transition probability (i.e. Pr(Yt+1 = j|Yt = i) for i, j ∈ {E,U,O}) using the data for the

two consecutive months. For instance, calculating the proportion of the currently unemployed

persons in a given month who would find a job in the following month is a job finding probability.

In addition, the first order Markov assumption makes it possible to compare the results of this

paper with those in the previous literature (e.g. Shimer 2012, and Elsby, Hobijn and Sahin 2015).

Most macro labor literature, both theoretical and empirical, has explicitly or implicitly used the

first order Markov assumption for labor market transitions (e.g. Blanchard and Diamond 1990,

Mortensen and Pissarides 1994, Shimer 2005, and Shimer 2008). For instance, Shimer (2012) has

studied the contributions of transitions between different labor force status to the fluctuations of

unemployment at business cycle frequencies. He finds that the job finding probability (transition

out from unemployment to employment) plays a more important role than the job separation

probability (transition into unemployment from employment). In short, “Outs” wins. Elsby,

Hobijn, and Sahin (2015) show that the partcipation margin (movement in and out of the labor

force) also accounts for a significant fraction of the unemployment fluctuation. The results in

this paper argue that the proposed misclassificaiton adjustment does not overturn the results

but mutes the results in the previous literature.
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Another benefit of imposing the first order Markov process assumption for workers’ transitions

restrict underlying transition probabilities remain within a reasonable range (i.e. between 0 and

100 percent). As I show later, the reporting errors estimated in Feng and Hu (2013) imply

adjusted transition probabilities occassionally below 0 or above 100 percent. Certainly, one

could truncate negative values to zero and any values greater than one to one. However, even

if one of the elements in the transition matrix is truncated to one (i.e. if one of the states in

the transition matrix is an absorbing state), the long-run implications of the first order Markov

transition matrix will be that workers will be in that absorbing state. The average duration of

being in a particular labor force status is also undefined.

Lastly, another reason for choosing the first order Markov process assumption for workers’

transition instead of using Feng and Hu’s assumption (2013) for labor market transition is to

avoid another source of errors (i.e. attrition) by linking the CPS over a 9 month period. While

the fraction of individuals who can be matched over first four consecutive months are relatively

high (around 90 percent of eligible rotation groups), the matching rate declines for the 12th

monthly survey (approximately 65 percent). This results in additional source of potential errors.

However, one major cost of the first order Markov process assumption for workers’ transitions

is that as shown in the micro labor literature, the data at the individual level are inconsistent

with the first order Markov process. Labor market transitions are indeed duration dependent

and heterogeneous. A prominent example is that a long-term unemployed person has a lower

chance of landing on a job than a recently unemployed person. However, for a short period of

time, the first-order Markov approximation to the labor market transition rates is innocuous. As

a robustness check, I test the validity of the first order Markov assumption (Assumption 2) in

Appendix and show that it is genrally robust. In this exercise, I assume that the data generating

process is a second order Markov process and estimate the model using the simulated data. The

distribution of true labor force history as well as measurement error matrix can generally be

recovered. I also allow the transition probabilities for the labor force states to vary over time

while keeping the reporting error matrices fixed as in the previous literature.
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4 Data

To estimate the latent Markov model, I use the Current Population Survey (CPS) from

January 1996 to September 2018. This choice of time periods is prompted by 1) a CPS redesign

in 1994 and 2) the similar time coverage as Feng and Hu (2013). In each month, CPS interviews

approximately 60,000 households and 100,000 to 150,000 individuals based on physical address

and contains information regarding workers’ employment status, industries, and demographics

(e.g. sex, age, race, geographical locations, and education). Households are interviewed for four

consecutive months, rotated out for the next eight months before being interviewed again for

the final four months. This structure allows researchers to track workers’ employment status

for a maximum of 8 months over the period of 16 months. I use the three months of workers’

employment status to estimate a latent Markov model.

As in Shimer (2012), I follow the algorithm in Madrian and Lefgren (2000) to match CPS

monthly files for three consecutive months. Specifically, I match two individuals in the two

monthly files in period t and period t + k (for k ∈ {1, 2}) based on individuals’ household

identifier, household replacement number (which identifies whether the initial household has

been replaced), personal identifier, sex, age, and race. Age is allowed to differ by increment of 1

between consecutive months.

Due to its survey design, each CPS monthly file contains eight rotation group where rotation

group is defined by the number of months in the survey. In month t, only individuals in rotation

group 1 (those who just entered into the survey) are eligible to be matched for the eight months

over the length of next 16 months. This limits the eligible group to approximately one eighth of

the total observations in each monthly file. For three months of labor force history data, about

one-half of the sample in the initial survey can be matched (i.e. rotation groups = 1, 2, 5, and

6). Nonetheless, some of these eligible individuals cannot be matched for various reasons such

as simple attrition and coding errors.

Matching individuals over time expand the research scope for panel data analysis. Neverthe-

less, cross-sectional statistics implied by the matched individuals do not necessarily line up with

the aggregate cross-sectional statistics because we can only match a subsample of the individuals
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in the survey. If the matching attrition is not completely at random and independent of any

demographic characteristics, we can simply scale up the weights by the ratio of the total number

of sample in the original survey to the number of matched sample. However, attrition is often not

random. To ensure that demographic representations in the matched sample mirror those in the

original survey, I reassign the sample weights of the matched individuals by multiplying them by

the inverse of matching probability conditional on the individual’s demographic characteristics.

Specifically, I run a logit model and calculate the predicted probability of matching conditioning

on gender, age, race education level, and the initial employment status. I then multiply the

original weights with the inverse of the corresponding predicted probabilities. The results are

robust to the re-weighting procedure.

5 Results

This section first presents the estimates of the reporting matrix B from the latent variable

approach from the current study (HMM). I compare the unemployment rates corrected for mea-

surement errors across different correction methods, namely Feng and Hu (2013) (FH), Abowd

and Zellner (1985) (AZ), and Poterba and Summers (1986) (PS), and a hidden Markov model

in this paper (HMM). I then calculate the adjusted transition probabilities based on the same

set of error matrices from previous studies, and compare them with my estimates of transition

probabilities based on the latent variable approach (HMM).

5.1 Reporting Error Probabilities

Table 4 compares (1) the reporting errors, (2) adjusted transition probabilities, and (3) implied

average duration of unemployment, employment, and nonparticipation across different adjust-

ment methods. The directions of the reporting errors of HMM are similar to AZ and PS. Misre-

porting is most severe among the unemployed workers. The unemployed workers are more likely

to misreport that they are out of the labor force than employed in all four cases (HMM, FH,

AZ, and PS). The reporting errors for truly employed workers and nonparticipants in HMM are

very similar to those of previous studies. The reporting error probability estimates by Feng and
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Figure 1: Adjusted Unemployment Rates
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Hu (2013) show that close to 40 percent of the unemployed workers misreport their labor force

status, which is much bigger than the estimates in HMM, AZ, and PS. In sum, HMM estimates

of reporting error probabilities are between FH and AZ/PS estimates and are generally similar to

historical classification error estimates in Abowd and Zellner (1985) and Poterba and Summers

(1986).

5.2 Adjusted Unemployment Rates

In this subsection, I present the adjusted unemployment rates based on various adjustment

procedures. As one would predict, the HMM adjusted unemployment rate is not as high as FH

but higher than unadjusted unemployment rate and FH/PS-adjusted unemployment rates. While

FH-adjusted unemployment rate is on average 2.6 percentage points higher than the reported

official unemployment rate, the HMM-adjusted unemployment rate is about 0.8 percentage points

higher than the reported (unadjusted) unemployment rate. While it is still higher than the PS

and AZ adjusted series (which are 0.24 and 0.54 higher than the reported unemployment rate on

average), the HMM-adjusted unemployment rate is lower than the FH-adjusted unemployment

rate.
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Table 4: Transition, Misclassification, and Duration across Models
(1) B: Misclassification Probabilities

Pr(j |̃i) = Pr(Yt = j|Ỹt = i) for i, j ∈ {E,U,O}
(In percentage points)
AZ PS FH HMM

Pr(E|Ẽ) 98.8 97.7 97.9 98.7 (0.06)
Pr(U |Ẽ) 0.2 0.5 0.6 0.4 (0.04)
Pr(O|Ẽ) 1.0 1.7 1.5 0.9 (0.04)
Pr(E|Ũ) 1.9 3.8 17.3 7.5 (0.65)
Pr(U |Ũ) 88.6 84.8 62.5 76.4 (0.98)
Pr(O|Ũ) 9.5 11.5 20.2 16.1 (0.84)
Pr(E|Õ) 0.5 1.2 2.9 1.4 (0.09)
Pr(U |Õ) 0.3 0.6 0.2 1.0 (0.10)
Pr(O|Õ) 99.2 98.2 96.9 97.6 (0.13)
Note: Bootstrap standard errors based on 500 simulations
are reported in parentheses.

(2) Average Transition Probabilities
Pr(j|i) = Pr(Yt = j|Yt−1 = i) for i, j ∈ {E,U,O}

(In percentage points)
R* AZ PS FH HMM

Pr(E|E) 95.8 97.2 98.6 100.5 98.3
Pr(U |E) 1.3 1.2 0.7 -0.4 0.7
Pr(O|E) 2.9 1.6 0.6 -0.2 1.0
Pr(E|U) 24.7 21.9 16.0 0.8 15.3
Pr(U |U) 50.7 60.3 69.0 91.4 77.7
Pr(O|U) 24.5 17.8 15.0 7.7 7.0
Pr(E|O) 5.3 2.5 0.3 -1.4 1.4
Pr(U |O) 3.1 2.3 1.8 1.0 0.9
Pr(O|O) 91.6 95.1 97.8 100.4 97.7

(3) Average Duration
(in months)

R* AZ PS FH HMM
E 23.5 35.9 73.9 -193.2 58.2
U 2.0 2.5 3.2 11.7 4.5
O 12.0 20.6 46.1 -242.1 43.8

R*: reported transition probabilities without
misclassification corrections;
AZ: Abowd and Zellner (1985),
PS: Poterba and Summers (1986),
FH: Feng and Hu (2013),
HMM: Hidden Markov Model (This paper).
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5.3 Adjusting Flow Probabilities

This section shows how we adjust the flows given the error correction matrix, B as shown in

Poterba and Summers (1986). Let Ñ be the matrix of the true labor force flows where (i, j)th

element is total true labor force flows of workers transitioning from labor force status i to j for

i, j ∈ {E,U,O}, and N be corresponding reported flows in month t. That is

Ñt =


ẼEt ẼU t ẼOt

ŨEt ŨU t ŨOt

ÕEt ÕU t ÕOt


Remember that the reporting error matrix is

BT =


b11 b21 b31

b12 b22 b32

b13 b23 b33


where bij = Pr(Y = j|Ỹ = i) is the probability that a worker whose true labor force

status is in i reports being in labor force status j. Then, Nkl, the reported number of workers

transitioning from labor force status k to l for k, l ∈ {E,U,O} is expressed in terms of reporting

error probability b and true labor force flows Ñ as

Nkl =
3∑
i=1

3∑
j=1

bikbjlÑij for k, l ∈ {E,U,O} (10)

where Ñij is the (i, j)th element of matrix Ñ : the true labor force flows of workers transi-

tioning from labor force status i to j. The intuition of equation (10) is as follows. The true flow

of workers transitioning from labor force status i to j for i, j ∈ {E,U,O} is recorded as a flow

of workers transitioning from k to l with probability bikbjl. Therefore, the total reported number

of workers transitioning from k to l can be obtained by the weighted sum of the true number of

workers transitioning from i to j for all possible transitions i, j ∈ {E,U,O}, with weights given
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by bikbjl.

The reported labor force flows N can then be expressed in a matrix form as a function of the

true labor force flows Ñ and a reporting error matrix B as follows.

Nt = BT ÑtB (11)

If B is invertible, then the true labor force flows can be calculated from equation (11) as

Ñt = (BT )−1Nt(B)−1 (12)

Note that there is nothing that prevents Ñ from being negative. In Poterba and Summers

(1986), the classification error matrix for the male population show implied transition probabil-

ities that are negative. As shown later, this is the case for FH estimates and occasionally true

for PS estimates once applied to the data between 1996 to 2018. The true labor force flows from

equation (12) can then be used to calculate the transition probabilities as

P̃ij,t =
ĩjt∑3
j=1 ĩjt

(13)

for i, j ∈ {E,U,O}

5.4 Adjusted Transition Probabilities

Using the adjustment procedures described above, Figure 2 plots the time series of unadjusted

and adjusted transition probabilities based on the reporting error probabilities by AZ, PS, FH,

and the estimates of this paper-HMM. Table 4 (2) shows corresponding historical average of

transition probabilities between 1996 and 2018. We find that the reporting errors by Feng and

Hu (2013) imply negative transition probabilities for some series. For my HMM estimates, as I

imposed the first order Markov assumption and jointly estimated time varying true labor force

transition probabilities A, we can ensure that the transition probabilities stay positive and do

not exceed 100 percent. My approach also has an advantage in that I do not have to calculate
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Figure 2: Adjusted Transition Probabilities
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the implied transition probabilities for the true labor force status using equations (12) and (13).

I compare the HMM estimates against other estimates. First, the probabilities of staying

in the same labor force status, (i.e., Pr(Ỹt+1 = i|Ỹt = i) for i = 1, 2, 3) are all higher than

corresponding unadjusted and AZ probabilities, smaller than FH estimates, and very similar

to PS estimates. The probability of transitioning from employment to unemployment is 0.7

percent on average and also smaller than unadjusted, and AZ. The probability of transitioning

from unemployment to employment (roughly job finding probability) is around 15 percent on

average and is also smaller than unadjusted (25 percent) and AZ (22 percent), but very similar

to PS estimates (16 percent). Thus, the HMM adjustment of transition probabilities revise the

unadjusted transition probabilities in the same direction (AZ, PS, and FH), and the degree of

its adjustment is in general greater than AZ and PS, but smaller than FH.

6 Contribution to Unemployment Fluctuations

How much does the adjustment in transition probabilities matter for labor market dynamics? To

answer this question, I examine the contributions of fluctuations in the transition probabilities

to the fluctuations in the unemployment rate and the employment population ratios. The previ-

ous literature showed two key results. First, Shimer (2012) showed that the fluctuations in the

unemployment rate are mostly explained by fluctuations in job finding rates or transitions out

of unemployment (“Outs”) rather than by fluctuations in job separation rates or transition into

unemployment (“ins”). That is, “outs” win. Second, Elsby, Hobijn, and Sahin (2015) showed that

the participation margin explains a large fraction, around one-third, of unemployment fluctua-

tions. However, the results in this paper suggest that the misclassificaiton adjustment would still

support the theory that “outs” win but moderate it. Misclassification correction also moderates

the importance of participation margin in explaining unemployment fluctuations.

I follow Shimer (2012) to estimate the contribution of each transition probability to explaining

the unemployment fluctuations, and compare their magnitudes under (1) no adjustment, (2)
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Abowd and Zellner (AZ) adjustment, and (3) HMM adjustment. As shown in the previous

section, transition probabilities implied by Feng and Hu (2013) and Poterba and Summer (1986)

have transition probabilities in some periods below 0 or above 100 and thus cannot be compared

in this analysis.

In a continuous time framework, the labor market dynamics are governed by the following

system of equations. 
Ė

U̇

Ȯ

 =


λEE λUE λOE

λEU λUU λOU

λEO λUO λOO



E

U

O

 (14)

with E + U +O = 1 (normalization) and λii = −
∑

j 6=i λij where λij is the rate of transition

from labor force status i to j in i, j ∈ {E,U,O}.

The system of equations in (14) can be reduced to system of employment and unemployment:

 Ė

U̇


︸ ︷︷ ︸
≡ṡt

=

 −λEU − λEO − λOE λUE − λOE

λEU − λOU −λUE − λUO − λOU


︸ ︷︷ ︸

≡F̃t

 E

U


︸ ︷︷ ︸
≡st

+

 λOE

λOU


︸ ︷︷ ︸
≡wt

(15)

In steady state, ṡt = 0, we have

s̄ = F̃−1w (16)

Therefore, the steady state employment population share ess = Ess

Ess+Uss+Oss
= Ess and the

unemployment rate uss = Uss

Ess+Uss
can be expressed as a function of transition rates λij for i 6= j.

The implied steady state unemployment rate (employment-population ratio) from equation (16)

is fairly close to the observed series in the data. Exploiting this relationship, I can calculate the

contribution of one particular transition rate λij to the overall fluctuations in the unemployment

rate (employment population ratio) by allowing it to follow its time series value while fixing

the rest of the transition rates λij at their historical average. The results of this analysis are

summarized in Table 5.

Each component in Table 5 shows the contributions of fluctuations in transition rate λij
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Table 5: Contributions of Transitions to the UR and EP Ratio 1996-2018
Unemployment Rate Employment-Population Ratio

1996-2007 1996-2018 1996-2007 1996-2018
R AZ HMM R AZ HMM R AZ HMM R AZ HMM

λEU 0.20 0.24 0.30 0.20 0.25 0.27 0.14 0.11 0.16 0.22 0.18 0.12
λEO -0.07 -0.11 -0.08 -0.05 -0.09 -0.09 -0.46 -0.47 0.11 -0.30 -0.36 -0.05
λUE 0.53 0.57 0.53 0.46 0.50 0.52 0.49 0.39 0.21 0.59 0.5 0.23
λUO 0.14 0.12 0.09 0.12 0.11 0.07 -0.14 -0.15 -0.07 -0.17 -0.2 -0.04
λOE 0.10 0.16 0.14 0.09 0.13 0.13 0.87 0.89 0.42 0.65 0.68 0.45
λOU 0.10 0.01 0.00 0.15 0.06 0.04 0.13 0.28 0.23 -0.05 0.14 0.19
λUE + λEU 0.73 0.81 0.83 0.66 0.75 0.79 0.63 0.50 0.37 0.81 0.68 0.35
λOU + λUO 0.24 0.13 0.09 0.27 0.17 0.11
λEO + λOE 0.41 0.42 0.53 0.35 0.32 0.40
R is reported series without any misclassification adjustment, AZ is Abowd and Zellner’s (1985), and
HMM is HMM-adjusted series.

to unemployment rates and employment population ratio. One main conclusion from Shimer

(2012) is that the fluctuations in job finding rate λUE explains fluctuation in the unemployment

rate more than job separation rate λEU (λUE > λEU) or “Out Wins”. This implies that the

unemployment rate fluctuates over the business cycle not because workers lose job but because

workers have a hard time finding a job. Both HMM-adjusted transition rates and Abowd-Zellner

adjusted transition rates still support the conclusion that “Out Wins” but moderate it. For 1996-

2007, HMM adjustment claims that “Outs” (λHMM
UE = 0.53) still win over “Ins” (λHMM

EU = 0.30).

However, the role of “Ins” (λHMM
EU = 0.30) is higher than previously suggested (λREU = 0.2). The

fraction of “In” λEU

λUE+λEU
goes up from around 100 × 0.2

0.53+0.2
≈ 27.4 percent without adjustment

to 100 × 0.3
0.53+0.3

≈ 36.1 percent with the HMM adjustment. The qualitative results are robust

to different time periods.

The fraction of the employment-population ratio fluctuation explained by the unemployment-

to-employment transition, λUE, declines from 0.49 and 0.39 in unadjusted and AZ-adjusted

series to merely 0.21 in the HMM adjusted series for 1996-2007. The fraction explained by the

fluctuations in the employment-to-unemployment transition, λEU , goes up from 0.14 under no

adjustment to 0.16 under the HMM adjustment, fairly close to the contribution by λUE.

Elsby, Hobijn, and Sahin (2015) study the importance of labor force participation margin in

explaining the fluctuations in the unemployment rate following a similar method as in Shimer
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(2012). They estimate that approximately 26-36 percent of the unemployment dynamics are

attributed to the flow probabilities between unemployment and nonparticipation (λUO + λOU).

Based on my analysis, this conclusion still holds for unadjusted series (around 25 percent).

Yet, HMM-adjusted transition rates suggest that the participation margin can only explain

approximately 10 percent of unemployment fluctuations. Thus, the importance of participation

margin could be much smaller than previously argued.

Why does the HMM suggest less significant role of participation margin? The HMM ad-

justment mutes the importance of the participation margin in accounting for the unemployment

fluctuations by making the movement in and out of nonparticipation (O) much less cyclical.

The HMM particularly mutes the cyclicality of the nonparticipant-to-unemployment (O-U) and

unemployment-to-non-partcipation (U-O) transitions (Figure 2). Under the HMM adjustment,

truly unemployed workers have a high probability of incorrectly reporting to be nonparticipant

(i.e Pr(Yt = O|Ỹt = U) = 16.1). With the error-correction, nonparticipants who tend to move

between unemployment and nonparticipants over business cycle are mostly corrected to be un-

employed.

Whether Ins or Outs win is important for policymakers. If a significant fraction of unemploy-

ment fluctuations is explained by job separation (Ins), policymakers could reduce unemployment

fluctuations by focusing more on measures to discourage firms from firing workers through tax

incentives or encourage firms to adjust labor via an intensive margin (number of hours worked)

rather than an extensive margin (number of employees). On the other hand, if unemployment

fluctuations are mostly explained by difficulties in finding jobs, policymakers could put more em-

phasis on active labor market policies such as training programs, job-search assistance, and direct

job creation. This paper suggests that Outs win but Ins also do matter, calling for policymakers

not to discard the job separation margin.
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7 Conclusion

This paper revisited the issue of classification errors in the U.S. Current Population Survey.

While the results still support the previous literature’s conclusion that the job finding probability

plays a more important role in explaining unemployment fluctuations (“outs of unemployment”)

than the job separation probability does (“ins to unemployment”), they moderate the conclusion

that “Out Wins”. Moreover, once the proposed adjustment is applied, the importance of the

participation margin in explaining unemployment fluctuations becomes smaller than previously

argued—around 10 percent in this paper vs previous estimates of 20 to 30 percent (Elsby, Hobijn

and Sahin, 2015). Therefore, the misclassification correction procedures in the labor force survey

continue to be an important issue in understanding labor market dynamics. The results of this

paper suggest that policymakers should pay closer attention to the job separation margin than

previously thought and less on the participation margin.
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8 Appendix

This appendix accompanies the paper “Are Labor Market Indicators Telling the Truth? Role of

Measurement Error in the US Current Population Survey” previously circulated as “Reassessing

Classification Errors in the Analysis of Labor Market Dynamics”. Section 1 provides the details

of the maximum likelihood estimation used in the paper and compare the estimation results

to those based on the eigenvalue-eigenvector decomposition method. Section 2 compares the

identification results of Allman, Matias and Rhodes (2009) against Feng and Hu (2013). Section

3 tests the validity of the first order Markov assumption for the true labor force status. It presents

estimation results using the simulated data when a data generating process (DGP) is a second

order Markov process.

Appendix 1: Maximum Likelihood Estimation

Appendix 1 shows the maximum likelihood estimation of this latent variable model. Given

that each worker in the data experiences three labor force status (E,U,O) during the three

consecutive months, we have 3T̄ = 33 = 27 possible paths a worker could take. For instance,

one possible employment history is l = 1: a worker is employed for the entire three months

Y0 = 1, Y1 = 1, Y2 = 1. Let fl be the total number of workers in l th possible path, lt be individual

l’s labor force status in month t. Given the model parameters Λ = (A,B, π), the likelihood of

jointly observing all 27 possible paths, Pr(Y0 = l0, Y1 = l1, Y2 = l2) for i, j, k ∈ {E,U,O} for all

the workers l ∈ L in the data can be expressed as follows:

L(Λ|Y0, Y1, Y2) =
27∏
l=1

(Pr(Y0 = l0, Y1 = l1, Y2 = l2))fl (17)

where Pr(Y0 = l0, Y1 = l1, Y2 = l2) can be expressed as:

3∑
Ỹ0=1

Pr(Ỹ0)Pr(Y0 = l0|Ỹ0)
3∑

Ỹ1=1

Pr(Ỹ1|Ỹ0)Pr(Y1 = l1|Ỹ1)
3∑

Ỹ2=1

Pr(Ỹ2|Ỹ1)Pr(Y2 = l2|Ỹ2)


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=
3∑

Ỹ0=1

πỸ0bỸ0Y0(l0)
3∑

Ỹ1=1

aỸ0Ỹ1=l1
bỸ1Y1(l1)

3∑
Ỹ2=1

aỸ1Ỹ2bỸ2Y2(l2)

 (18)

In a matrix form, equation (18) can be expressed as

Pr(Y0 = l0, Y1 = l1, Y2 = l2) =

(
πdiag(β·l0)

(
2∏
t=1

A*diag(β·lt)

)
1
′

)
(19)

Therefore, the log likelihood function can be expressed as

logL(Λ|Y0, Y1, Y2) =
27∑
l=1

fl × ln (Pr(Y0 = l0, Y1 = l1, Y2 = l2)) (20)

We can then apply the Expectation and Maximization (EM) algorithm to find the parameters

that maximize the log-likelihood function in equation (20). When we allow A to vary over time,

Aτ for t = 1996m1 to 2018m9 , while fixing the error reporting matrix B = (βT·1, β
T
·2, β

T
·3), the

log-likelihood in equation (20) becomes

logL(Λ|Y0,τ , Y1,τ , Y2,τ ) =
27∑

{l{l0,l2,l2}=1

fl,t × ln

[
πdiag(βl0)

(
2∏
t=1

Aτ*diag(βl2)

)]
1
′

(21)

for τ = 1, . . . , T̄ . Therefore, the information of the number of workers in each possible

employment path l ∈ M3 allows us to estimate the model parameters using the maximum

likelihood via the EM algorithm.

Table 6 shows the estimation results based on Feng and Hu (2013) estimation strategy (Col-

umn 1) and those based on a maximum likelihood estimation (MLE) in the previous section of

Appendix Column (2). Note that the Feng and Hu (2012) estimation strategy was employed to

the data from the three consecutive months unlike in the original paper (Feng and Hu, 2013).

Depending on the choices of the observation in t+ 1, Yt+1, the FH’s estimation slightly changes.

The Maximum Likelihood Estimation (MLE) provides estimates of measurement error matrix

that are consistent with those based on the eigenvalue-eigenvector decomposition proposed by

Feng and Hu (2013), which is approximately the average of the measurement error matrix based

on the FH estimation strategy.
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Table 6: Comparison of FH and HMM estimation
(1) BDecomp (2) BMLE

Yt+1 = 1 Yt+1 = 2 Yt+1 = 3 HMM 95% CI SE

Pr(E|Ẽ) 98.65 99.62 98.8 98.69 [98.57,98.81] 0.06
Pr(U |Ẽ) 0.44 0.38 0.26 0.42 [0.34,0.5] 0.04
Pr(O|Ẽ) 0.91 0 0.94 0.89 [0.81,0.98] 0.04
Pr(E|Ũ) 6.71 5.97 11.28 7.03 [5.77,8.3] 0.65
Pr(U |Ũ) 74.52 80.21 74.68 77.8 [75.88,79.72] 0.98
Pr(O|Ũ) 18.77 13.82 14.04 15.16 [13.52,16.81] 0.84
Pr(E|Õ) 1.35 7.93 1.36 1.43 [1.25,1.61] 0.09
Pr(U |Õ) 0.17 1.19 1.04 1.04 [0.85,1.22] 0.1
Pr(O|Õ) 98.49 90.88 97.61 97.53 [97.27,97.8] 0.13
BDecomp and BMLE: misclassification matrix estimated using the eigenvalue-
eigenvector method and the maximum likelihood (MLE), respectively.
Yt+1 = i: observations with labor force status i ∈ {1, 2, 3} in t+ 1 was used
in the eigenvalue-eigenvector decomposition approach to calculate the
measurement error matrix.

Appendix 2: Hu (2008) and Allman, Mathias, and Rhodes

(2009)

This appendix compares the identification results from Hu (2008) and Feng and Hu (2013) in the

main text and those of Allman et al (2009) for a hidden Markov model, the measurement error

model in this paper. There are several differences between the identification results in Allman et

al (2009) and those in Hu (2008) and Feng and Hu (2013). Allman et al (2009) provide a local

identification result while Feng and Hu (2013) and Hu (2008) provide a global identification.

While Allman et al (2009) considers a general case, Hu (2008) provide more primitive and

economically meaningful conditions. For instance, Kruskal rank is the maximum value of k such

that any k columns of a matrix are linearly independent, then k is the Kruskal rank of the matrix.

On the other hand, Feng and Hu (2013) provides much more economically meaningful and easily

testable identification assumptions a regular rank condition on the observables: k columns of a

matrix are linearly independent. While the Feng and Hu (2013) uses a subset of the dataset for

Yt+1 = 1, the estimation method used in this paper utilizes all possible observations in Yt+1 = i

for i ∈ {1, 2, 3} for Ψ1,Yt,Yt−1 to estimate the parameters of the model.
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I present this local identification results from Allman et al (2009) to show how model param-

eters, π, B, and A, can be recovered from the three months of employment panel data. Before

I do so, notice that relabeling or “label swapping” the states, such as assigning 1 to U and 2

to E instead of the other way around, would not change the distribution of the observations.

Thus, we show that the identifications are unique up to label swapping. Allman, Mathias, and

Rhodes (2009) applies algebraic results from Kruskal (1976) to prove the uniqueness of parameter

estimates given an 3 way array up to label swapping.

Assumption 1 (Conditional Independence of B) and Assumption 2 (First order Markov as-

sumption of A) in the main text remain the same. However, instead of using Assumption 3 and 4

on restrictions on observable distributions, I assume the following: (1) the matrix of measurement

error matrix B, Pr(Ỹt = k|Yt = i) has a full rank; and (2) a first-order Markov transition matrix

for true labor force status, A, is invertible. Assumption 5 (Ordering) in the main text remains

the same: his or her true labor force status than any other Pr(Yt = i|Ỹt = i) > Pr(Yt = k|Ỹt = i)

for k 6= i for i ∈ {1, 2, 3}. This allows a researcher to pin down the true labor force status. While

it is not possible to check the full rank conditions of the true measurement error matrix B and

true first order transition matrix for the true labor force status A, estimated B and A are both

invertible.

Following equation (18), we can rewrite the joint PDF of (Y1, Y2, Y3) as follows:

Pr(Y0 = l0, Y1 = l1, Y2 = l2)

=
∑3

Ỹ0=1

{
πỸ0bỸ0Y0(l0)

∑3
Ỹ1=1

[
aỸ0Ỹ1=l1

bỸ1Y1(l1)
∑3

Ỹ2=1 aỸ1Ỹ2bỸ2Y2(l2)
]}

=
∑3

Ỹ1=1

{[∑3
Ỹ0=1 πỸ0bỸ0Y0(l0)aỸ0Ỹ1=l1

]
bỸ1Y1(l1)

[∑3
Ỹ2=1 aỸ1Ỹ2bỸ2Y2(l2)

]}
Let BT = [β·1, β·2, β·3]T be the 3 × 3 transpose of reporting error matrix B, where β·i =

(b1i, b2i, b3i)
T is a vector with probability of reporting i given a different true employment status.

Define Π ≡ diag(π1, π2, π3). Then we can rewrite equation as

L =
3∑

Ỹ1=1

(
BTΠA

)
Ỹ1

� βỸ1 �
(
BTAT

)
Ỹ1

(22)
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where (Q)Ỹ1 is the Ỹ1th column of matrix Q. Define

Q1 = BTΠA (23)

Q2 = BT (24)

Q3 = BTAT (25)

Then, (22) can be expressed as

L =
3∑

Ỹ1=1

(Q1)Ỹ1 � (Q2)Ỹ1 � (Q3)Ỹ1 (26)

Now we state Kruskal’s theorem.

Kruskal’s Theorem

Let Qi = [qi1, . . . , qin] ∈ Rmt×n for some mt, n ∈ Z+ for t = 1, 2, 3 and i = 1, 2, 3. Define the

three way m1 ×m2 ×m3 arrays

P̄ =
n∑
j=1

(Q1)j � (Q2)j � (Q3)j (27)

Let ri = max{k : all collections of k columns of Qi are linearly independent} (called Kruskal-

rank). Then, if r1+r2+r3 ≥ 2n+2 then P̄ uniquely determins matrics Qi up to a label swapping.

Note that if Q ∈ RM×r has rank r, it also has Kruskal-rank r.

Therefore, if matrices Q1 = BTΠA , Q2 = BT and Q3 = BTAT in equation (26) all have full

rank r = 3, then it satisfies the Kruskal’s condition r1 +r2 +r3 ≥ 2n+2⇐⇒ 3+3+3 ≥ 2∗3+2.

Therefore, we can uniquely identify Q1, Q2, and Q3 up to label swapping. Given that Q1,Q2,

and Q3 are 3× 3 square matrices, if ranks of Q1, Q2, and Q3 are 3, then it would also imply that

Kruskal rank would be 3. Indeed, the estimated Q1 = BTdiag(Π)A, Q2 = BT , and Q3 = BTAT

have full rank given that A and B have full rank, and their Kruskal rank are also 3.
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Once we uniquely identify Q1, Q2, and Q3, then we can recover A,B,Π from equations (23),

(24) and (25). Equation (24) provides BT , A can then be recovered from equation (25) (i.e.

AT = (BT )−1Q3) and from equation (23), Π = (BT )−1Q1A
−1.

Appendix 3: Validity of First Order Markov Assumptions

This Appendix tests the validity of the first order Markov (FOM) assumption in the paper. The

goal of this paper is to propose a misclassification correction model to accurately measure the

workers’ flow between employment, unemployment, and nonparticipation over month t and t+ 1

in the Current Population Survey. As a sensitivity analysis, several reviewers asked to provide

results when the data generating process (DGP) is relaxed. I assume that a data generating

process (DGP) is a second-order Markov process and simulate the data for three months, and

estimate a hidden Markov model with a first-order Markov assumption using this simulated data.

I show that the results are generally robust to the DGP being not a first order Markov process.

Once I estimate a hidden Markov model, I first compare the error probability matrix, B,

can be recovered. The distribution of true labor force history, Pr(Ỹt+1 = k, Ỹt = j, Ỹt−1 = i)

for i, j, k ∈ {E,U,O} can be precisely estimated. The weighted mean absolute errors between

the true underlying distribution of true labor force history, Pr(Ỹt+1 = k, Ỹt = j, Ỹt−1 = i)DGP

, and the estimated distribution of true labor force history, Pr(Ỹt+1 = k, Ỹt = j, Ỹt−1 = i)HMM

is merely 0.0014 percentage points. Particularly, the implied transition probability of true labor

market history, Pr(Ỹt+1|Ỹt)DGP , is not statistically different from the estimated Pr(Ỹt+1|Ỹt)HMM

for most cases. Therefore, for the purpose of the flow analysis, we could still use the first order

Markov process assumption for the measurement error model.

Simulation Exercise: DGP-a second order Markov process

This subsection tests how far off an estimated hidden Markov model would be if the data gener-

ating process (DGP) was not first order Markov as in the assumption. As an example, I assume
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that the DGP follows a second order Markov process instead of a first order Markov process:

Pr(Ỹt|Ỹt−1, Ỹt−2, Ỹt̄) = Pr(Ỹt|Ỹt−1, Ỹt−2) for all t̄ 6=t,t-1

I define three objects.

Initial w

Let Ξ be the initial distribution for the true labor force states (LFS) in t− 1, t− 2

Ξij ≡ Pr(Ỹt−1 = j, Ỹt−2 = i) for i, j ∈ {E,U,O}

Second Order Markov Transition Matrix

Let Ψ be the second order transition matrix where (i, j, k) element of this matrix is defined

as:

ψijk ≡ Pr(Ỹt = k|Ỹt−1 = j, Ỹt−2 = i)

Measurement Error Matrix

Let BDGP the true measurement error matrix where (i, j) element of this matrix is defined

as:

bDGPij = Pr(Yt = j|Ỹt = i)

Step 1: draw true labor force status (LFS) in period t− 1 and t− 2(Ỹt−1, Ỹt−2) according to

the initial distribution Ξij.

Step 2: draw true LFS in period t by using the second order Markov transition probability

ψijk and true LFS in t − 1 and t − 2,(Ỹt−1 = j, Ỹt−2 = i) . For example, if the true LFS in

t− 1 and t− 2 are (Ỹt−1 = E, Ỹt−2 = E), then I use the first row of the matrix Ψ (i.e. ψEEk for

k ∈ {E,U,O}) to draw the true LFS in period t :Ỹt = k.

35



Table 7: DGP: Second Order Markov Transition Matrix
Ψ: Second Order Markov Transition Matrix (DGP)

Pr(Yt+1 = k|Yt−1, Yt)

Yt−1Yt Yt+1 = E Yt+1 = U Yt+1 = O

EE 98.3 0.7 1.0
EU 13.7 79.3 7.0
EO 1.8 0.8 97.4
UE 97.8 1.1 1.1
UU 12.4 81.5 6.1
UO 2.5 0.0 97.5
OE 98.1 0.2 1.7
OU 14.6 78.9 6.5
OO 1.4 0.9 97.6
Yt−1Yt means (Yt−1 = i, Yt = j) for i, j ∈ {E,U,O}.
For example, EU implies that (Yt−1 = E, Yt = U)

Step 3: draw observed LFS in t, t − 1, t − 2 , (Yt, Yt−1, Yt−2) using the measurement error

matrix B̃ and the true LFS in t, t− 1, t− 2: (Ỹt, Ỹt−1, Ỹt−2).

Step 4: repeat step 1-3 for N times to generate observed LFS with iid sampling.

I then estimate the HMM using the generated observed LFS with N=60000 observations

and compare the estimated measurement error matrix, B, against the true measurement error

matrix, BDGP . I set a second order Markov transition matrix Ψ and BDGP to be consistent with

the data. Table 7 shows the second order Markov transition matrix used as a DGP. Table 8 shows

the estimated results. It shows that the estimated measurement error matrix, B (in column (2)),

is close to the true data generating process (DGP), BDGP . The true misclassification matrix,

BDGP , is within the 95% confidence interval of B, which was estimated using the simulated data.

To further check the validity of the first order Markov assumption in capturing the true labor

force history, I also consider deviations in the BDGP itself. Define BDGP
max and BDGP

min as follows: I

set off-diagonal elements of BDGP
max to be +2 standard deviations of those in BDGP when standard

errors were calculated using the estimates of the model based on the simulated data based on

true data generating process. Similarly, I set BDGP
min to be -2 standard deviations of those in
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Table 8: Estimation Results

Misclassification Probabilities Transition Probabilities
Pr(j |̃i) = Pr(Yt = j|Ỹt = i) for i, j ∈ {E,U,O} Pr(j̃ |̃i) = Pr(Ỹt+1 = j|Ỹt = i) for i, j ∈ {E,U,O}

(In percentage points) (In percentage points)
(1) (2) (3) (1) (2) (3)

BDGP BEstimate 95% CI AImplied Aest 95% CI
Pr(E|Ẽ) 98.7 98.7 [98.4,99.0] Pr(Ẽ|Ẽ) 98.3 98.3 [97.9,98.7]
Pr(U |Ẽ) 0.4 0.5 [0.3,0.6] Pr(Ũ |Ẽ) 0.8 0.6 [0.4,0.9]
Pr(O|Ẽ) 0.9 0.9 [0.7,1.1] Pr(Õ|Ẽ) 1.0 1.1 [0.8,1.4]
Pr(E|Ũ) 7.0 6.2 [3.2,9.1] Pr(Ẽ|Ũ) 13.9 12.8 [8.8,16.8]
Pr(U |Ũ) 77.8 78.1 [73.6,82.6] Pr(Ũ |Ũ) 79.5 80.5 [74.8,86.3]
Pr(O|Ũ) 15.2 15.8 [11.4,20.2] Pr(Õ|Ũ) 6.6 6.7 [2,11.4]
Pr(E|Õ) 1.4 1.3 [0.9,1.7] Pr(Ẽ|Õ) 1.4 1.6 [0.9,2.2]
Pr(U |Õ) 1.0 1.0 [0.5,1.5] Pr(Ũ |Õ) 0.9 1.0 [0.2,1.7]
Pr(O|Õ) 97.5 97.7 [97,98.3] Pr(Õ|Õ) 97.7 97.5 [96.5,98.4]

Note: Bootstrap Confidence Interval based on 500 simulations are reported in [].

BDGP :

BDGP =


b11 b12 b13

b21 b22 b23

b31 b32 b33



BDGP
max =


1− b̄12 − b̄13 b̄12 b̄13

b̄21 1− b̄21 − b̄23 b̄23

b̄31 b̄32 1− b̄31 − b̄32

 ,

BDGP
min =


1− b12 − b12 b12 b12

b21 1− b21 − b23 b23

b31 b32 1− b31 − b32


Table 9 and 10 compare the estimated results of misclassification matrices for the data simu-

lated based on BDGP
max and BDGP

min . For BDGP
max , the true parameters are within the 95% confidence

interval of the estimated BEstimate
max . On the other hand, some of the misclassificiation probabilities

in BDGP
max are close to BEstimate

max but do not fall in its 95% confidence interval.
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Table 9: BDGP
max vs BEstimate

max

(1) Misclassification Probabilities (Max) (2) Transition Probabilities (Max)
Pr(j |̃i) = Pr(Yt = j|Ỹt = i) for i, j ∈ {E,U,O} Pr(j̃ |̃i) = Pr(Ỹt+1 = j|Ỹt = i) for i, j ∈ {E,U,O}

(In percentage points) (In percentage points)
(1) (2) (3) (1) (2) (3)

BDGP
max BEstimate

max 95% CImax AImplied Aestmin 95% CI
Pr(E|Ẽ) 98.5 98.5 [98.4,98.6] Pr(Ẽ|Ẽ) 98.3 98.4 [98.2,98.5]
Pr(U |Ẽ) 0.5 0.5 [0.4,0.6] Pr(Ũ |Ẽ) 0.8 0.7 [0.5,0.8]
Pr(O|Ẽ) 1 1 [0.9,1.1] Pr(Õ|Ẽ) 1.0 1 [0.8,1.1]
Pr(E|Ũ) 8.4 8.4 [7,9.7] Pr(Ẽ|Ũ) 13.9 12.6 [10.9,14.3]
Pr(U |Ũ) 74.7 74.8 [72.8,76.7] Pr(Ũ |Ũ) 79.5 81.1 [78.6,83.6]
Pr(O|Ũ) 16.9 16.9 [15.2,18.6] Pr(Õ|Ũ) 6.6 6.3 [4.4,8.3]
Pr(E|Õ) 1.6 1.6 [1.4,1.8] Pr(Ẽ|Õ) 1.4 1.4 [1.1,1.7]
Pr(U |Õ) 1.2 1.2 [1,1.4] Pr(Ũ |Õ) 0.9 1 [0.6,1.3]
Pr(O|Õ) 97.2 97.2 [96.9,97.4] Pr(Õ|Õ) 97.7 97.6 [97.2,98]

Note: Bootstrap Confidence Interval based on 500 simulations are reported in [].

However, it is important to note that the distribution of true labor force history Pr(Ỹt =

k, Ỹt−1 = j, Ỹt−2 = i)DGP for i, j, k ∈ {E,U,O} and that of implied true labor force history implied

by the estimated hidden Markov model (HMM), Pr(Ỹt = k, Ỹt−1 = j, Ỹt−2 = i)Estimate are very

close. The weighted mean absolute errors (WMAE) for all possible transitions (27 possible labor

force history) between the true DGP and the estimated models are 0.0014 percentage points

(relative to an average probability of 3.7 percent in a possible employment path) for BDGP . The

WMAE for max and min cases are 0.001 and 0.06 percentage points. This level of accuracy in

estimating the underlying distribution of true labor force history, Pr(Ỹt = k, Ỹt−1 = j, Ỹt−2 = i)

for i, j, k ∈ {E,U,O} is reflected in the fact that the estimated first order transition probabilities

for the true underlying labor force status (Column 2 in Table 9 and 10) capture the true transition

probabilities implied by DGP, although the transitions in nonparticipation margin could be

slightly less robust. Therefore, the assumption of the first order Markov process for the true

labor force status is generally robust.
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Table 10: BDGP
min vs BEstimate

min

(1) Misclassification Probabilities (Min) (2) Transition Probabilities (Min)
Pr(j |̃i) = Pr(Yt = j|Ỹt = i) for i, j ∈ {E,U,O} Pr(j̃ |̃i) = Pr(Ỹt+1 = j|Ỹt = i) for i, j ∈ {E,U,O}

(In percentage points) (In percentage points)
(1) (2) (3) (1) (2) (3)

BDGP
max BEstimate

max 95% CImax AImplied Aestmin 95% CI
Pr(E|Ẽ) 98.9 98.5 [98.4,98.6] Pr(Ẽ|Ẽ) 98.3 98.4 [98.2,98.5]
Pr(U |Ẽ) 0.3 0.5 [0.4,0.6] Pr(Ũ |Ẽ) 0.8 0.7 [0.6,0.8]
Pr(O|Ẽ) 0.8 1 [0.9,1.1] Pr(Õ|Ẽ) 1.0 1 [0.8,1.1]
Pr(E|Ũ) 5.7 8.4 [7.1,9.7] Pr(Ẽ|Ũ) 13.9 12.6 [11,14.2]
Pr(U |Ũ) 80.9 74.5 [72.5,76.6] Pr(Ũ |Ũ) 79.5 81.2 [78.6,83.9]
Pr(O|Ũ) 13.5 17.1 [15.4,18.8] Pr(Õ|Ũ) 6.6 6.2 [3.9,8.4]
Pr(E|Õ) 1.2 1.4 [1.2,1.7] Pr(Ẽ|Õ) 1.4 0.7 [0.4,1]
Pr(U |Õ) 0.8 1 [0.8,1.3] Pr(Ũ |Õ) 0.9 0.5 [0.1,0.8]
Pr(O|Õ) 97.9 97.5 [97.2,97.9] Pr(Õ|Õ) 97.7 98.8 [98.4,99.3]

Note: Bootstrap Confidence Interval based on 500 simulations are reported in [].
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