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1 Introduction

In its standard formulation, the New Keynesian Phillips Curve (NKPC) relates
current inflation πt to the current gap x̂t of a real forcing variable (the “real
marginal cost gap” or the “output gap”), to the long-run level π̄t of inflation
(commonly interpreted as a time-varying inflation target) and to the expected
value Etπ

i
t+1 of next period’s inflation. The forward-looking nature of the NKPC

is a pivotal feature heavily exploited for its policy implications.
Considerable effort has been dedicated to the estimation of the slope of the

NKPC, i.e. the parameter λ in front of x̂t. However, estimating the parameters
of the NKPC is not an easy task. Major econometric concerns arise for mainly
two reasons. First, the forcing variable gap x̂t and the long-run inflation π̄t are
not observable. In their place, proxies can be used, but this introduces errors
that are likely endogenous and can thus lead to biased estimates. Second, the
unobserved long-run inflation π̄t is non-stationary over sample periods charac-
terized by switches in the monetary policy regime. Hence, the corresponding
omitted variable errors are also non-stationary. Estimating the NKPC in first
differences could in principle solve the non-stationarity problem, but unfortu-
nately it would also worsen error endogeneity concerns, by introducing correla-
tion between measurement error about inflation expectations at t − 1 and the
current value of x̂t.

The literature has taken two main approaches to tackle the error endogeneity
problem. The first is based on single-equation Limited Information (LI) tech-
niques. The guiding principle is to estimate the NKPC by applying GMM/IV
methods to correct for the potential estimation bias. Mavroedis et al. (2014)
present an extensive survey of this literature, which features a wide set of point
estimates, often suffering from weak identification.1 The second is the Full In-
formation (FI) approach, where the NKPC is estimated jointly with all the other
structural equations of the NK model. The joint estimation aims to tackle the
endogeneity problem head-on by explicitly characterizing the endogenous inter-
actions of the macroeconomic variables through the restrictions derived from the
fully-specied NK model. Schorfheide (2008) surveys this part of the literature
and finds, again, a wide range of empirical estimates for λ, a significant fraction
of which appears too small - namely they imply too much price stickiness - to
be consistent with the degree of price rigidity that emerges from microeconomic
evidence (Nakamura and Steinsson 2013). Overall, both LI and FI methods
have strengths and weaknesses. The former is less prone to model misspecifica-
tion, but the use of instruments is subject to problems of weak of identification
and lack of robustness. The latter, while addressing the endogeneity issue in a
more direct and coherent way, delivers in reality a test on the validity of the
entire NK model, and not just of the NKPC.

In light of the surveyed evidence, Mavroedis et a. (2014) conclude that “the
literature has reached a limit in how much can be learned about the New Keyne-

1Seminal papers are Roberts (1995), Fuhrer and Moore (1995), Fuhrer (1997), Gaĺı and
Gertler (1999), Sbordone (2002), Rudd and Whelan (2004), Mavroedis (2004), Lindé (2005),
Roberts (2005).
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sian Phillips curve from aggregate macroeconomic time series. New identifica-
tion approaches and new datasets are needed to reach an empirical consensus”.

The goal of this paper is to propose a new methodology for the identification
of the NKPCs. I name it Full Information Partial Equilibrium (FIPE) to em-
phasize that it is intended to combine the strengths of both the FI and the LI
approaches. FIPE estimations are designed to move away from aggregate time
series, and instead be applied to the extensive sectoral datasets that, in recent
years, have become available for many countries. The proposed methodology is
very flexible along two important dimensions. First, while the paper illustrates
the workings of a FIPE approach in the context of a purely forward-looking
model, it also indicates how to adapt the methodology to estimate popular al-
ternative (“hybrid”) versions of the NKPC. Second, a FIPE analysis provides
general closed-form statistics that can be exploited by a variety of economet-
ric techniques, such as GMM or MLE methods. I present, as an example, an
application in a Bayesian estimation setting.

The FIPE approach is centered around estimating sectoral NKPCs using,
for identification, only the variability in sectoral gross output inflation and real
marginal costs due to idiosyncratic shocks (demand, supply, mark-ups, long-run
sectoral inflation). Similarly to aggregate shocks, idiosyncratic shocks cause en-
dogeneity problems in the estimation of the NKPC. However, their propagation
occurs in partial equilibrium and can thus be modeled explicitly by postulat-
ing minimal structural assumptions on sectoral demand and supply functions.
Therefore, the FIPE strategy incorporates the FI intuition that estimation bi-
ases can be corrected by exploiting the restrictions from the model’s equilibrium
conditions. In addition, the FIPE approach mimics the robustness of LI estima-
tions to potential misspecifications of general equilibrium effects. In this way,
the advantages of FI and LI are leveraged within a single procedure. The struc-
tural specification can then deliver consistent estimates even where popular LI
identification strategies fail, e.g. when mark-up shocks are auto-correlated or
in the presence of non stationary errors.2 At the same time, contrary to FI
estimations, the focus on partial equilibrium dynamics renders unnecessary the
specifications of structural equations such as the monetary policy rule.

The proposed methodology delivers a set of statistics, called FIPE moments.
These are represented by closed-form theoretical covariances of sectoral inflation
rates and real marginal costs, expressed as functions of the deep parameters of
the model. They include, among others, sectoral Phillips curve slopes and the
exogenous auto-covariances of sectoral structural shocks. Some parameters may
be directly calibrated. The remaining free parameters can instead be estimated
by combining the theoretical moments with empirical observations.

As mentioned, the empirical data must represent time series variation of
inflation and real marginal costs generated only by idiosyncratic shocks. As a
preliminary step to estimation, the data must therefore be purged from the effect

2For example, LI estimations usually need to assume that the unobserved error terms,
commonly interpreted as a “mark-up” shock, is uncorrelated across time. In fact, if the
mark-up shocks were allowed to be auto-correlated, then lags of the endogenous variables
typically used in IV estimations would not be valid instruments.
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of aggregate shocks. To this end, the paper provides necessary and sufficient
conditions on sectoral parameters that allow the inflation and real marginal
cost series to be linearly decomposed into two parts. One is the series variation
caused by idiosyncratic shocks. The other is the component attributable to
aggregate shocks, expressed as the product of common components and sector
specific loadings. Aggregate shocks can then be preliminarily removed from the
series by means of standard principal components procedures applied to a panel
of sectors. Hence, the paper provides the theoretical conditions that justify the
form of the inflation process postulated in Bovin et al. (2009).

An interesting issue connected to our empirical strategy is how sectoral slopes
estimated from idiosyncratic shocks are related to the aggregate slope λ. With
this regard, the theoretical literature has emphasized two main points. First, in
the presence of strategic complementarities, the aggregate degree of Calvo price
stickiness is disproportionally influenced by the most sticky among the cross
section of sectors (Carvalho 2006). The second point deals instead with the
within sector response of prices to shocks. Models with Calvo price adjustments,
such as the one studied in this paper, are ill-suited to provide a justification for
the presence of different frequencies of price adjustment to aggregate versus
idiosyncratic shocks. As a consequence, in the Calvo model the slope of the
sectoral Phillips curve is assumed to be the same in response to both shocks
(Maćkowiak et al. 2009). However, models where stickiness is explicitly based on
firms’ rational inattention predict that prices should be more flexible in response
to idiosyncratic shocks (Maćkowiak and Wiederholt 2009, Melosi 2014). Taken
together, these considerations indicate that first moments λ̄ (such as the median
or the mean) of the cross section of sectoral FIPE estimates of Phillips curves
slopes should be larger than the aggregate Phillips curve λ. Since they imply
less price stickiness, summary statistics λ̄ should then be easier to match with
the micro evidence on the frequency of price adjustment.

As an application, I use FIPE moments in conjuction with Bayesian tech-
niques to estimated sectoral NKPC slopes for two large economies, the US and
Japan, and a small open economy, the UK. Real marginal costs are proxied by
the labor share. The estimation results echo findings common in the empirical
literature: first moments λ̄ of the cross section of sectoral slopes have either the
wrong sign or, when they are positive, their values appear to be too small to
be reconciled with the degree of price rigidity inferred from the micro evidence
(Nakamura and Steinsson 2008, Bils and Kryvtsov 2008, Kehoe an Midrigan
2015).

The rest of the paper is organized as follows. Section 2 lays out the assump-
tion on sectoral demand and supply functions, and develops sectoral Phillips
curves with time varying long-run inflation rates. Section 3 gives necessary and
sufficient conditions for the linear decomposition of aggregate and idiosyncratic
shocks, and derives the FIPE moments. Section 4 presents the results of the
empirical application. Section 5 concludes.
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2 Sectoral Phillips curves in a standard New
Keynesian model

This section derives a sectoral version of the standard NKPC,

πi
t − π̄i

t = λim̂
ri
t + βEt[π

i
t+1 − π̄i

t+1] (1)

where β ∈ (0, 1) is a discount factor, m̂ri
t is the marginal cost gap, i. e. the

forcing variable of the NKPC, Et[π
i
t+1] is the inflation expectation and π̄i

t is
a sector specific variable used as indexation by Calvo firms that cannot freely
reset their prices at t. The semi-structural parameter λi, which is the slope
of the Phillips curve, is a function of an underlying parameters θi defining the
degree of price stickiness.

2.1 Preferences and production technologies

There is a double continuum of goods (i, j) in the economy, with i ∈ [0, 1]
representing a sector and j ∈ [0, 1] indicating a particular variety within sector
j. Each pair (i, j) represents both the good and the firm which produces it
under monopolistic competition. The variables ỹt(i, j), yt(i) and Yt indicate,
respectively, the log output of good (i, j), the log aggregate output of sector i,
and the total log aggregate output of the economy at time t. Log prices are
defined in the same fashion.

Demand functions for good (i, j) and for sector i’s overall bundle are derived
from constant elasticity utility aggregators with elasticities given by νit and ν̄,
respectively. Specifically, the consumer demand for good (i, j) at time t is given
by

ỹi(i, j) = yt(i)− νit [p̃t(i, j)− pt(i)] (2)

where the elasticity νit > 1 is time varying. For future reference, we define µ̃i
t

as the log sectoral target mark-up

µ̃i
t = log

νit
νit − 1

(3)

Similarly, sectoral demands relative to aggregate demand, written in first dif-
ference, are defined as

∆yt(i) = ∆Yt − ν̄[πi
t − πt −∆ωi

t] (4)

where πi
t = pt(i) − pt−1(i) and πt = Pt − Pt−1 are, respectively, sectoral and

aggregate inflation and v̄ > 1. Moreover, ωi
t > 0 is an exogenous sectoral

demand shifter, presented in more details below.
We turn to the definition of firms’ supply functions. We assume that the log

nominal marginal cost is the same for all firms j within a given sector and is
given by

mni
t =

Km−1∑
k=1

lkiφkt +
δi
ν̄
yt(i)− z̃it (5)
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The variable z̃it is the log of the sectoral TFP and the parameter δi indicates
production real rigidities at the sectoral level. We usually think of δi as positive,
but negative values are also allowed, e.g. if there are decreasing marginal cost
at the sectoral level. In turn, the sets of Km−1 ≥ 1 sector-specific constants lki
and variables φkt represent, respectively, sectoral loadings an aggregate factors
which cause co-movements in sectoral log nominal marginal costs. By using the
non-differenced version of (4) it is straightforward to derive the sectoral log real
marginal cost mri

t ≡ mni
t − pt(i) as

mri
t =

Km∑
k=1

lkiφkt + ν̄−1(1 + δi)yt(i)− z̃it − ωi
t (6)

where the Km-th additional factor is φKt = −Pt − ν̄−1Yt. Without loss of gen-
erality we take

∑Km

k lki = 1. The form (6) for the log real marginal cost is a
crucial equation of our model. It is important to point out that (6) is quite gen-
eral and can be obtained, either directly or through log-linear approximations,
from a variety of production functions. The constant δi controls the responsive-
ness of real marginal costs to output, as discussed in Rotemberg and Woodford
(1999). The following example with Cobb-Douglas production function explains
how increasing marginal costs at the sectoral level arise naturally, for instance,
in the presence of fixed or quasi-fixed production factors.

Example. Normalize ν̄ = 1. Assume that, at the firm’s level, the log production
function is specified by ỹt(i, j) = Zt + z̃it + ñt(i, j), where Zt is aggregate log
TFP and nt(i, j) is the labor input. Using an appropriate Dixit-Stiglitz func-
tion, we assume that firms’ production in sector i is aggregated into a sectoral
output yt(i), which is given by yt(i) = Zt + nt(i), with nt(i) the corresponding
sectoral aggregator for the labour input. The log labour supply schedule at the
sectoral level is assumed to be wi

t = Wt + δi[nt(i) − Nt], with wi
t the sector-

wide nominal log salary, while Wt and Nt are, respectively, the economy-wide
nominal salary and employment. If we take δi > 0, then the labour supply
schedule implies that higher than average employment in sector i translates
into higher than average sectoral salaries. Salaries may vary across sectors as
function of labour utilization because of, for instance, overtime wage premia,
labor market segmentation across sectors or the presence of labour unions. It is
then straightforward to show that the nominal log marginal cost in sector i is
mni

t =Wt− δiNt− (1+ δi)Zt+ δiyt(i)− (1+ δi)z̃
i
t. After an appropriate scaling

of z̃it, we obtain a formulation of the type (5).

We conclude this section with the specification of the stochastic process for
the exogenous variables of the model. In some instances, shocks are presented
into a normalized form to yield less cluttered equilibrium conditions. The pro-
cess for the sectoral demand shifter ωi

t is the following,

ωi
t = ρiωω

i
t−1 + δ−1

i εiωt (7)
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The log sectoral mark-up µ̂i
t is assumed to be the sum of an aggregate component

µ̄t and an AR(1) idiosyncratic component µi
t,

µ̂i
t = µ̄t + µi

t

µi
t = ρµµ

i
t−1 + εiµt

(8)

Finally, the process for the growth rate ∆z̃it of sectoral TFP is determined by
the change in a cyclical component ∆zit and by a random walk stochastic trend
γit

∆z̃it = ∆zit + (1 + δi)γ
i
t

zit = ρzz
i
t−1 + εizt

γit = γit−1 + εiγt

(9)

The auto-correlations ρω, ρµ, ρz belong to the interval [0, 1]. All the shocks
are assumed to be mutually independent, and their variances are indicated,
respectively, with σ2

ω, σ
2
µ, σ

2
z .

2.2 Staggered prices

In every period t, each monopolistically competitive firm (i, j) can freely reset
its price with probability 1 − θi. Prices are indexed at the sectoral level, i.e.
firms that cannot optimally reset their price mechanically increase them at an
exogenous and sector specific rate π̄i

t given by3

π̄i
t = π̄t − γit (10)

3In alternative, we could make assumptions on the steady state values of aggregate factors
and then obtain (10) as an equilibrium condition. For instance, without loss of generality,
consider an additional factor ψiKm+1φKm+1t = ν̄−1(1+ δi)Yt t be subtracted from (6). take
Take the first difference from both sides of the resulting equation and assume a steady state
where real marginal costs are constant. We obtain

0 =

Km+1∑
k=1

lki∆φk + ν̄−1(1 + δi)[∆y(i)−∆Y ]− (1 + δi)γ
i

=

Km+1∑
k=1

lki∆φk + (1 + δi)[π − πi − γi]

where time indexes have been omitted to emphasize that the quantities are constant at the
steady state. Hence if π̄ is interpreted as a steady state measure of aggregate inflation π, and
π̄i as a steady state measure of sectoral inflation, then (10) turns out to be an equilibrium

condition if we assume that
∑Km+1

k=1 lki∆φk = 0. In the Example of Section 2.1, this would
be equivalent to positing the following natural equilibrium condition,

Km+1∑
k=1

lki∆φk = ∆(W − P − Z)− δi ·∆(Y −N − Z) = 0

11



where π̄t is a stochastic process defining an aggregate variable used by agents
for price indexation.4 More precisely, the aggregate indexation rate π̄t can be
seen as stemming from purely monetary phenomena, such as the time-varying
inflation target in Cogley and Sbordone (2008), or the lag of aggregate inflation
as in Yun (1996). The overall sectoral indexation π̄i

t contains, in addition, a
correction for the extra long-run deflation induced in sector i by its extra rate
of long-run technical progress γit .

The assumptions made so far ensures that a set of sectoral NKPCs (1) is
obtained using standard log-linearization techniques5. In particular, the slope
λi of the sectoral Phillips curve is

λi ≡
(1− θi)(1− βθi)

θi
(11)

2.3 Estimation challenges

To build some intuition about the challenges in estimating the NKPC we write,
after some manipulations of (1),

πi
t − βπi

t+1 = λim
ri
t + λiµ̄t + βet+1 + ēt︸ ︷︷ ︸

Aggregate error

+λiµ
i
t + βeit+1 − (1− β)γit︸ ︷︷ ︸
Idiosyncratic error

(12)

The quantity Et[π
i
t+1]−πi

t+1 = et+1 + eit+1 is the inflation forecasting error,
where et+1 is the error part that is correlated across sectors and eit+1 is instead
i.i.d.6 Because of the assumption of rational expectation, inflation forecast
errors are uncorrelated with time t variables. A similar separation between
aggregate an idiosyncratic components holds for the mark-up shock µ̂i

t. The
remaining element of (12) is the expected discounted change in the inflation
indexation variable, which by virtue of (10) is split into an aggregate part ēt =
π̄t − βEt[π̄t+1] and an idiosyncratic one (1− β)γit .

An inspection of (12) immediately reveals two main estimation issues. First,
all the components of the unobserved error that are dated t are correlated with
the regressor mri

t . The LI literature has tried to solve this problem by esti-
mating the above equation using IV-GMM methods, where lags of the observed
variables are used as instruments. However, a pitfall of this strategy is that, in
order for the lags to be valid instruments, mark-up shocks need to be assumed
uncorrelated across time. A second issue is that the error term is likely non-
stationary (Cogley and Sbordone, 2008). If, for instance, shifts in the monetary

4We will remain mostly agnostic on the properties relating the evolution of π̄t to the
underlying shocks to the economy. We only require π̄t to be a reasonable indexation variable
in the sense that, in the absence of shocks, π̄t eventually converges to actual (steady state)
inflation πt = Pt − Pt−1. Variables that satisfy this requirement include popular cases like
indexation to lagged inflation π̄t = πt−1 as in Yun (1996), or to a fluctuating inflation target

π̄t = πtarget
t in Cogley and Sbordone (2008).

5See Appendix A for details.
6Section 3.1 is devoted to show under what conditions a linear separation between aggregate

an idiosyncratic components is warranted.

12



policy regime are modeled as a random walk process for π̄t, then ēt = (1− β)π̄t
is non-stationary (in addition to being correlated with mri

t ). Estimating the
NKPC in first difference might solve the non-stationarity problem. However,
this would also worsen then endogeneity issue, since the first difference of the
inflation forecast error et+1 + eit+1 would be correlated with mri

t .

3 A Full Information Partial Equilibrium ap-
proach

From a theoretical perspective, the FIPE approach is developed in two steps.
The first, presented in Section 3.1, provides conditions under which the marginal
cost and inflation processes can be linearly separated into aggregate and id-
iosyncratic components. The second, outlined in Section 3.2, demonstrates that
closed-form representations for the second moments of the inflation and the real
marginal cost variables can be derived from the idiosyncratic components.

3.1 Separating aggregate and idiosyncratic components

The central aspect of our analysis is the characterization of the stochastic process
for the real marginal cost mri

t and its associated real marginal cost gap m̂ri
t ,

defined as
m̂ri

t = mri
t + µ̂i

t

An important features of the stochastic process for m̂ri
t is its persistence in

response to shocks, which can be characterized by an intrinsic and an extrinsic
components. For idiosyncratic shocks, the extrinsic component is equivalent to
the exogenous persistences ρω, ρz and ρµ. The intrinsic component, instead, is
generated purely by the presence of nominal (λi) and real (δi) rigidities. For
the rest of our analysis we divide the sectors into groups for which the following
homogeneity assumption in the way nominal and real rigidities interact holds,

Assumption 1. Consider a group of sectors for which the constants λi and δi
satisfy

λi(1 + δi) = κ > 0 (13)

Assumption 1 is slightly milder than the requirement that λi and δi are the
same across given group of sectors. For a group of sectors that share the same
constant κ, the intrinsic persistence r is defined as follows,

Definition 1. For a group of sectors that satisfy Assumption 1, the intrinsic
persistence r ∈ (0, 1) is given by the the smaller of the two characteristic roots
of second order difference equation,

m̂ri
t+1 − χ1m̂

ri
t + χ0m̂

ri
t−1 = 0 (14)

with χ0 ≡ β−1 and χi
1 ≡ 1 + χ0(1 + κ).

13



Assumption 1 guarantees that the intrinsic persistence r is the same across all
sectors belonging to a common group. While Appendix B provides a detailed
characterization of the intrinsic and extrinsic persistences, we briefly present
here a more intuitive discussion.

Equation (14) is the homogeneous part of the difference equation describing
the evolution of marginal cost gaps in response to aggregate and idiosyncratic
shocks. The equation thus provides information about dynamic persistence r of
the gap’s stochastic process due only to the intrinsic, endogenous propagation of
the shocks caused by the nominal and real rigidities. The extrinsic persistence,
instead, is derived from the inhomogeneous part of the equation, whose process
depends solely on the exogenous persistence of the underlying shocks. Note
that the intrinsic persistence r is the same in response to both aggregate and
idiosyncratic shocks.7

While for idiosyncratic shocks the extrinsic component equals the exogenous
persistence ρs, for aggregate shocks such characterization doesn’t hold anymore.
This can be easily seen in our Example in Section 2.1. An aggregate structural
shock, like an increase in productivity Zt, will in fact cause a cascade of addi-
tional general equilibrium “reduced-form” shocks to other factors, like the wage
Wt. It follows that the overall extrinsic persistences generated by a structural
shock to Zt does not depend on the exogenous persistence of Zt alone, but also
on the endogenous persistence of the response of all the other factors. Our par-
tial equilibrium approach aims exactly at side-stepping the task of modelling
explicitly such complex endogenous propagation. Note also that since the root r
lies within the unit circle, real marginal cost gaps, and hence sectoral inflation,
could be subject to non-structural (sunspot) dynamics. This paper abstracts
from the role of sunspot shocks, which could nonetheless be easily introduced
into the model.

Define ιs an indicator which equals −1 if s = z and 1 otherwise. We then
have the following result,

Proposition 1. Assumption 1 is necessary and sufficient for the real marginal
cost gap m̂ri

t to be linearly decomposed into aggregate and idiosyncratic compo-
nents m̂ri

t = x̂it + m̂i
t given by, respectively,

x̂it =

Km∑
k=1

ψ̂kif̂kt (15)

m̂i
t =

∞∑
j=0

∑
s∈{ω,z,µ}

asjε
is
t−jιs (16)

7The intuition is that, regardless the type of shock hitting the sector, (14) is always the
homogeneous part of the difference equation describing the evolution of the real marginal cost

gap. Hence, the intrinsic persistence r = 1
2

(
χ2
1 −

√
χ2
1 − 4χ0

)
is the same for all shocks.

The specific type of shocks affect only the inhomogeneous part of the difference equation,
which in turn determines the extrinsic persistence.
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where asj ∈ (0, 1) are functions only of ρs and r, while {f̂kt} is a set of Km > 0

aggregate factors with sectoral loadings {ψ̂ik}.

Proof. See Appendix B.

According to Proposition 1, the real marginal cost gap can be decomposed
into a component that linearly depends only on aggregate factors, and into an
idiosyncratic part which is the sum of three MA(∞) processes. The explicit
functional form for the weights asj is provided in Appendix B. Note also that
an immediate consequence of Proposition 1 is that also the real marginal cost
mri

t can be decomposed into a linear combination xit of aggregate factors, plus
an idiosyncratic part mi

t so that

mri
t = xit +mi

t (17)

The representation (16) makes clear one important distinction between id-
iosyncratic demand and supply shocks on one side, and idiosyncratic mark-up
shocks on the other. Consider a positive unit impulse εist ιs for a shock of type
s ∈ {ω, z}. By (16), the shock raises the present and future values of m̂i

t. There-
fore, by virtue of (1), the shock increases current inflation πi

t. In particular, the
shock increases both m̂i

t and mi
t by an amount as0 ∈ (0, 1). Take instead a

positive unit impulse εiµt to the mark-up. Again, the shock increases current
inflation. However, while m̂i

t is raised by aω0 , the current real marginal cost
mi

t = m̂i
t − µt decreases by 1 − aµ0 . In conclusion, for the purpose of charac-

terizing the stochastic process of inflation and real marginal costs, demand and
supply shocks are extremely similar, since they both cause inflation and real
marginal costs to move in the same direction. Indeed, if we take ρω = ρz, then
aωj = azj and the effects on πi

t and mi
t of two shocks are completely indistin-

guishable. Mark-up shocks, instead, introduce distinctive dynamics by causing
inflation and real marginal costs to move in opposite directions. This is a stan-
dard result for New-Keynesian models, where only mark-up shocks generate a
policy trade-off between output and inflation stabilization (Clarida et al. 1999).
We will return to this point in the next section.

Similarly to what we have done with the marginal cost gap, define the in-
flation gap ξ̃it as

ξ̃it = πi
t − βπi

t+1

We then have the following Corollary to Proposition 1

Corollary 1. The process for the inflation gap ξ̃it can be decomposed into an
aggregate and an idiosyncratic component ξ̃it = x̃it + ξit given by,

x̃it =

Kξ∑
k=1

ψ̃kif̃kt (18)

15



where f̃kt for k = 1, ...,Kξ indicate a set of aggregate factors and ψ̃ki are a set
of weights. The idiosyncratic component ξit satisfies the system of equations

ξit = λim
i
t + uit

uit = λiµ
i
t + βeit+1 − (1− β)γit

eit+1 = εiγt+1 − λi
∑

s∈{ω,z,µ}

1− as0
κ

εist+1ιs

(19)

Proof. See Appendix B.

In empirical applications of our FIPE methodology, Proposition 1 and Corol-
lary 1 are used as a preliminary step to separate aggregate and idiosyncratic
components of the real marginal cost and inflation gaps data. In practice, this
separation requires the use of econometric techniques, such as principal com-
ponents methods. Assumption 1, by guaranteeing the validity of Corollary 1,
provides necessary and sufficient conditions that justify the FAVAR model that
Boivin et al. (2009) employ to study the inflation process at the sectoral level.

The results of this section can also be cast in the language of the panel liter-
ature. Every group of sectors to which Assumption 1 applies form a panel data.
Corollary 1 implies that the dependent variable πi

t − βπi
t+1 in the linear model

(12) has the multifactor error structure studied in Pesaran (2006). However, the
estimation of (12) with the panel methodology in Pesaran (2006) is problematic
since, as pointed out in Section 2.3, in our case the idiosyncratic error terms
are correlated with the (idiosyncratic) sectoral regressor mri

t . The next section
presents FIPE moments that exploit the model’s structural equations to take
such correlation into account.

3.2 FIPE moments

In this section we establish the existence of closed form expressions for the
projection of the inflation gaps ξit on any lag (or lead) j of the real marginal
cost mi

t−j , with j an integer. We show that the projections are linear in the
sectoral slope λi and non-linear in the intrinsic persistence r and in the relative
variance R, to be defined below, of the idiosyncratic mark-up shocks. Projection
coefficients are at the heart of many econometric methods, so our closed-form
representations for the projection coefficients can be applied in a variety of
estimation contexts (GMM and MLE are, for instance, natural candidates).

Corollary 2. Take ρω = ρz ≡ ρ. Then, for a given value of ρ, the projections
of ξt onto m

i
t−j, for j any integer number, can be expressed as

Cov(ξit,m
i
t−j)

V ar(mi
t−j)

= λibj(r,R) (20)
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where each function bj(r,R) has a closed form expression and R is the relative
variance of the mark-up shock, i.e.

R ≡
σ2
µ

σ2
ω + σ2

z + σ2
µ

The representation (20) holds even when the projections are performed with
variables in differences.

Proof. See Appendix B, which also provides the closed form expression for the
functions bj(r,R) at any (positive or negative) lag j.

Corollary 2 is based on the assumption that ρω = ρz, i.e. that exogenous
demand and supply shocks have the same auto-correlation. In our context this
is a mild assumption since, as noted in the discussion of Proposition 1, demand
and supply shocks already play an almost identical role in defining the stochastic
process for mi

t and ξit. The assumption ρω = ρz exploits to the full extent the
symmetric role of the two shocks by guaranteeing that aωj = azj . In this way,

the stochastic processes for ξit and mi
t depend only on εiωt − εizt and on εiµt

separately. What matters for the projections is then just the relative variance
R of the mark-up shock.

Note also that the formulation (20) holds even when the moments are calcu-
lated using lagged variables. This is a convenient result in light of the observa-
tion that the idiosyncratic error uit in (19) is in general non-stationary, an issue
that can be tackled by estimating the NKPCs in first differences. In this case,
the first differences ∆eit+1 of the forecast errors become an additional variable
endogenous to the regressor ∆mi

t. This is not a problem, however, since the
FIPE moments built according to Corollary 2 take into account this additional
form of endogeneity of the error terms.

Finally, Corollary 2 allows us also to obtain explicit moments involving the
auto-covariance of ξit. These conditions turn out to be especially useful when
(19) is expressed in first differences ∆ξit. The differencing operator, in fact, intro-
duces auto-correlation in the shocks ∆uit. In this instance, the auto-covariances
become a function also of the relative variance Γ of the trend shocks εiγt+1, which
for our purposes can be treated as pure measurement error.8 For instance, define

Γ =
V ar(∆ε̃iγt )

V ar(∆eit)

so that Γ ∈ [0, 1) is the contribution of the (normalized) variable ∆ε̃iγt ≡ ∆εiγt /λi
to the overall volatility of the forecast error ∆eit. We can then write the following

8To make this interpretation more straightforward, assume that (1−β)∆γit = (1−β)εit ≈ 0.
This approximation is reasonable since, in our calibration, β ≈ 1 and moreover, under our
structural interpretation, the shocks εit should be relatively small. With this approximation

in mind, notice that, within the error term ∆uit, the variable ∆εiγt is independent from ∆mi
t.

We can then interpret the shocks εiγt+1 in uit as picking up both trend growth shocks and true
(possibly large) measurement error.
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additional moment conditions,

Cov(∆ξit,∆ξ
i
t−j)

V ar(∆mi
t)

= λ2i b̂j(r,R,Γ) (21)

for any integer j and for given functions b̂j(r,R,Γ).
9

3.3 Beyond the pure forward-looking model

In search for formulations that can better fit the data, the literature has departed
from the pure forward-looking NK model and has proposed alternative versions
of the Phillips curve and of the real marginal cost. A strength of the FIPE
methodology is that it can be flexibly adapted to these cases.

For instance, while (1) already incorporates in π̄t popular types of backward-
looking inflation indexation, the framework can be extended to allow for indexa-
tion to past sectoral inflation πi

t−1. This can be accomplished by adding a term
πi
t−1 to the right side side of (1), giving rise to a hybrid model (Gaĺı and Gertler,

1999). Similarly, the real marginal cost function (6) could be made dependent
also on lagged values yt−1(i) of sectoral output to account for a delayed effect
of sectoral wage bargaining or for other sectoral adjustment costs. For instance,
Batini et al. (2005) show that the introduction of labor adjustment costs can
improve the empirical performance of the Phillips curve.

For both these alternative formulations, the FIPE approach would be im-
plemented as follows. First, the introduction of lagged variables implies that
(14) is now of third order. Hence, Definition 1 might have to be modified to
take into account the potential presence of multiple roots (i.e. multiple intrinsic
persistences r) that lie within the unit circle. Correspondingly, Assumption 1
would also have to be adjusted to ensure that all such roots are the same within
sector groups. With these modifications, the moving average decomposition in
Proposition 1 is still valid. Of course, the weights asj in Proposition 1 may now
depend on the multiple intrinsic persistences r. If this is the case, then the new
moment conditions would also be a function of such multiple roots.

4 FIPE in a Bayesian application

In this section we provide an empirical application of the theoretical results
of the FIPE approach developed above. Specifically, the results of Section 3.1
are first used to remove aggregate shock trough standard principal components
methods. In turn, the moments representation of Section 3.2 is exploited within
a Bayesian estimation context. Our application is based on calibrations for
the extrinsic persistences ρs that lead to an ARMA(1,1) process for the real
marginal cost gaps.

9Appendix C explicitly derives this formulation for the empirical analysis in Section 4.

18



4.1 An ARMA(1,1) specification

A Bayesian approach to the use of the FIPE moments is particularly attractive
because the projections b(r,R) depend on two parameters - the intrinsic persis-
tence r and the relative variance R - which have intuitive interpretations and
for which some prior knowledge can be elicited. With the aim of providing an
even sharper intuition for the parameters (r,R) we make the assumption that
all shocks have the same persistence, and follow either a random walk or of an
i.i.d. process,

ρω = ρz = ρµ ≡ ρ

ρ ∈ {0, 1}

The assumptions above may appear restrictive, but they still allow us to move
beyond the i.i.d. case typically analyzed in the LI literature. In particular,
estimating the model under the two polar possibilities ρ ∈ {0, 1} can shed light
on the sensitivity of the estimated NKPC’s slopes to different assumptions about
the persistence of the underlying shocks. Moreover, the above calibration for
the extrinsic persistences lead to a stochastic process for the forcing variable m̂i

t

that is indeed quite general, i.e.

m̂i
t = rm̂i

t−1 + εt −
r(1− ρ)

a0
εt−1

εt ≡ a0(ε
iω
t − εizt + εiµt )

(22)

The real marginal cost gap then follows an ARMA(1,1). The intrinsic per-
sistence r is identified as the coefficient of the AR(1) part, while the MA(1) part
disappears in the random walk case ρ = 1. The coefficient as0 now takes the same
value for all types of shocks and is thus indicated simply with a0. Moreover,
the coefficient R for the relative variance takes an even more intuitive meaning:
it is the share of variance of the forcing variable m̂i

t attributable to mark-up
shocks. We can then use the expression (22) to elicit prior distributions for R
and r in the following way.

First, the New Keynesian literature usually assigns a non-negligible role to
mark-up shocks in explaining the variability of the aggregate forcing variable.
Our prior is that this intuition carries over to the idiosyncratic component m̂i

t.
We then construct a loose prior distribution for R around a modal value of 1/3,
where mark-up shocks are as important as the other two shocks in determining
the variability of m̂i

t.
Second, recall that, in the discussion about Assumption 1, it was pointed

out that the intrinsic persistence r is the same in response to both aggregate
and idiosyncratic shocks. Our prior for r is then constructed as a distribution
centered around the estimated AR(1) coefficient of an ARMA(1,1) model, fitted
to the time series of an aggregate proxy for m̂ri

t .10 Specifically, as often done

10There is clearly no reason to believe that the aggregate real marginal cost gap follows
exactly the process (22). In fact, even if we assume that aggregate structural shocks follow
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in the literature, the proxy is taken to be a measure of the output gap.11 More
details about the prior distributions, including the prior for λi, are provided in
the next section.

The likelihood of the data is obtained as follows. First of all, to address the
problem of non-stationarity, we estimate (19) in first differences, namely we use
projections of ∆ξit on leads and lags of ∆mi

t and of ∆ξit itself. Specifically, we
use a number 2j + 1 of symmetric leads and lags of ∆mi

t, and a number J of
lags of ∆ξit. We collect these variables into a column vector Xi

t ,

Xi
t = [∆ξit−J ... ∆ξit−1 ∆mi

t−j ... ∆mi
t ... ∆mi

t+j ]
′

Define Σa the covariance matrix of the elements of Xi
t , and Σb the row vector

collecting the projections (20)-(21) scaled by λi,

Σb = [λib̂J(r,R,Γ) ... λib̂1(r,R,Γ) bj(r, R̂) ... b0(r, R̂) ... b−j(r, R̂)]

The analytic expressions for Σa and Σb are provided in Appendix C. Define
b(λi, r, R,Γ) the vector of regression coefficients of ∆ξit on X

i
t ,

b(λi, r, R,Γ) = ΣbΣ
−1
a (23)

and call σ̄2
i the variance of the residuals of such regression. We estimate σ̄2

i

directly from the data.
Assume that the i.i.d. shocks εω, εz, εµ and εγ are jointly normally dis-

tributed. Proposition 1 then implies that idiosyncratic real marginal costs are
jointly normally distributed with respect to each other and with respect to the
inflation gaps ξt. It follows that,

∆ξit|Xt, λi, r, R ∼ N
(
λib(λi, r, R,Γ)X

i
t , σ̄

2
i

)
(24)

Suppose that we have a sample of T observations for each sector i. We
approximate the sectoral likelihood Li(·|·) of the data as

Li(∆ξ
i
0, ...,∆ξ

i
T |∆mi

0, ...,∆m
i
T , λi, r, R,Γ) ≈

T∏
t=0

fi(∆ξ
i
t|Xi

t , λi, r, R,Γ) (25)

where fi(·|·) is the probability density function of the normal distribution (24).
The likelihood contains an approximation, since each fi(·|·) is conditioned on

either an i.i.d. or a random walk processes, still the aggregate factors would not in general
be i.i.d. or random walk. As discussed in Section 3.1, this is do to the presence of general
equilibrium effects, which induce endogenous persistence in the factors beyond that imposed
on the exogenous structural shocks. This conclusion notwithstanding, we consider the proce-
dure good enough to be used with the limited goal of eliciting a central value for the prior
distribution of r.

11Note that we are not estimating the slope of the Phillips curve by projecting inflation on
measures of the output gap. This can be problematic as pointed out, for instance, by Gaĺı
and Gertler (1999). Instead, we are just using the often exploited theoretical relation between
marginal cost gaps and output gaps to merely infer something about the auto-correlation of
the former. Finally, in our exercise an ARMA(1,1) fits quite well our output gap series.
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Xi
t , which contains only a subset of the history, up to time t, of first differences

of real marginal costs and of inflation gaps. This issue can be accommodated
by choosing lags j and J large enough.

To increase the number of observations used in the estimation, we employ a
pooled version of the sectoral likelihood. Assume that the slopes λi are drawn
from a distribution with mean λ̄. The draws are taken to be independent of
all the idiosyncratic sectoral shocks. Then, by pooling sectors together, we can
define a new likelihood as,

L(∆ξ|∆m, λ̄, r, R,Γ) =
∏
i

Li(∆ξ
i
0, ...,∆ξ

i
T |∆mi

0, ...,∆m
i
T , λ̄, r, R,Γ) (26)

where ∆ξ and ∆m represent the entire collection of time and sector observa-
tions of first differences of inflation gaps and real marginal costs. Note that the
multiplication in L(·|·) of sectoral likelihoods is justified since, at this stage, all
aggregate shocks have been removed, and hence the evolution of the observables
are independent across sectors.

For given values of σ̄2
i , the posterior density p(λ̄, r, R,Γ) of the parameters

is given by,

p(λ̄, r, R, ,Γ) = L(∆ξ|∆m, λ̄, r, R,Γ)p0(λ̄, r, R,Γ) (27)

where p0(λ̄, r, R,Γ) is the prior distribution of the parameters.

4.2 Data description and priors

The data source we employ is the EU KLEMS Database, March 2008 release.
The database contains information for 3-digit industries at annual frequency for
the period 1970-2005. We consider three groups of industries, corresponding to
the categorization in Basu et al. (2006): Non-Durable manufacturing (sector
group 1), Durable Manufacturing (sector group 2), Non-Manufacturing (sector
group 3). Groups are of roughly equal size of 10 industries each. We posit that
Assumption 1 holds within each group.

First differences of inflation gaps are constructed from sectoral log price of
gross output, using a discount parameter calibrated to a standard annual value
of β = 0.97. First differences in the real marginal cost are calculated from the log
labor share in gross output. Our estimation thus tests the labor share-based,
purely forward looking Phillips curve in Gal̀ı and Gertler (1999) and Cogley
and Sbordone (2008). For each group of sectors, common factors are extracted
from the series via standard principal components procedures, with the number
of components selected according to the ER test in Bai and Ng (2002). The
remaining idiosyncratic series, used in the estimation, typically explan 20-30%
of the variance of the original series.

In the construction of the vectors Xi
t we select j = J = 1. Standard devi-

ations σ̄i are calibrated using the preliminary regression described in the pre-
vious section. To assess whether a number J = 1 of lags is appropriate, we
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test whether the regression errors display auto-correlation and we conclude that
they largely don’t.

Priors are set as follows. Due to the significant uncertainty found in the
empirical literature, we choose an agnostic prior for the distribution of λ̄, which
is assumed to be a normal centered at 0, with a large standard deviation equal
to 3. For the intrinsic persistence r, we select a distribution with a mode
of 0.5 and a two-sided 90% interval (.25, .65). The value 0.5 is obtained by
running an ARMA(1,1) on the OECD output gap series from 1995 to 2016
for the US, Japan and UK, and averaging the corresponding AR(1) coefficients
across the three countries. For R we choose a distribution with mode at 1/3,
corresponding to the prior that mark-up shocks are as important as each each
of the two other shocks in explaining variation in m̂i

t, with a two-sided 90%
interval (.08, .54). For the relative variance Γ of the measurement error we
don’t have a clear prior, so we experiment with various alternatives. In general,
due to the reasonably large number of observations (about 330) available for
each group, and because of further considerations discussed below, the posterior
distribution of λ is quite insensitive to the priors for r, R and Γ. We therefore
defer to Appendix D for a more in-depth discussion of the priors and posteriors
for these three parameters.12

4.3 Estimation results

To discuss the estimation results, we need first to identify a target value for
the slope λ̄, against which to assess whether our estimates indicate that the
forward-looking Phillips curves are supported by the data. However, finding an
appropriate target is here complicated by the fact that sectoral data are usually
available only at annual frequency. Virtually all the macro literature, instead,
has focused on debating target slopes at quarterly frequency.

A well-known problem with empirical estimates of the slope of the NKPC
is that, even when estimates return a positive coefficient, the implied degree
of price stickiness appears too large to be consistent with the micro evidence.
However, the the appropriate degree of microeconomic price stickiness is also
subject to considerable debate. To take all these uncertainties into considera-
tion, we then present three measures - main, conservative, very conservative -
of target values for λ.

The main target measure is constructed by assuming a monthly probabil-
ity of price adjustment equal to .2, which implies a monthly θm = .8. This
value is consistent with the median frequency of adjustment for posted prices
reported in Nakamura and Steinsson (2008). The argument for focusing on
posted prices, instead of regular prices, can be defended by recalling that our
identification scheme relies on responses to idiosyncratic shocks, which should
be associated with much more price flexibility than aggregate shocks (Boivin et
al. 2009, Kehoe and Midrigan 2015, Nakamura and Steinsson 2013, Carvalho

12In particular, the priors for r and R are obtained from gamma distributions of appropriate
monotonic transformations r̂ = r/(1 − r) and R̂ = R/(1 − R). Similarly, the prior for Γ is

derived from a uniform distribution of a transformation Γ̂.
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2006). Monthly frequencies are then cumulated geometrically to obtain an an-
nual value of θa = .812 = 0.07 (see Dennis 2006 for a discussion). In turn, these
calculations yield an annual slope λa equal to 12. In an attempt to reconcile
the low estimates for λ with the micro evidence, the literature has also empha-
sized that, in the presence of real rigidities, the estimated parameter λ̂ should
be equal to the true value λ times a constant. For instance, in her baseline
calibration of real rigidities, Sbordone (2002) obtains λ̂ = 1

3λ. To err on the
side of caution, we apply this relation to the calculations above, to yield a main
target value of λa = 4.

Following the steps above, our conservative measure is computed from θm =
.86, or a monthly probability of adjustment equal to .14, which corresponds to
the median frequency of adjustment for regular prices reported in Klenow and
Kryvtsov (2008). The implied annual slope, adjusted for the usual constant, is
λa = 1.5.

Similarly, a very conservative can derived by setting θm = .90, corresponding
to the monthly price stickiness for regular prices in Nakamura and Steinsson
(2008).13 After adjusting for the constant, we obtain an implied λa = 0.6. We
can also provide an additional derivation for our very conservative measure of the
target slope. It is clear that the geometric transformations of the monthly Calvo
parameter is subject to a large non-linearity, with the target slope rising quickly
as the time horizon increases. To reduce this non-linearity, we postulate that
the real marginal cost gap follows a monthly AR(1) process, with autoregressive
parameter equal to rm = 0.94 (corresponding to the annual ra = .5 used, in the
previous section, as mode for the prior). The monthly slope is set to λm = 0.02,
obtained from the conservative θm = 0.86. Next, we ask what would be the
λa obtained by trying to fit, at an annual frequency, the original process of

13This calibration also comes close to the counterfactual average duration of 12 months
calculated by Kehoe and Midrigan (2015).
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Figure 1: Smoothed posterior density of λ̄ for the USA. For each of the three
sector groups, estimation are carried out for the two configurations ρ = 0 and
ρ = 1 of the extrinsic persistence. Dotted lines indicate prior densities.

the Phillips curve variables.14 The answer is a fitted annual slope equal to 2.1,

14Time is measured in months. For brevity, assume that after month t the monthly real
marginal cost gap m̂t follows a deterministic AR(1) path. A standard NKPC can be written
as

πt = 12λmm̂
a
t + βEtπt+12

where m̂a
t ≡ 1

12

∑11
j=0 β

j
mm̂t+j indicates the average annual real marginal cost gap over the

year beginning in month t, and β ≡ β12
m is the annual discount. Since β is very close to 1, the

discounting in m̂a
t can in practice be disregarded. After summing the above expression over

12 consecutive months we finally have

πa
t =

12

11∑
j=0

rjm

λmm̂
a
t + βEa

t π
a
t+1
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Figure 2: Smoothed posterior density of r for the USA. For each of the three
sector groups, estimation are carried out for the two configurations ρ = 0 and
ρ = 1 of the extrinsic persistence. Dotted lines indicate prior densities.

which divided by the usual constant gives again a value around λa = .6.
We present estimations for two large economies, the US and Japan, and for a

small open economy, the UK. Posterior distributions are approximated using a

where inflation over the year beginning in t is πa
t ≡

∑11
j=0 πt+j , and annual expected inflation

is the sum of the one-year-ahead inflation expectations surveyed between months t and t+11,
namely Ea

t π
a
t+1 ≡

∑11
j=0 Et+jπt+12+j . Note that we have exploited the structure m̂a

t+j =

rjmm̂
a
t stemming from the deterministic AR(1) dynamics of m̂t. The fitted relation between

the slopes at annual and monthly frequencies is then

λa =

12
11∑
j=0

rjm

λm ≈ 107λm
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Figure 3: Smoothed posterior density of λ̄ for Japan. For each of the three
sector groups, estimation are carried out for the two configurations ρ = 0 and
ρ = 1 of the extrinsic persistence. Dotted lines indicate prior densities.

Random Walk Metropolis-Hastings algorithm with 500,000 draws.15 We begin
with a discussion of the results for the US, which have been the focus of much
of the early empirical NK literature.

Figure 1 depicts the (smoothed) posterior density of the average slope λ̄ for
the three separate sector groups. Sectoral slopes are estimated under the two
alternative configurations ρ = 0 and ρ = 1 for the extrinsic auto-correlation of
the shocks. The main takeaway from the figure is that posterior distributions
for λ̄ are overall inconsistent with our target values. In fact, for all parameter
configurations, the posterior distributions are concentrated well below our main

15We employ an adaptive algorithm for the covariance matrix of the proposal distribution.
The first 10,000 draws are discarded.
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Figure 4: Smoothed posterior density of λ̄ for the UK. For each of the three
sector groups, estimation are carried out for the two configurations ρ = 0 and
ρ = 1 of the extrinsic persistence. Dotted lines indicate prior densities.

(4) and conservative (1.5) targets. Only the very conservative target (0.6) falls
meaningfully within the posterior density for the case ρ = 1 and for the first
and third sector groups. However, even for this configuration of parameters, the
posterior of the second sector group (Durable manufacturing) is concentrated
on negative values. Negative values are also indicated for the third sector group
(Non-Durable manufacturing) under the assumption of i.i.d. shocks. Therefore,
differently than Gaĺı (1999) and Sbordone (2002), our estimations reject the
labor share-based, purely forward-looking NKPC for the US. Our conclusions
are instead in line with the literature that finds either excessive implied price
stickiness, or even negative slopes for the NKPC.

Posterior densities for the remaining model parameters are reported in Ap-
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pendix D. For brevity, we present in Figure 2 only the posteriors for r. Notice
that for the sector group 1 posterior densities track closely the respective prior.
This conclusion extends also to the posteriors of R and Γ. The explanation is
that for, ρ = 0, posterior densities of λ̄ are concentrated on values very close
to zero. It is easily seen that, for λ̄ = 0, the projection coefficients (23) of the
inflation gap onto the real marginal cost are zero, which correctly indicates that
there is no relation between inflation and real marginal costs. Hence, while the
moments conditions point with high precision to values of λ̄ close to zero, they
cannot be informative about the distribution of the other parameters.

Finally, Figures 3 and 4 report estimation results for Japan and the UK,
respectively.16 For both countries, and for all values of ρ, the slope λ̄ is very
precisely estimated to be concentrated around zero in all sector groups, well
below even our most conservative target measure.

5 Conclusions

Econometric tests of the validity of the New Keynesian Phillips Curve have
yielded conflicting findings, often at odds with the microeconomics evidence.
The likely reason is that estimates on aggregate data are subject to significant
challenges, due to the presence of omitted variables and model misspecifications.

I propose a new approach to estimation, which exploits the extensive sectoral
datasets that have become available in recent years. The new methodology
aims at leveraging the advantages of both the structural Full Information and
the single-equation Limited Information literatures. The identification strategy
is based on modeling the partial equilibrium responses to a variety of sectoral
idiosyncratic shocks. For these reasons, the methodology can be characterized
as Full Information Partial Equilibrium (FIPE).

The FIPE approach is flexible along two lines. First, it is easily extended
to alternative hybrid versions of the NKPC. Second, the theoretical moment
conditions delivered by the FIPE analysis can be employed as an input to a
variety of econometric techniques.

Since the FIPE identification is based on idiosyncratic shocks, a preliminary
step to estimation requires the purging of sectoral time series of the effects of
aggregate shocks. To this end, I provide necessary and sufficient conditions on
the assumed interaction between nominal and real rigidities that allow inflation
and marginal cost time series to be linearly separated into aggregate and id-
iosyncratic components. Standard principal analysis techniques, applied to a
panel of sectors, can then be used recover idiosyncratic time series.

As an application, I employ the FIPE methodology in a Bayesian framework
to estimate sectoral NKPCs for the US, Japan and the UK. I find that the
pure-forward looking NKPC, with the real marginal cost proxied by the labor
share, is rejected by the data.

16Batini et al. (2005) also estimate the slope of the Phillips curve for the UK economy.
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A Sectoral Phillips curves

In every time t firms in sector i that can freely change their price will all choose
the same (log) value p̄it that solves the following first order condition

Et

∞∑
s=0

θsi e
ỹt+s(i,j)+p̄t+π̄i

t,t+s−it,t+s

[
1− eµ̃

i
t+s+mni

t+s−p̄i
t−π̄i

t,t+s

]
= 0 (28)

where it,t+s and π̄i
t,t+s are, respectively, the (log) cumulative nominal interest

rate and cumulative growth of sectoral indexed prices between time t and time
t + s, so that it,t = π̄i

t,t = 0. In particular, for s ≥ 1 cumulative inflation
indexation is implicitly defined by

π̄i
t,t+1+s = π̄i

t+1 + π̄i
t+1,t+1+s (29)

with as usual π̄i
t indicating time t growth of indexed prices.

Condition (28) guarantees that the expected discounted sum of marginal
profit equals zero for any firm which freely resets its price at t. This condition
can be linearized around an appropriate non-stochastic steady state with the
property that for each sector i firms that are allowed to reset choose the same
log price p̄it as firms that are not allowed to reset. This is a consequence of
the assumption that π̄t is a reasonable indexation variable for πi

t, so that at a
non-stochastic steady state πi = π̄i. It follows that at such steady state πi

t = π̄i
t

and ỹt(i, j) = yt(i) for all j. Since ν̄ = 1, the sectoral aggregator has unit
elasticity and thus, total (log) revenues are the same across sectors and grow
at a constant aggregate value ∆Y + π. Hence, normalizing time t log revenues
Yt + Pt = 0, we have that at the steady state

ỹt+s(i, j) + p̄t + π̄i
t,t+s − it,t+s = s(∆Y + π − i) = s(∆Y − r) ≡ s log β

where i and r are, respectively, the log nominal and real steady state interest
rate. As usual we take r > ∆Y and hence β ∈ (0, 1). Finally, linearizing around
the steady state conditions mni

t+s+ µ̃
i
t+s = pt(i) and p̄

i
t+ π̄

i
t,t+s = pt(i) we obtain

Et

∞∑
s=0

(βθ)s
[
µ̃i
t+s +mni

t+s − p̄it − π̄i
t,t+s

]
= 0

or,

p̄it = (1− βθ)Et

∞∑
s=0

(βθ)s[µ̃i
t+s +mni

t+s − π̄i
t,t+s] (30)

By the law of iterated expectation and using (29) we have

p̄it = (1− βθi)[logµi + m̃t(i, j)] + βθiEt[p̄
i
t+1 − π̄i

t+1] (31)

The log inflation rate for sector s is

πi
t = θiπ̄

i
t + (1− θi)[p̄

i
t − pt−1(i)]

We can then derive the sector specific forward-looking Phillips curve (1).
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B Proof of Propositions

Proof of Proposition 1. We calculate the form of the impulse responses to ag-
gregate and idiosyncratic shock by considering the path of the real marginal cost
gap in a perfect-forecast equilibrium. Combining (4) with (6), and substituting
into (1) we obtain, after some algebra, the following second order difference
equation

m̂ri
t+1 − χ1m̂

ri
t + χ0m̂

ri
t−1 =

Km∑
k=1

ψ̂ikqkt + git (32)

for some set Km of aggregate factors {qkt} and corresponding sectoral loadings

ψ̂ik, while gi(t) is defined as

git = δi(∆ω
i
t+1 − χ0∆ω

i
t)− (∆zit+1 − χ0∆z

i
t) + (∆µi

t+1 − χ0∆µ
i
t)

The impulse responses to shocks to the aggregate factors are easily obtained by
focusing on the case git = 0. Assume that the process x̂t =

∑
Km

f̂kt solves the
equation

x̂t+1 − χ1x̂t + χ0x̂t−1 =

Km∑
k=1

qkt

for a set of Km aggregate factors f̂kt, where the factor f̂kt gives the response
to the corresponding factor qkt. Then it is easy to see that x̂it defined in (15)
solves (32) for gi(t) = 0. The extrinsic persistence of the marginal cost gap to
an aggregate structural shock, e.g. to aggregate productivity Zt, is defined as
the persistence of

∑
k qkt to such shock. In turn, the extrinsic persistence to an

idiosyncratic shock is defined as the persistence of git to the shock.
We now derive the explicit form for the impulse response of to an idiosyn-

cratic shock ε0 ≡ εis0 ιs at time zero and an initial condition m̂i
−1 = 0. The

general solution to the non-homogeneous part of the difference equation (32) is
characterized by two real roots with only one, r ∈ (0, 1), within the unit cir-
cle. Consider a particular and non explosive solution m̂p

t to (32). The general
solution to (32) is then

m̂i
t = εi0A

s
1r

t + m̂p
t (33)

where s ∈ {ω, z, µ} indicates that the constant As
1 depends on type of shock we

are considering. Notice that we can write

git+1 = ρsgit t ≥ 1

with ρs{ρω, ρz, ρµ} depending on the type of shock we are considering. The
expression above clarifies that the extrinsic persistence of an idiosyncratic shock
s equals ρs. It is easy to see that g(1) = (1 − ρs)(χ0 − ρs)ε0 and g0 = −(1 −
ρs + χ0)ε0. One can verify that for the following sequence of values m̂p

0, m̂
p
1, ...

solves (32)

m̂p
t = ε0

(1− ρs)(χ0 − ρs)

ρ2s − ρsχ1 + χ0
ρts ≡ ε0A

s
2ρ

t
s (34)

33



where we assume ρ2s − ρsχ1 + χ0 6= 0. Using the initial condition m̂−1 = 0 we
pin down the value of the constant Ais

1 in (32) as

As
1 = − χ0(χ1 − 1− χ0)

(ρ2s − ρsχ1 + χ0)(χ1 − r)

Summarizing, the solution for t ≥ 0 to time zero impulses from the three
idiosyncratic shocks is

m̂i
t =

∑
s∈{ω,z,µ}

(
As

1r
t +As

2ρ
t
s

)
εs0ιs (35)

Summing all the past impacts of the shocks for all j ≥ 0 we obtain equation
(16), where clearly

asj = As
1r

j +As
2ρ

j
s

In an appendix available from the author it is shown that

as0 ≡ As
1 +As

2 ∈ (0, 1)

This concludes the proof that Assumption 1 is sufficient to allow a linear de-
composition in of m̂ri

t in aggregate and idiosyncratic parts. Necessity can be
established with a counterexample. Consider a shock to an aggregate factor
qkt that mimics the corresponding dynamics of git to one of the idiosyncratic
shocks considered above. The impulse response of m̂ri

t would be represented by
the solution (35), with the idiosyncratic impulse εs0ιs replaced by some aggregate
impulse εk0. If Assumption 1 does not hold, then the root ri in such a solution
would differ across sectors. Hence, the impulse responses of m̂ri

t to a common
aggregate shocks would follow paths characterized by different degrees ri of non-
linear decay, which could thus not be captured by a common non-linear decay x̂t.

Proof of Corollary 1. Assume that there are only aggregate shocks. Then, by
iterating forward (1) and using (16), we obtain the inflation forecast error in
(12) due to aggregate shocks as,

et+1 =

∞∑
j=0

Km∑
k=1

λiψkiβ
j (Et[f̂kt]− f̂kt)︸ ︷︷ ︸

Factor

Hence, since both m̂ri
t and βet+1 can be expressed as a linear combination of

aggregate factors, then the formulation x̃it is obtained.
Now consider the case with idiosyncratic shocks only. Use ∆mri

t in (6) to
substitute ∆yt(i) in (4). Then, substituting ∆mri

t with its corresponding id-
iosyncratic component ∆m̂i

t − ∆µi
t , where ∆m̂i

t is obtained by differencing
(16), then we have the expression for eit+1 in (12).

Proof of Corollary 2. If we use expression (16) to iterate forward (1), we obtain,

πi
t = π̄i

t + λi
∑
s

∞∑
j=0

αs
jε

is
t−j
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where αj
s =

∑∞
τ=0 β

τasj+τ . Then, the MA(∞) form for the inflation gap is

ξit = βεiγt+1 − (1− β)

∞∑
j=0

εiγt−j − βλi
∑
s

αs
0ε

is
t+1 + λi

∑
s

∞∑
j=0

α̃s
jε

is
t−j

with α̃s
j = αs

j − βαs
j+1. The MA(∞) representation for mi

t is

mi
t =

∑
s

∞∑
j=0

ãsjε
is
t−jιs

with ãsj = asj −ρjµ for s = µ and ãsj = asj otherwise. Hence, for any given natural
number n = 0, 1, ..., we obtain

Cov(ξit,m
i
t+n) = λi

∑
s

σ2
s

∞∑
j=0

α̃s
j ã

s
j+n = λiσ

2

R ∞∑
j=0

α̃µ
j ã

µ
j+n + (1−R)

∞∑
j=0

α̃ω
j ã

ω
j+n


Cov(ξit,m

i
t−n) = λi

∑
s

σ2
s

∞∑
j=0

α̃s
j+nã

s
j = λiσ

2

R ∞∑
j=0

α̃µ
j+nã

µ
j + (1−R)

∞∑
j=0

α̃ω
j+nã

ω
j


V ar(mi

t) =
∑
s

σ2
s

∞∑
j=0

(ãsj)
2 = σ2

R ∞∑
j=0

(ãµj )
2 + (1−R)

∞∑
j=0

(ãωj )
2


with σ2 =

∑
s σ

2
s and the second equality of each of the above equation using

the fact that ρω = ρz implies aωj = azj . Recall that, for given values of β and of
the extrinsic persistences ρs, the weights asj depend only on r. It then follows

that the projection of ξit on any lead or lag of mi
t is obtained as the product of

λi and of a function b(r,R) explicitly obtained by taking the appropriate ratios
of the expressions above. Finally, starting from the MA(∞) representations of
ξit and m

i
t, corresponding MA(∞) representations for first-differenced variables

∆ξit and ∆mi
t are easily derived. Repeating the steps above one can then shows

that the required representation for the projections is again obtained.

C Moments

Define ιρ an indicator function which equals 1 if ρ = 0 and 0 if ρ = 1 and define

σ̂2 = σ2
ω + σ2

z . We express the moments in terms of R̂ = R
1−R .

We can write the process for ∆mi
t as

∆mi
t = r∆mi

t−1 +∆εit

∆εit = (ιρ + r)εiµt−1 − εiµt − ιρrε
iµ
t−2 +∆εit −

ιρr

a0
∆εit−1

∆εit = a0(∆ε
iω
t −∆εizt +∆εiµt )
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Define the following moments for the errors,

V ar(∆εit)

σ̂2
= ζ0(r, R̂) = a20 + ιρr

2 + (a0 + ιρr)
2 + [(1− a0)

2 + (ιρ + r − a0 − ιρr)
2]R̂

Cov(∆εit,∆ε
i
t−1)

σ̂2
= ζ1(r, R̂) = −

[
(a0 + ιρr)

2 + (ιρ + r − a0 − ιρr)(1− a0)R̂
]

Cov(∆εit,∆ε
i
t−2)

σ̂2
= ζ2(r, R̂) = a0ιρr

Also,

Cov(∆uit,∆ε
i
t)

λiσ̂2
= ζ̃0(r, R̂) =

1− a0
χ0κ

{
a0 −

[
χ0κ+ 1− a0 +

χ0κ(ιρ + r − a0 − ιρr)ιρ
1− a0

]
R̂

}
Cov(∆uit,∆ε

i
t−1)

λiσ̂2
= ζ̃1(r, R̂) = (1− a0)ιρR̂

Cov(∆uit,∆ε
i
t+1)

λiσ̂2
= ζ̃−1(r, R̂) =

1− a0
χ0κ

{[
1− a0 + (ιρ + r − a0 − ιρr)

(
χ0κ

1− a0
+ 1

)]
R̂− 2a0 − ιρr

}
Cov(∆uit,∆ε

i
t+2)

λiσ̂2
= ζ̃−2(r, R̂) =

1− a0
χ0κ

[
2ιρr + a0 − (ιρ + r − a0 − ιρr)R̂

]
No lagged values of ∆ξit as regressors. We can calculate the following
moments,

V ar(∆mi
t)

σ̂2
= v(r, R̂) =

ζ0(r, R̂) + 2rζ1(r, R̂) + 2r2ζ2(r, R̂)

1− r2

Cov(∆mi
t,∆m

i
t−1)

V ar(∆mi
t)

= a1(r, R̂) = r +
ζ1(r, R̂) + rζ2(r, R̂)

v(r, R̂)

Cov(∆mi
t+1,∆m

i
t−1)

V ar(∆mi
t)

= a2(r, R̂) = ra1(r, R̂) +
ζ2(r, R̂)

v(r, R̂)

Cov(∆ξit,∆m
i
t−1)

λiV ar(∆mi
t)

= b1(r, R̂) = a1(r, R̂) +
ζ̃1(r, R̂)

v(r, R̂)

Cov(∆ξit,∆m
i
t)

λiV ar(∆mi
t)

= b0(r, R̂) = 1 +
rζ̃1(r, R̂) + ζ̃0(r, R̂)

v(r, R̂)

Cov(∆ξit,∆m
i
t+1)

λiV ar(∆mi
t)

= b−1(r, R̂) = a1(r, R̂) +
r2ζ̃1(r, R̂) + rζ̃0(r, R̂) + ζ̃−1(r, R̂)

v(r, R̂)

Cov(∆ξit,∆m
i
t+2)

λiV ar(∆mi
t)

= b−2(r, R̂) = rb−1(r, R̂) +
ζ2(r, R̂) + ζ̃−2(r, R̂)

v(r, R̂)

The variance covariance matrix Σa is then given by

Σa =

 1 a1(r, R̂) a2(r, R̂)

a1(r, R̂) 1 a1(r, R̂)

a2(r, R̂) a1(r, R̂) 1
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The vector Σb is simply Σb = [b1(r, R̂) b0(r, R̂) b−1(r, R̂)].

Inclusion of lagged values of ∆ξit as regressors. As done for R̂, we
can express the moment conditions as a function of the transformed variable
Γ̂ = Γ/(1− Γ). In our empirical specification we set J = 1, i.e. only one lag of
δξit is included in Xi

t . We then compute the following quantities,

V ar(∆uit)

λ2i σ̂
2

= ζ̂0(r, R̂, Γ̂) = 2

[(
1 + ιρ

2
+

1− a0
χ0κ

)
R̂+

(1− a0)
2

χ2
0κ

2
(1 + R̂)(1 + Γ̂)

]
Cov(∆uit,∆u

i
t−1)

λ2i σ̂
2

= ζ̂1(r, R̂, Γ̂) = −
{[

(1 + ιρ)(1− a0)

χ0κ
+ ιρ

]
R̂+

(1− a0)
2

χ2
0κ

2
(1 + R̂)(1 + Γ̂)

}
The greater the value of Γ̂, the greater the contribution of “measurement er-
ror” to the variability of the regression error ∆uit and to its (negative) auto-
covariance. We then have,

V ar(∆ξit−1)

λ2iV ar(∆m
i
t)

= â0(r, R̂, Γ̂) = b0(r, R̂) +
rζ̃1(r, R̂) + ζ̃0(r, R̂) + ζ̂0(r, R̂, Γ̂)

v(r, R̂)

Cov(∆ξit,∆ξ
i
t−1)

λ2iV ar(∆m
i
t)

= b̂1(r, R̂, Γ̂) = b1(r, R̂)+
r2ζ̃1(r, R̂) + rζ̃0(r, R̂) + ζ̃−1(r, R̂) + ζ̂1(r, R̂, Γ̂)

v(r, R̂)

The covariance matrix Σa under Xi
t is

Σa =


λ2i â0(r, R̂, Γ̂) λib0(r, R̂) λib−1(r, R̂) λib−2(r, R̂)

λib0(r, R̂)
. . .

... . .
.

λib−1(r, R̂) . . . Σa . . .

λib−2(r, R̂) . .
. ...

. . .


D Prior and posteriors for r, R,Γ

This section provides more details on prior and posterior densities.

D.1 Priors

Priors are independent from each other. The prior for µ is assumed to be a
normal with mean zero and variance equal to 9. For the other parameters, we
rewrite the moments conditions in terms of auxiliary monotonic transformations,
over which we postulate our priors. In particular, for r and R we use the
auxiliary parameters r̂ = r

1−r and R̂ = R
1−R , respectively. Given our restrictions

on the original parameters, the transformed ones span the positive real line and
their prior is taken to be a gamma distribution. For r̂, the shape parameter of
the distribution is 4 and the scale is .25, while for R the scale is 2 and the shape
is again 4.
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The prior for Γ is dealt with in a slightly different way. Notice that, when the
forward-looking Phillips curve fails because λi = 0, then the covariance matrix
Σa is singular. To avoid this situation, in our estimation implementation we
write the moment conditions as functions of Γ̂ = λ2i

Γ
1−Γ) , which is the usual

transformed parameters scaled by λ. We assume a uniform prior for Γ̂ on the
range [0, 2]. In terms of interpretation, if λi → 0 and Γ̂ > 0, then Γ/(1−Γ) = ∞
and thus Γ = 1. This implies that all the variability of ∆eit is due to variation
in the normalized measurement error ∆ε̃iγt = ∆εiγ/λi, a result that requires
V ar(∆ε̃iγt ) = ∞. This naturally obtains as a consequence of V ar(εiγt ) > 0 and
λi → 0. Conversely, if λ̄ = 2, then the uniform prior implies that Γ has an
upper bound of 2/3, which means that that the normalized measurement error
can account for at most 2/3 of the variability in the inflation forecast error.
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D.2 Posteriors

The implied posterior distributions for the original parameters and r and R,
and for the transformed Γ̂ are the following.
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Figure 5: Smoothed posterior density of r for the US. Dotted lines indicate prior
densities.
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Figure 6: Smoothed posterior density of R for the US. Dotted lines indicate
prior densities.
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Figure 7: Smoothed posterior density of Γ̂ for the US. Dotted lines indicate
prior densities.
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Figure 8: Smoothed posterior density of r for Japan. Dotted lines indicate prior
densities.
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Figure 9: Smoothed posterior density of R for Japan. Dotted lines indicate
prior densities.
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Figure 10: Smoothed posterior density of Γ̂ for Japan. Dotted lines indicate
prior densities.
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Figure 11: Smoothed posterior density of r for the UK. Dotted lines indicate
prior densities.
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Figure 12: Smoothed posterior density of R for the UK. Dotted lines indicate
prior densities.
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Figure 13: Smoothed posterior density of Γ̂ for the UK. Dotted lines indicate
prior densities.
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D.3 Posteriors diagnostics

In all the estimations, the rejection rates from the proposal are 24%. The
following figures report the sample auto-correlations of the parameters draws.

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

A
C

F

sector = 1 , ρ = 0

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

A
C

F

sector = 1 , ρ = 1

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

A
C

F

sector = 2 , ρ = 0

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

A
C

F
sector = 2 , ρ = 1

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

A
C

F

sector = 3 , ρ = 0

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

A
C

F

sector = 3 , ρ = 1

Figure 14: Auto-correlation function of draws for λ̄ and the US.
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Figure 15: Auto-correlation function of draws for r and the US.
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Figure 16: Auto-correlation function of draws for R and the US.
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Figure 17: Auto-correlation function of draws for Γ̂ and the US.
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Figure 18: Auto-correlation function of draws for λ̄ and Japan.
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Figure 19: Auto-correlation function of draws for r and Japan.
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Figure 20: Auto-correlation function of draws for R and Japan.
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Figure 21: Auto-correlation function of draws for Γ̂ and Japan.
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Figure 22: Auto-correlation function of draws for λ̄ and the UK.
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Figure 23: Auto-correlation function of draws for r and the UK.
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Figure 24: Auto-correlation function of draws for R and the UK.
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Figure 25: Auto-correlation function of draws for Γ̂ and the UK.
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