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1 Introduction

The question of what level of public debt a country can afisrdentral to fiscal
policy. Vast literature is devoted to debt sustainabilitg @n array of tools has
been developed to guide assessment. A comprehensive reiprevious work on
the subject is beyond the scope of this paper and is not atéehhere. We only
mention a few studies to provide a context for the subsediisatission and
illustrate some of the difficulties that arise in the anaysi

Most of the earlier contributions have focused on ensurahgesicy, interpreted as
compliance with the government’s intertemporal budgest@mt. For example,
Blanchard et al. (1990) derived a simple sustainabilitiecion according to which
the current level of debt should not exceed the present \dlak future primary
surpluses. This condition follows directly from the dynaraguation describing
the evolution of debt and is relatively mild in the sense thanly requires the
discounted value of future debt to tend to zero. Thus, dai®dtories that increase
indefinitely as time goes to infinity are not ruled out as loaglee rate of increase
is lower than the interest-growth differential. Variantgtus solvency condition
have been widely used in the literature, e.g., EU Commig&@606) and Escolano
(2010), among others.

The solvency approach to debt sustainability has been oftecized for not being
particularly stringent as it allows for large primary defdio be run initially,
provided that future surpluses are high enough to offsehthdéowever, there is no
guarantee that the government would follow such a path; averelarge
corrections are costly both politically and economicalligere is usually a limit up
to which the government can increase taxes before collecttart to decline due
to the distortions introduced (Laffer curve effect). Sinly, expenditures cannot
be reduced below a certain threshold consistent with thémim level necessary
for the smooth functioning of government. Therefore, cdesations regarding the
feasibility of adjustment are important and they have bedlected, for example,
in IMF’s definition of debt sustainability (IMF, 2002).

For practical purposes, debt sustainability analysis (JpiSAften carried out by
comparing a country’s debt level- typically measured adia ta GDP- to some
indicative benchmark value (the so-called threshold aggth Benchmarks can be
derived in various ways. The solvency condition itself desisuch a limit if the
future flow of revenues and non-interest expenditures,dére primary balance,
is constrained. Historical episodes of debt crises may@isade some guidance.
Empirical work has been carried out, mostly based on sitgprabise ratios, to
identify the level of debt above which the likelihood of astsirises significantly



(Baldacci et al., 20113.The IMF DSA framework is also underpinned by debt
limits derived based on the signal approach.

Notwithstanding the difficulties associated with the idigcation of thresholds, the
approach has gained a lot of traction and many countriesddmgted fiscal rules
containing explicit debt benchmarks. According to IMF (8@}, about 70
countries currently have fiscal frameworks that includesaapgross public debt.
In a number of cases, these reflect rules established atphastional level such
as the Maastricht convergence criteria for the EU memb&rstéor example.
Since debt cannot be directly controlled by the governnadten debt ceilings are
complemented with rules about deficits or expenditures.

An alternative to the threshold approach is the sustaityadefinition proposed by
Arrow et al. (2004), which, applied to indebtedness, camberpreted as a
requirement for the net worth of the entity of interest to be-uecreasing. Cuerpo
et al. (2015) and IMF (2016b) apply this sustainability feamork to households
and non-financial corporations. Wyplosz (2011) discussesélation to
government debt, pointing out that the concept can be magi@bpnal by
requiring the debt to GDP ratio to be stationary, and sinagastarity is difficult to
ascertain, the ratio should follow a declining trend, allagvonly for temporary
increases.

Another challenge to the traditional DSA is uncertaintye Bolvency condition
depends on the future dynamics of primary balances, iriteates and growth rate,
none of which are known for sure. Celasun et al. (2007), mdldpon Garcia and
Rigobon (2005), address this issue by developing a metbggethich accounts
for the risks surrounding the debt dynamics. Their appraspinobabilistic and
uses fan charts to illustrate the uncertainty around theaeprojection of debt.
The proposed algorithm comprises an estimated fiscal cgafttnction, a vector
autoregression (VAR) which models the non-fiscal deterntsaf debt dynamics
(e.g., GDP growth rate, interest and exchange rates), antiteequation. In
stochastic simulations of the debt path, shocks are draswn & distribution which
has the same covariance matrix as the covariance matrie 0fAR residuals and
forecasts of the non-fiscal variables are consistent webelshocks. In a similar
vein, Cherif and Hasanov (2012) examine how macroecononaicks affect the
debt dynamics in a VAR framework with debt feedback. A défgrapproach is
taken by Barnhill and Kopits (2003) who use Value at Risk reghes to estimate
the risk-adjusted net worth of the government.

IMF’s revised DSA methodology (IMF, 2011 and 2013) addressene of the
shortcomings of earlier methods. In particular, the de@inibf sustainable public

1The method is based on minimizing the sum of type | and typertire as a way to capture the
trade-off in setting the threshold between missing cripis@les and sending wrong signals.



debt is broadened to include a number of conditions, notialt“the primary
balance needed to at least stabilize debt under both théreaaad realistic shock
scenarios is economically and politically feasible, suwedt the level of debt is
consistent with an acceptably low rollover risk and withgaeing potential

growth at a satisfactory level?’ The IMF DSA provides a set of tools to assess the
realism of macroeconomic projections, vulnerabilitigsiag from the structure of
debt, sensitivity to macro-fiscal shocks, and impact froalization of contingent
liabilities. Stochastic simulations and fan charts sh@wenges for the possible
evolution of the debt ratio are also part of the toolkit.

This paper contributes to the literature by offering anraliéve framework for
assessing debt sustainability which features the follgwimaracteristics.

First, the proposed approach explicitly takes into acctlumeffect of fiscal policy
on the output gap and makes it endogenous in the analysise scal policy can
affect demand, large fiscal contractions, especially oxtareled periods of time,
may not be feasible or desirable, including due to possiytdnesis effects,
whereby long and deep recessions destroy the economy’sgineel potential. The
IMF DSA also recommends that the potential impact of fiscgaistdhent on
growth and interest rates is factored in, but this impacbisully endogenized.

Second, the methodology provides an estimate of a debtibliceg/hich is entirely
forward-looking and depends on assumptions about fiscalpthiets, interest and
growth rates, as well as uncertainties around the futuespe{tthese variables.
Thus, the threshold is system-specific and does not rely ttmatton and/or
averaging based on past data as in other works. In addiienmethod delivers a
fiscal reaction function in the form of a linear feedback mut@ch prescribes how
the primary balance should respond to debt and the outputiydike most of the
literature where fiscal reaction functions are estimategigoally based on past
data, our rule is normative and is designed to stabilize tb@@my given the
parameters of the model and system disturbances.

Third, uncertainty is inherent in the analysis— it affetis $ystem not only through
additive shocks to the dynamics, but also through key moaiemeters.
Uncertainty is described in rather general terms, reflgdtie view that a
probabilistic representation may not be available (egflgince the focus is on
the future) or an outcome “on average” may not be desirabktead, the
decision-maker would seek policies that perform well uredeange of
possibilities, for example, when fiscal multipliers falltime interval[0.5, 1.5], or
when future interest rates could be anywhere between 3 arccémt. A similar
type of bounds can be assumed for additive shocks, eithedlmashistorical
experience or other relevant information. In this respibet,analysis is closely

2IMF (2013), p.4



related to the literature on robustness (Hansen and Sag¥f). A robust
approach can be justified based on model misspecificatioa@sion makers
seldom have complete knowledge of the underlying dynamics.

Fourth, the framework assumes an infinite time horizon. Eaother important
difference from the prevailing approaches to debt sudtéibaunder uncertainty.
Typically, DSAs fix a specific time frame and examine the delthluring this
period. For example, IMF uses a 6-year horizon, consistéhtthve availability of
World Economic Outlook projections. As argued by Wyploszi(?), finite
horizons are a major constraint since in theory the debasadtility concept
requires infinite time. In fact, the stochastic approachatdustainability works
well only over relatively short intervals. For instanceaifan chart presentation,
uncertainty around the central debt path typically becoveeg large after 5-10
periods, rendering the tool of little practical value fon¢ger horizons.

The analysis in this paper is based on Lyapunov’s stabhigpty for dynamical
systems and the related notion of set invariance. In a nilitelheapture the effect
of fiscal policy on growth, the standard debt equation is demgnted with an
equation describing the evolution of the output gap. Folymial each period the
two variables representing the state of the system — ougguagd the debt ratio—
are viewed as a point in the two-dimensional space. We deéhbeat sustainable
if it does not increase indefinitely, i.e., if it remains boled at all times. This
definition can be operationalized as follows: find a set ohfsoivith the property
that whenever the initial state falls into this set, it stdyere forever. In other
words, we are interested in all possible combinations gbuigaps and debt
levels for which it is guaranteed that debt will not embarkaorexplosive path
when subjected to shocks of a given size, also taking intowadauncertainty in
the system parameters. Such sets, if they exist, will bedatfivariant. We note
that while invariant set membership is a sufficient condifiar debt to remain
bounded, it is not necessary. Even if the initial point issale the invariant set, or
if the state is pushed out of it later by a large one-off shdackpuld still be
possible to stabilize the system. This is so because, inabe af linear dynamics
the invariant sets are also attracting, so all trajectdhasstart outside the set tend
to approach it as time tends to infinity (Khlebnikov et al.12] It cannot be
guaranteed, however, that in the process of convergence soderlying
constraints, e.g., on the size of the fiscal adjustment irgargn period, will be
satisfied.

Finally, it is important to stress that assessing the soakality of public debt is a
complex problem and the simple model presented here is nattb@ substitute a
full-fledged DSA. In particular, it cannot capture many of tjualitative elements
involved in such assessments. Still, the invariant set atetlan be useful as a
supplementary tool to more elaborate frameworks.



The rest of the paper is organized as follows. Section 2 pteske model and
describes the methodology for debt sustainability asseissrsection 3 illustrates
how the methodology is applied to specific examples, andosedtconcludes.
Appendix A contains all the technical material, includinmggfs of some of the
results used in the main text.

2 Analytical framework

To study debt sustainability when the effect of fiscal pobeygrowth is explicitly
taken into account, we consider the following system of &équa:

Yi+1 = PYt + Ol + O Wt (1)
(14ri41)
— =ty 2
i1 (1+gt+1)dt+ut+52W2,t (2)
Yo = Yo, do = db,

wherey; denotes the output gap at timedefined as; = Y;/Y," — 1, with ; andY;”
denoting actual GDP and potential GDP, respectively. Thpuwiwap is assumed
to follow a first order autoregressive process. Without afiaction, and assuming
that 0< p < 1, the output gap would eventually close, with degree ofiptensce
determined by the value @f. Although in practice the output gap is not directly
observable, the level of current economic activity rekatw its natural level is an
important consideration in economic decision making, aartbus techniques have
been developed to measure potential output and deviatiomsit.

A key assumption of the model is that the pace at which theutgigp closes can
be influenced by a change in the primary defigitThe effect of the fiscal action
on the output gap depends on the size of the fiscal multipiieAn increase in the
primary deficit relative to the baseline (here assumed tcebe) zhowever,
increases the debt leve, defined as the ratio of public debt to potential GDP.
Besides the primary deficit, the evolution of the debt ragpehds on the growth
rate of potential output; and the interest rate. Both output gap and public debt
are subject to exogenous shocks captured by the additivsver,i = 1,2 (scaled
by the parameterd,i = 1,2). No probabilistic assumptions are made about the
nature of the shocks; they are only assumed to belong to sompact set. It is

3The focus on debt relative to potential GDP is motivated Iaitimg-term nature of the analysis;
it is the capacity of the economy to generate income that iemalevant for its ability to repay the
debt, rather than the output at any particular point in tineaddition, if actual GDP is used in the
denominator, the system would become nonlinear and likehadtable.



convenient to work with ellipsoidal sets of the tyge = {w : WW 1w < 1}
given their analytical advantages and potential links atistical inference. In
particular, the shape matrix of the disturbance ellipsaid loe calibrated to an
estimated covariance matrix of sho¢k$his is a generalization of the standard
assumption in the engineering literature tiafw; || < 1.

Further to the additive uncertainty, there is a strong casafroducing
uncertainty in the model parameters. Indeed, since detdisability assessments
are forward-looking and the evolution of the debt ratio desecritically on future
interest and growth rates that are not known preciselygeaps natural to allow
these parameters to vary within a certain range, B.g.[r|,rs], & € [01,0n], Where
subscripts “I” and “h” stand for “low” and “high”. Similarlythe fiscal multiplier is
uncertain and most likely not constant, with higher valygsdally reported during
economic downturns and when interest rates are low. Whelaliglthese variables
would be modeled as functions of the state of the system (egher debt triggers
higher interest rates), such an approach is technicallyctesllenging due to the
nonlinearities involved.

In matrix notation, system (1)- (2) can be written as:

X+1 = AtX + BrU + Dw, 3)
Xp given
wWWtw < 1

For the matricegy andB; we assume tha € co{A;, A2} andB; € co{Bj, By}
(hereco denotes convex hull), with

_(p 0 -( 5 0
Al_(o (1+1h)/(1+9) )’AZ_(O <1+“)/<1+9h))

- (1)5-(3)

The autoregressive paramegers kept constant for simplicity. With these
assumptions, it is enough to consider the convex hull of tmtyA matrices, rather
than all four possible combinations of growth and interats; the intermediate
case§1+r)/(1+g) and(1+rn)/(1+9gn) can be obtained as convex

“Ellipsoidal sets can be thought of as confidence regions ohally distributed random vari-
ables. Even if a non-normal distribution is assumed for tnergerms in a statistically estimated
model, as long as the underlying set from which the shockdranen is compact, the ellipsoidal set
can be viewed as an approximation of the original set.
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combinations ofA; andA,. The proposed framework remains applicable when an
interval for p is specified as well but this would entail adding more comstsao

the ensuing optimization problem (see below). Note thahfdation (3) is more
general than (1)- (2) in that it allows for the possibilityssfocks to the output gap
equation to affect also debt and vice versa, if mariss non-diagonal.

The main question of interest

is under what combinations of growth,
interest rates, fiscal multipliers, and
shocks debt will remain sustainable.
This, according to our definition,

is equivalent to finding the largest set
of pointsE (if it exists) that is invariant
with respect to the dynamics described
by (3). Invariance is understood in the
following sense: for any initiaky € E,
the statex is guaranteed to stay i for all t > 0. In the context of debt
sustainability, the existence of such a set implies that eébnot grow

indefinitely even in the presence of uncertainties as spécibove. As in the case
of additive disturbances, we restrict the class of invarsats to ellipsoids. This
choice is motivated by two main reasons: first, any non-eroptgpact convex set
can be reasonably well approximated by an ellipsoid, andrekcellipsoidal sets
arise naturally from the application of Lyapunov’s stalgitheory to linear
systems. The link can perhaps be best understood throughptestxample in
continuous time.

Figure 1. Example of set invariance.

Consider the following system of ordinary differential etjons defined on a
domainQ c R?:

dx(t)
ot = f(x(t)).

and suppose that the system has an equilibrium at zerd(@)x=0. We want to

know under what conditions the origin is a stable equilibrin the sense that
every trajectory that starts close to zerdpgaemains so for afl > tg. A famous

result by A. Lyapunov states that if there exists a contirslyodifferentiable
functionV : Q — R, such thav/ (0) = 0,V (x) > 0,Vx € Q\{0} and

V(x) <0,Vx e Q, thenx= 0 is stable. The last condition is equivalent to requiring
that[V (x). f (x) <0, i.e., the gradient df (x) and the velocity vectof (x) do not
form an acute angle, implying that on the boundary of theestddisel/ (x) < a,

all velocity vectors point to the interior of the set when #mgle is obtuse (Figure
1). Thus, within the invariant set a point can wander arobatipnce it gets close

to the border it will move back.
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In physical systems, the Lyapunov function typically hastieaning of total
energy and the stability condition requires that total gnelecreases along every
trajectory. In an economics context, one could interpied as the value function
of an infinite-horizon linear-quadratic control problemevby the
decision-maker minimizes a loss function that penalizesatiens of the state
from equilibrium. With this interpretation, the definitiaf sustainability adopted
here is closely related to the criterion of Arrow et al. (2DR0Fhis criterion is
derived from an optimization problem where a represergagent maximizes
intertemporal utility. Sustainability is achieved whee thalue function associated
with this problem is non-decreasing with time. Since in atup we can think of
the Lyapunov function as the value function of a minimizagwoblem, it is
natural to require that the loss function be non-increasing

In a discrete-time framework, the conditiviix) < 0 is replaced with
V(%+1) —V (%) < 0. Further, it is well known that for linear systems the Lyapu
function has the form:

V(x) = % Q%

whereQ is some positive definite matrix. Note that the sublevel eE¥4x) are
ellipsoids, so there is a close link between Lyapunov fumgtiand the invariant
ellipsoids introduced earlier. Specifically, sin@es positive definite, the set

E = {x : XP~1x < 1} whereP~! = Q defines an ellipsoid. In order for this
ellipsoid to be invariant, for ang € E we needk 1 € E as well.

If the matrixQ (or equivalentlyP) were known, we would only need to verify
whether the current state falls inside theBgff it does, then we can ascertain that
the debt trajectories will remain bounded even in case dizagaon of the worst
combination of parameters and shocks, as long as they amshie specified
limits. All that it takes to stabilize the system is to adjtist primary deficit in
accordance with a linear rule which reacts to the output galae debt ratio, i.e.,
to follow the rulew; = Kx;, whereK in this case is a (X 2) matrix. The problem,
however, is that the matri§Q is not known in advance and there can be many such
matrices or none. In the latter case, the problem is notldegsmplying that debt
may not be sustainable, and in the former case, we need aamite choose
among the possible options. It appears reasonable to aithddargest invariant
set since typically policy-makers and markets are inteckst the highest debt

ratio that can be stabilized and eventually reduced. Thoataral criterion is to
seek the invariant ellipsoid with the largest volume. Sitieevolume of an

ellipsoid is proportional to the determinant of its shapérirathis leads to a
constrained maximization problem of the following kind:

logdetP — max 4)
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subject to .
P—(1-1)"IDWD (AP+B;Y)
( (AP+B;Y) P )20’ ®)
P PC
(& 20 )20 ©
P> 0. (7)

Problem (4)-(7) is not standard in the sense that the varafdhterest is not a
scalar or vector but a matrix, and this matrix must possesaingroperties,
notably to be symmetric and positive definite, and to saasligitional constraints
arising from the nature of the problem. Such are constréi)t) which
represent linear matric inequalities or LMIs (see Boyd gti#194).

The first LMI ensures that the ellipsoidal set defined by thepstmatrixP—1 is
invariant (see Appendix A). The second LMI is necessary bseeaf economic
considerations; it arises from the definition of the outpat.gClearly, neither
actual, nor potential GDP can be negative, so as a minimumewe to impose the
requiremeny > —1. More generally, it may be desirable to constrain the size o
the output gap to some valygay, i.€., to havd|y: || < ymaxfor all t. To incorporate
this condition (which has to be symmetric in order to be ablese LMI
techniques), it is convenient to introduce an auxiliaryatgpn of the form

z =Cx,

wherez is a vector that depends linearly on the stqaf@nd to establish a more
general result based on the constrdint < znax (see Proposition 2 in Appendix
A). The constraint related to the output gap definition isecsd case of inequality
(6) with znax= 1 andC being a(2 x 2) matrix with an entry of 1 in the (1,1)
position and zeroes elsewhere.

In the above probleny, is an auxiliary matrix which is related to matrik
appearing in the feedback law ands a free parameter taking values(h 1). °

In order for problem (4)-(7) to have a solution, the LMI caastts must be
feasible. Even for simple problems, feasibility is ofteffidult to establish
explicitly, so numerical methods are used. While a com@etdytical
characterization of feasibility in our case is challengasgwell, it can be shown
5fW11
1-71

SIn fact the parameter is related to the spectral radius of the matix BK, whereK =Y P!
so thatd 2., < T < 1, whereAmax s the largest eigenvalue #f-+ BK (see Nazin et al., 2007).

that if

> Ymax 1-€., When the shock on the output gap equation is large
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relative to the maximum admissible output gap, LMI (6) is featsible and the
problem does not admit a solution (Appendix A).

In summary, the invariant set approach to debt sustaimgbsiduces the problem
of stabilizing debt and output in the presence of uncegdmthat of finding a
matrix P with certain properties, as described above. The existeiwach a
matrix ensures that the debt ratio will eventually conveegel moreover, if at any
point in time the state of the system (represented by the owtibn of debt level
and output gap) falls within the ellipsoidal set determibgdP, all future states
will remain within this set, as long as the shocks do not eddbe specified
bounds. If in a given period there is a large one-off shockttilees the state
outside the invariant set, the system would still be stadilie; however, the
required adjustment will likely be larger, and it will takenger to move to the
equilibrium. On the other hand, if no such matrix existsnttiee system cannot be
stabilized and the debt ratio would likely grow indefinitefyn important feature
of the approach is that whenever debt is sustainable it gesva fiscal rule — a
linear function of the state variables which guarantedslgtation even if the
worst admissible combination of shocks occurs.

Below we illustrate how this analytical framework can bedusedetermine the
stability regions for specific values of the parameterslwve®. The numerical
solutions have been obtained using CVX, a package for gpegidnd solving
convex programs (Grant and Boyd, 2008 and 2013) and the §duaee been
generated with the aid of the Ellipsoidal Toolbox by A. Kuasriski and P. Varaiya
(2007).

3 Application

As an application of invariant set methods to debt sustditalbve consider three
distinct scenarios depending on the interest-growth miffeal. Scenario (1)
assumes that future growth rates are consistently higherittierest rates, that is
g > rh; Scenario (2) makes the opposite assumption, namelytbag, and

finally, Scenario (3) considers an intermediate case wijerer; < gn < rp. In all
simulations, we assume that the fiscal multiptietakes values in the interval [0.3,
1] and the autoregressive paramegeas equal to 0.7, values consistent with the
typical findings in the literatur® The shape matrix of the disturbance ellipsoid
W1 is diagonal with entries.01? and 0022 which correspond to persistent

The fiscal multiplier is assumed positive, implying thatacrease in the primary deficit relative
to the baseline has a positive effect on the output gap. Westlocamsider the case of “expansionary
fiscal consolidations” which is of lesser interest as thered tension between reducing debt and
supporting economic activity.
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shocks to the output gap of up to 1 percent of potential GDR/g@ar and to debt of
up to 2 percent of potential GDP per year. These values asypillustrative and
do not draw on any particular empirical work. Further, thenweD is the identity
matrix and for simplicity we fix the free parametet= 0.95. In principle, we
cannot optimize with respect tobut we can do a grid search to find the value that
maximizes the objective. The results presented below, hexyvare not very
sensitive to the choice of this parameter. In all simulatjdhe initial condition is
set at(—0.02;0.6), that is, the economy starts with a 2 percent negative ogigut
and 60 percent debt to potential GDP ratio. For the grappiesentation of the
state trajectory, we také& = 0.5A; + 0.5A,, B = 0.5B; + 0.5B; and the
disturbances are generated randomly from uniform diginbs on[—0.01,0.01]

for wy and[—0.02,0.02] for w,, respectively.

Largest Invariant Set Primary Deficit Path
T T T

Debt ratio
Primary deficit (Constrained Control)

. . . . - . . . .
-05 0 05 1 0 20 40 60 80 100
Output gap Time

Figure2: Scenario 1. Invariant set for rj < rh, < g < gh.

3.1 Scenario 1: Growth rates higher than interest rates

In this scenario, we assume that future interest rates asgstently lower than
growth ratesr| < rp < g < gh. Specificallyr € [0.03,0.045 andg € [0.05,0.06].
The maximal invariant set and the simulated primary defaih@re shown in
Figure 2. As one would expect, under these favorable intaresgrowth
assumptions, debt sustainability is not an issue; inigditadtan be 8 times larger
than potential GDP, and the state would still remain in tivaiant set. Although
Scenario 1 may correspond to the economic realities thay mw@amtries currently
face in an environment of historically low interest ratéss unlikely that this
situation will be sustained in the long run. Therefore, frampolicy point of view,
the case where the growth rate is always higher than theesiteate is perhaps the
least interesting one.
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3.2 Scenario 2: Interest rates higher than growth rates

Scenario 2 assumes thgt< gp < r| < rp. In this scenarior, € [0.05,0.07,

g € [0.03,0.04] and it corresponds to a dynamically efficient economy. As one
would expect, maintaining debt sustainability is more l&raging in this case.
Figure 3 confirms this; the invariance bounds for debt areertiwan twice as
narrow as in the previous scenario. Moreover, the impligdsachent of the
primary balance in the first period of 12 percent of poter@BIP is unrealistically
large. Itis underpinned by the high (in absolute terms)fo@ment on debt in the
fiscal reaction function, which for this example has the férm —0.64y — 0.22d.
For comparison, the coefficient on debt in fiscal reactiorcfioms typically found
in the empirical literature ranges between 0.02 and 0.1@&i(Beal., 2016).

Largest Invariant Set Primary Deficit Path

Debt ratio
Primary deficit (Constrained Control)

. . . . . . . . . ) . . . . . . . . .
1 08 06 04 -02 0 02 04 06 08 1 0 10 2 30 40 50 60 70 8 90 100
Output gap Time

Figure 3: Scenario 2a: Invariant set for gy < gh <r; <rp.

Given that adjustment of the magnitude suggested by the Inwdet feasible in
most cases, introducing an additional constraint to limtsize of the primary
balance change in each period seems warrafii®@f:< Umax. ’ This gives rise to

another LMI: 5y
(Vg )0 ®

The proof that this LMI is equivalent to the constraint on tleatrol variable
follows the same steps as Proposition 2 in Annex A and canuedf;n Nazin et

al. (2007), for example. In line with the literature (see INB16a), we choose the
maximum adjustment to be 4 percent of potential GDP per yetira subsequent
simulations.

’In this case the control variable is one-dimensional, satmstraint is simply an interval cen-
tered at zero. Symmetry is important for the applicabilityhee method.
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As Figure 4 suggests, when the constraint on the primaryitisfiaken into
account, the invariant set shrinks further, so that théintondition is no longer
inside it. Still, eventually the state moves toward equilin (reflecting the
attracting property of the invariant ellipsoid), but odtsiof the set the constraint
on control is violated (right panel). Once the point gets ithte invariant set all
constraints are satisfied. The calculated feedback rukzpbes zero response to
the output gap and deficit reduction of 0.08 percent of p@EGDP for each
percentage point of the debt ratio. If we relax slightly tbestraint on the primary
balance from 4 percent to 5 percent, the initial point falt® ithe stability region
and all constraints are satisfied. A similar result is ol#diri we reduce the shock
to the debt equation from 2 percent to below 1 percent of pate@DP. If, on the
other hand, the size of the admissible permanent shocksildelb(i.e., matrix
W1 has diagonal elementsi? and 0042), then an invariant set no longer exists
and debt cannot be stabilized.

Largest Invariant Set Primary Deficit Path

0.6

04t

\

ed Control)

Debt ratio
1

Primary deficit (Constrain

. . . . _ . . . .
-0.5 0 0.5 1 0 20 40 60 80 100
Output gap Time

Figure4: Scenario 2b: Invariant set for g < gn <y < rp, constrained control.

As an alternative to imposing an explicit limit on the impeovent of the primary
balance, one can opt for a tighter constraint on the outputgiech that at no point
in time actual GDP is allowed to deviate from potential by entiran a specified
amount. Figure 5 presents the case when the maximum outpis gat at 15
percent. Under this assumption, the invariant set becoma#ies and the required
adjustment to move the state to the stability region is ageiiy large in the initial
period (the fiscal reaction function5= —0.61x; — 0.30x2), SO constraining the
output gap does not appear to be a viable alternative togihe size of
adjustment.
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Largest Invariant Set Primary Deficit Path
06 o 0.05 T T

Debt ratio

-0.1

Primary deficit (Constrained Control)

-0.15

4 . . . . . n . ~02 . . . .
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0 20 40 60 80 100
Output gap Time

Figure5: Scenario 2c: Invariant set for g < gn < < rp, constrained output.

3.3 Scenario 3: Intermediate case

Finally, Scenario 3 considers the intermediate, and parhagst realistic case
where in some periods interest rates are higher than pat&iiP growth rates
and in others they are loweg (< 1} < gn < rp). Nominal growth under this
scenario is assumed to be between 4 and 6 percent and intgessbetween 5 and
7 percent. The results are shown on Figure 6. Again, the eu@rg in the initial
period is quite substantial, which calls for imposing coaisits on the change in
the primary balance. The maximal invariant set under therdgoe constraint is
presented on Figure 7.

Largest Invariant Set Primary Deficit Path
T T

0.04f

0.02f

0
-0.02 1

-0.04

-0.06

Debt ratio

-0.08

-0.1

Primary deficit (Constrained Control)

-0.121

. . . . . . . .
-1 -05 0 05 1 0 20 40 60 80 100
Output gap Time

Figure 6: Scenario 3a: Invariant set for gy <r < gp < rp.
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Largest Invariant Set Primary Deficit Path
08 T T

Debt ratio
Primary deficit (Constrained Control)

. . . . - . . . .
-05 0 05 1 0 20 40 60 80 100
Output gap Time

Figure 7: Scenario 3b: Invariant set for g < rj < gn < rp, constrained control.

4 Conclusion

This paper discusses how invariant set techniques can deasé debt
sustainability assessments. The method provides an éstoha debt threshold
and a fiscal reaction function which is guaranteed to stabdebt taking into
account bounded parameter uncertainty and exogenousssHodke case of
linear systems, there is a close link between invariargsids and Lyapunov
functions, which in turn can be related to the debt sustalibabriterion proposed
by Arrow et al. (2004).

Application of the invariant set approach leads to an oation problem which
involves a system of linear matrix inequalities. This pesblcan be efficiently
solved using numerical methods and the paper providesaasamples which
differ in terms of key model parameters. Simulations sugtes debt
sustainability issues arise in scenarios where futureesteates are consistently
higher than potential growth rates and the size of the pgrbatance adjustment is
constrained. In those scenarios, the resulting invarigistare relatively tight; debt
can still be stabilized (if shocks are not large) but at th&t ob violating the
constraints on adjustment.

Although the analysis in the paper is restricted to a simyséesn of two
equations, the method has a rather general applicabtlitgn be used for an
arbitrary linear system, e.g., an estimated VAR. Besidés slestainability,
invariant sets could be useful in addressing problems bflstation in other areas,
such as monetary policy. Deriving analytical criteria floe &xistence of invariant
sets, however, remains a challenge.
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Appendix A Invariant sets, Lyapunov functionsand
LMIs

Proposition 1 below demonstrates that the existence ofvamiant ellipsoid for
system (3) is equivalent to establishing the feasibilita skt of LMIs.
Specifically, we show how LMIs (5)- (7) can be derived basegurely geometric
considerations. The proofs are standard and closely fahevexisting literature,
e.g., Nazin et al. (2007), Luca et al. (2009), Khlebnikovle{2011), but we
provide all the details since our model is slightly differ&om the models
considered in the control literature. As noted earlier,difierence pertains to the
bounds for the additive disturbances; the standard assomiptthat|w|| <1,
whereas we assume thatc #{ as defined in the main text. All results are
formulated for constant matricédsandB not to overload notation but the
respective LMIs should be satisfied for &, Bj), j = 1,2. The following lemmas
will be used in the proofs:

Lemmal (Schur complement) The linear matrix inequality (LMI)
Q S
( s r)ZO
where Q= Q,R= R is equivalent to

()R>0,Q-SRIS >0,

(i) Q >0,R-SQ !S>0,
where the sigr> used for matrices means positive semidefiniteness.

Lemma 2 (S-procedure; Polyak, 1998) Given quadratic form&gx, X Ajx, X Apx
in R" and numbersrg, a1, a», suppose for > 3, there exist numbens, u, and
vector x such thatu; A; + A2 > 0 and %A1xg < a1, X,A2X% < a2. Then,

X Agx < ag for each x such that Ax < a1, XAox < ao
if and only if there exist numberg > 0, 72 > 0 such that

Ap < T1A1 + oAz and ag > 1101 + To0>.
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Lemma 3 (S-procedure; Boyd et al., 1994) Lei,E., Fp be quadratic functions in
EeRY
Fi(§) =&Ti&+2u& +v

where T=T’. Consider the following condition oryF., Fy:
Fo(§) > Oforall £ :F(&) >0,i=1,...,p. (9)
If there exist numbers; > 0, ..., Tp > 0 such that for allé
p

Fo(€) ~ 3 R () 20 (10)

then (9) holds. Inequality (10) can be written also as

< To Uo ) P ( T u )
/ - Tj /
uy Vo i; u v

Proposition 1 Consider the discrete-time system (3). Assume that the control law
takes the state feedback form=1Kx;, where K is a constant matrix of appropriate
dimension. Then, the existence of an invariant ellipsoid B : X P~1x < 1} for

(3) is equivalent to the feasibility of the following LMI:

< P—(1-1)"DWD (AP+BY) ) -0 (11)

(AP+BY)’ P
where Y=KP and0 < 7 < 1.

Proof. Invariance implies that starting from any point in the Betdt timet, i.e.,
anyx such thatP~1x < 1, all future states will remain i&; in particular,x 1
will lie in the set. This leads to the following inequalities (settPigt = Q):

xQx <1

X€+1QX{+1 <1
wWlw <1

By replacingx;;1 with the right-hand side of (3), the second inequality is
equivalent to

[((A+BK)x + Dwt]'Q[(A+ BK)x + Dwt] < 1
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% [(A+ BK)'Q(A+ BK)|x + X (A+ BK)' QDw
+WD'Q(A+BK)x +w,D'QDw <0

or

() (Ao * o) ()=

In addition, the inequalities
xQx <1
wWlw <1

can be represented as
/
X QO X
() (8 0) ()=
!/
X 0 0 X
(o) (Cow ) ()=

Using the S-procedure (Lemma 2), witlg = a1 = a» = 1 we obtain

(A+BKYQA+BK) (A+BKYQD\ _ ( uQ 0 0o o0
D'Q(A+ BK) D'QD =L o o)"lo wt)

which is equivalent to

(A+BK)'Q(A+BK) —1:Q (A+BK)'QD 1 _ 0
D'Q(A+BK) DQD—1 W1 ) =+

together with
1+ <L
Takingt, = 1— 17 and setting; = 1, yields

(A+BK)Q(A+BK) - 1Q (A+BK)'QD
( D'Q(A+ BK) D'QD— (1— 1)W1 ) <0. (12)

The above inequality is not linear K, so we need a few additional steps to arrive
at an LMI. One approach would be to follow Nazin et al. (2007). From the Schur
complement formula, (12) is equivalent to
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TQ— (A+BK)'Q(A+BK) — (A+BK)'QD((1- 1)W1 -D'QD) 'D'Q(A+BK) >0

Q> (A+BK)'[Q+QD((1— 1)W1 -D'QD)D'Q|(A+BK)

Using a variant of the Woodbury matrix identity
(L—MNM)t=L1-L""MMLM-NDH ML withL1=Q,M=D
andN~1 = tw—1, we obtain

Q> (A+BK)(Q - (1-1)"'DWD) 1A+ BK)

Applying the Schur formula again yields:

TQ (A+BK) B
( (A+BK) Q!'—(1-1)"bwD ) B

[ TPt (A+BK)’ -0
~\ (A+BK) P—(1-1)"'DWD ) =
which by Schur’s formula (version (ii)) is equivalent to
1 1
P— EDWD/ — ?(A+ BK)P(A+BK) >0
SetY := KP. Then,
1 1
P— 1—TDWD/ - (A BK)PP!P(A+BK) =
1 1 _1 ’
=P- EDWU— —[(AP+BY)PH(AP+BY)] > 0
and finally
P—(1-1)"'DWD (AP+BY) >0
(AP+BY) TP -
[

Remark 1 Itis possible to obtain LMI (11) based on the Lyapunov function
V(x) = X Qx and requiring that the stability condition

V(%11) =V (%) = %1Q%+1—%Qx% <0

holds for all ¥ outside the boundaries of the invariant ellipsoid, i.e., for allsuch
that V(x) > 1.
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Indeed, the stability condition can be rewritten as

() (*de’ ™ g™ (4) =

Similar to Proposition 1, the constraing®x > 1 andw/W 1w < 1 can be stated

) (2 9) (%)=
) (3 ) (3) ==

Apply Lemma 2 withag = 0, a3 = —1 andaz = 1. Then, the existence @f > 0,
7o > 0 such that

(A+BK)Q(A+BK)~Q (A+BK)QD ) _( ~1Q 0
D'Q(A+BK) D'QD =\ o0 o))"
0 0
< 0 T2W71 )’
L—-171<0

implies the first inequality. Take, = 11 = 1 — 1 and substitute above. Inequality
(12) obtains. The rest follows as in Proposition 1.

The next proposition establishes that LMI (6) correspondblé¢ constraint on the
system statéz|| < znax

Proposition 2 In addition to (11), the LMI

ensures that the constraifik || < znaxis satisfied.

Proof. The constraint
HZtH < Zmax
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is equivalent to
121 = Cx||* = XC'Cx < Znax

The above should hold true for aryin the invariant ellipsoid, i.e., ang such that
xP~1x < 1. Applying the S-procedure (Lemma 3), if there exists 0 such that

cc o0 P10
(0 szaX)_( 0 T)SO

1~ -1
(CC TP 0 T)SO (14)

0 szax_

then the inequalit){C'Cx < z3,,, will hold. For the above matrix to be negative
semi-definite we neezf,,,— T < 0, SO we can assunz,,,= T and then (14)
becomes equivalent to

or

2P t-cc>o.
Pre- and post-multiplying bi? and dividing byz,,, > 0 yields:

1
P— ——PCCP>0

Zmax

which is equivalent (by Lemma 1) to
P PC
> 0.
(& )
|

Although powerful numerical methods have been develope@termine the
feasibility of LMIs, it is of interest whether analyticalitria can be found for
relatively simple systems such as the one considered her¢hé&debt
sustainability problem the relevant LMIs are (5) and (6){aiso (8) if a constraint
on the control is imposed).

One possible approach to establishing infeasibility isdamn a generalization of
Sylvester’s criterion: for a real symmetric matrix to be jpge semi-definite, it is
necessary and sufficient that all its principal minors ame-negative. Applied to
(6) with C as defined in the main text, the criterion requires checkiwegptincipal

( a )
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P11 P12 pun O
P12 P22 P12 O

P11 P12 yrznax 0
0 0 0 VYaiu

This is straightforward, so we skip the calculations of taeaus determinants and
only state the resulting inequalities:

y%’]axz pll
P11P22 > p%z

P22 > P11

Also, from the condition that the elements of the main diadsf (5) should be
non-negative, it follows (witD being a diagonal matrix with elemendg that:

&2w1p
>
P> 7

2
S 05 W22

P22 2 =

2 : ,
Therefore, if 11W1Tl > Ymax the LMl is not feasible.

Calculating all principal minors of (5), however, is a daogttask. Instead, one
can resort to results from control theory pertaining to oaliability and
stabilization. If a system is controllable, then it is alsabslizable, which implies
the existence of a matriR as above. This in turn requires that the matix BK is
stable. Therefore, we need to see under what conditionaniisx is stable. In
our example,
aiit+biky  biko
ArBR= ( boki a2+ hboky ) '

We want the eigenvalues of this matrix to be between -1 andhé.characteristic
polynomial of the above matrix is the quadratic equation:

A% — X (ag1+ agp+ biky + boko) + ag1800 + apobiky + ag1boks = 0,

so we have an explicit formula for the eigenvalues. It remémnestablish for
which values ok; andk; the roots of the above equation will fall into the desired
range.
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