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1 Introduction

The question of what level of public debt a country can affordis central to fiscal
policy. Vast literature is devoted to debt sustainability and an array of tools has
been developed to guide assessment. A comprehensive reviewof previous work on
the subject is beyond the scope of this paper and is not attempted here. We only
mention a few studies to provide a context for the subsequentdiscussion and
illustrate some of the difficulties that arise in the analysis.

Most of the earlier contributions have focused on ensuring solvency, interpreted as
compliance with the government’s intertemporal budget constraint. For example,
Blanchard et al. (1990) derived a simple sustainability criterion according to which
the current level of debt should not exceed the present valueof all future primary
surpluses. This condition follows directly from the dynamic equation describing
the evolution of debt and is relatively mild in the sense thatit only requires the
discounted value of future debt to tend to zero. Thus, debt trajectories that increase
indefinitely as time goes to infinity are not ruled out as long as the rate of increase
is lower than the interest-growth differential. Variants of this solvency condition
have been widely used in the literature, e.g., EU Commission(2006) and Escolano
(2010), among others.

The solvency approach to debt sustainability has been oftencriticized for not being
particularly stringent as it allows for large primary deficits to be run initially,
provided that future surpluses are high enough to offset them. However, there is no
guarantee that the government would follow such a path; moreover, large
corrections are costly both politically and economically.There is usually a limit up
to which the government can increase taxes before collections start to decline due
to the distortions introduced (Laffer curve effect). Similarly, expenditures cannot
be reduced below a certain threshold consistent with the minimum level necessary
for the smooth functioning of government. Therefore, considerations regarding the
feasibility of adjustment are important and they have been reflected, for example,
in IMF’s definition of debt sustainability (IMF, 2002).

For practical purposes, debt sustainability analysis (DSA) is often carried out by
comparing a country’s debt level– typically measured as a ratio to GDP– to some
indicative benchmark value (the so-called threshold approach). Benchmarks can be
derived in various ways. The solvency condition itself defines such a limit if the
future flow of revenues and non-interest expenditures, hence the primary balance,
is constrained. Historical episodes of debt crises may alsoprovide some guidance.
Empirical work has been carried out, mostly based on signal-to-noise ratios, to
identify the level of debt above which the likelihood of a crisis rises significantly
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(Baldacci et al., 2011).1 The IMF DSA framework is also underpinned by debt
limits derived based on the signal approach.

Notwithstanding the difficulties associated with the identification of thresholds, the
approach has gained a lot of traction and many countries haveadopted fiscal rules
containing explicit debt benchmarks. According to IMF (2016a), about 70
countries currently have fiscal frameworks that include caps on gross public debt.
In a number of cases, these reflect rules established at the supranational level such
as the Maastricht convergence criteria for the EU member states, for example.
Since debt cannot be directly controlled by the government,often debt ceilings are
complemented with rules about deficits or expenditures.

An alternative to the threshold approach is the sustainability definition proposed by
Arrow et al. (2004), which, applied to indebtedness, can be interpreted as a
requirement for the net worth of the entity of interest to be non-decreasing. Cuerpo
et al. (2015) and IMF (2016b) apply this sustainability framework to households
and non-financial corporations. Wyplosz (2011) discusses it in relation to
government debt, pointing out that the concept can be made operational by
requiring the debt to GDP ratio to be stationary, and since stationarity is difficult to
ascertain, the ratio should follow a declining trend, allowing only for temporary
increases.

Another challenge to the traditional DSA is uncertainty. The solvency condition
depends on the future dynamics of primary balances, interest rates and growth rate,
none of which are known for sure. Celasun et al. (2007), building upon Garcia and
Rigobon (2005), address this issue by developing a methodology which accounts
for the risks surrounding the debt dynamics. Their approachis probabilistic and
uses fan charts to illustrate the uncertainty around the central projection of debt.
The proposed algorithm comprises an estimated fiscal reaction function, a vector
autoregression (VAR) which models the non-fiscal determinants of debt dynamics
(e.g., GDP growth rate, interest and exchange rates), and a debt equation. In
stochastic simulations of the debt path, shocks are drawn from a distribution which
has the same covariance matrix as the covariance matrix of the VAR residuals and
forecasts of the non-fiscal variables are consistent with these shocks. In a similar
vein, Cherif and Hasanov (2012) examine how macroeconomic shocks affect the
debt dynamics in a VAR framework with debt feedback. A different approach is
taken by Barnhill and Kopits (2003) who use Value at Risk techniques to estimate
the risk-adjusted net worth of the government.

IMF’s revised DSA methodology (IMF, 2011 and 2013) addresses some of the
shortcomings of earlier methods. In particular, the definition of sustainable public

1The method is based on minimizing the sum of type I and type II errors as a way to capture the
trade-off in setting the threshold between missing crisis episodes and sending wrong signals.
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debt is broadened to include a number of conditions, notablythat “the primary
balance needed to at least stabilize debt under both the baseline and realistic shock
scenarios is economically and politically feasible, such that the level of debt is
consistent with an acceptably low rollover risk and with preserving potential
growth at a satisfactory level.”2 The IMF DSA provides a set of tools to assess the
realism of macroeconomic projections, vulnerabilities arising from the structure of
debt, sensitivity to macro-fiscal shocks, and impact from realization of contingent
liabilities. Stochastic simulations and fan charts showing ranges for the possible
evolution of the debt ratio are also part of the toolkit.

This paper contributes to the literature by offering an alternative framework for
assessing debt sustainability which features the following characteristics.

First, the proposed approach explicitly takes into accountthe effect of fiscal policy
on the output gap and makes it endogenous in the analysis. Since fiscal policy can
affect demand, large fiscal contractions, especially over extended periods of time,
may not be feasible or desirable, including due to possible hysteresis effects,
whereby long and deep recessions destroy the economy’s productive potential. The
IMF DSA also recommends that the potential impact of fiscal adjustment on
growth and interest rates is factored in, but this impact is not fully endogenized.

Second, the methodology provides an estimate of a debt threshold which is entirely
forward-looking and depends on assumptions about fiscal multipliers, interest and
growth rates, as well as uncertainties around the future paths of these variables.
Thus, the threshold is system-specific and does not rely on estimation and/or
averaging based on past data as in other works. In addition, the method delivers a
fiscal reaction function in the form of a linear feedback rulewhich prescribes how
the primary balance should respond to debt and the output gap. Unlike most of the
literature where fiscal reaction functions are estimated empirically based on past
data, our rule is normative and is designed to stabilize the economy given the
parameters of the model and system disturbances.

Third, uncertainty is inherent in the analysis– it affects the system not only through
additive shocks to the dynamics, but also through key model parameters.
Uncertainty is described in rather general terms, reflecting the view that a
probabilistic representation may not be available (especially since the focus is on
the future) or an outcome “on average” may not be desirable. Instead, the
decision-maker would seek policies that perform well undera range of
possibilities, for example, when fiscal multipliers fall inthe interval[0.5,1.5], or
when future interest rates could be anywhere between 3 and 7 percent. A similar
type of bounds can be assumed for additive shocks, either based on historical
experience or other relevant information. In this respect,the analysis is closely

2IMF (2013), p.4
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related to the literature on robustness (Hansen and Sargent, 2008). A robust
approach can be justified based on model misspecification as decision makers
seldom have complete knowledge of the underlying dynamics.

Fourth, the framework assumes an infinite time horizon. Thisis another important
difference from the prevailing approaches to debt sustainability under uncertainty.
Typically, DSAs fix a specific time frame and examine the debt path during this
period. For example, IMF uses a 6-year horizon, consistent with the availability of
World Economic Outlook projections. As argued by Wyplosz (2011), finite
horizons are a major constraint since in theory the debt sustainability concept
requires infinite time. In fact, the stochastic approach to debt sustainability works
well only over relatively short intervals. For instance, ina fan chart presentation,
uncertainty around the central debt path typically becomesvery large after 5-10
periods, rendering the tool of little practical value for longer horizons.

The analysis in this paper is based on Lyapunov’s stability theory for dynamical
systems and the related notion of set invariance. In a nutshell, to capture the effect
of fiscal policy on growth, the standard debt equation is complemented with an
equation describing the evolution of the output gap. Formally, in each period the
two variables representing the state of the system – output gap and the debt ratio–
are viewed as a point in the two-dimensional space. We define debt as sustainable
if it does not increase indefinitely, i.e., if it remains bounded at all times. This
definition can be operationalized as follows: find a set of points with the property
that whenever the initial state falls into this set, it staysthere forever. In other
words, we are interested in all possible combinations of output gaps and debt
levels for which it is guaranteed that debt will not embark onan explosive path
when subjected to shocks of a given size, also taking into account uncertainty in
the system parameters. Such sets, if they exist, will be called invariant. We note
that while invariant set membership is a sufficient condition for debt to remain
bounded, it is not necessary. Even if the initial point is outside the invariant set, or
if the state is pushed out of it later by a large one-off shock,it would still be
possible to stabilize the system. This is so because, in the case of linear dynamics
the invariant sets are also attracting, so all trajectoriesthat start outside the set tend
to approach it as time tends to infinity (Khlebnikov et al., 2011). It cannot be
guaranteed, however, that in the process of convergence some underlying
constraints, e.g., on the size of the fiscal adjustment in anygiven period, will be
satisfied.

Finally, it is important to stress that assessing the sustainability of public debt is a
complex problem and the simple model presented here is not meant to substitute a
full-fledged DSA. In particular, it cannot capture many of the qualitative elements
involved in such assessments. Still, the invariant set method can be useful as a
supplementary tool to more elaborate frameworks.
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The rest of the paper is organized as follows. Section 2 presents the model and
describes the methodology for debt sustainability assessment; section 3 illustrates
how the methodology is applied to specific examples, and section 4 concludes.
Appendix A contains all the technical material, including proofs of some of the
results used in the main text.

2 Analytical framework

To study debt sustainability when the effect of fiscal policyon growth is explicitly
taken into account, we consider the following system of equations:

yt+1 = ρyt +αtut +δ1w1,t (1)

dt+1 =
(1+ rt+1)

(1+gt+1)
dt +ut +δ2w2,t (2)

y0 = ȳ0, d0 = d̄0,

whereyt denotes the output gap at timet, defined asyt =Yt/Y
p

t −1, withYt andYp
t

denoting actual GDP and potential GDP, respectively. The output gap is assumed
to follow a first order autoregressive process. Without a fiscal action, and assuming
that 0< ρ < 1, the output gap would eventually close, with degree of persistence
determined by the value ofρ . Although in practice the output gap is not directly
observable, the level of current economic activity relative to its natural level is an
important consideration in economic decision making, and various techniques have
been developed to measure potential output and deviations from it.

A key assumption of the model is that the pace at which the output gap closes can
be influenced by a change in the primary deficitut . The effect of the fiscal action
on the output gap depends on the size of the fiscal multiplierαt . An increase in the
primary deficit relative to the baseline (here assumed to be zero), however,
increases the debt leveldt, defined as the ratio of public debt to potential GDP.3

Besides the primary deficit, the evolution of the debt ratio depends on the growth
rate of potential outputgt and the interest ratert . Both output gap and public debt
are subject to exogenous shocks captured by the additive termswi,t , i = 1,2 (scaled
by the parametersδi , i = 1,2). No probabilistic assumptions are made about the
nature of the shocks; they are only assumed to belong to some compact set. It is

3The focus on debt relative to potential GDP is motivated by the long-term nature of the analysis;
it is the capacity of the economy to generate income that is more relevant for its ability to repay the
debt, rather than the output at any particular point in time.In addition, if actual GDP is used in the
denominator, the system would become nonlinear and likely intractable.
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convenient to work with ellipsoidal sets of the typeWt = {wt : w′
tW

−1
t wt ≤ 1}

given their analytical advantages and potential links to statistical inference. In
particular, the shape matrix of the disturbance ellipsoid can be calibrated to an
estimated covariance matrix of shocks.4 This is a generalization of the standard
assumption in the engineering literature that‖w′

twt‖ ≤ 1.

Further to the additive uncertainty, there is a strong case for introducing
uncertainty in the model parameters. Indeed, since debt sustainability assessments
are forward-looking and the evolution of the debt ratio depends critically on future
interest and growth rates that are not known precisely, it appears natural to allow
these parameters to vary within a certain range, e.g.,rt ∈ [r l , rh], gt ∈ [gl ,gh], where
subscripts “l” and “h” stand for “low” and “high”. Similarly, the fiscal multiplier is
uncertain and most likely not constant, with higher values typically reported during
economic downturns and when interest rates are low. While ideally these variables
would be modeled as functions of the state of the system (e.g., higher debt triggers
higher interest rates), such an approach is technically very challenging due to the
nonlinearities involved.

In matrix notation, system (1)- (2) can be written as:

xt+1 = Atxt +Btut +Dwt , (3)

x0 given

w′
tW

−1
t wt ≤ 1

For the matricesAt andBt we assume thatAt ∈ co{A1,A2} andBt ∈ co{B1,B2}
(hereco denotes convex hull), with

A1 =

(

ρ 0
0 (1+ rh)/(1+gl)

)

, A2 =

(

ρ 0
0 (1+ r l)/(1+gh)

)

B1 =

(

αl

1

)

, B2 =

(

αh

1

)

.

The autoregressive parameterρ is kept constant for simplicity. With these
assumptions, it is enough to consider the convex hull of onlytwo A matrices, rather
than all four possible combinations of growth and interest rates; the intermediate
cases(1+ r l)/(1+gl) and(1+ rh)/(1+gh) can be obtained as convex

4Ellipsoidal sets can be thought of as confidence regions of normally distributed random vari-
ables. Even if a non-normal distribution is assumed for the error terms in a statistically estimated
model, as long as the underlying set from which the shocks aredrawn is compact, the ellipsoidal set
can be viewed as an approximation of the original set.
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combinations ofA1 andA2. The proposed framework remains applicable when an
interval forρ is specified as well but this would entail adding more constraints to
the ensuing optimization problem (see below). Note that formulation (3) is more
general than (1)- (2) in that it allows for the possibility ofshocks to the output gap
equation to affect also debt and vice versa, if matrixD is non-diagonal.

grad V(x)

f(x)

x(t)

Level set: V(x)=a

Figure 1: Example of set invariance.

The main question of interest
is under what combinations of growth,
interest rates, fiscal multipliers, and
shocks debt will remain sustainable.
This, according to our definition,
is equivalent to finding the largest set
of pointsE (if it exists) that is invariant
with respect to the dynamics described
by (3). Invariance is understood in the
following sense: for any initialx0 ∈ E,
the statext is guaranteed to stay inE for all t > 0. In the context of debt
sustainability, the existence of such a set implies that debt will not grow
indefinitely even in the presence of uncertainties as specified above. As in the case
of additive disturbances, we restrict the class of invariant sets to ellipsoids. This
choice is motivated by two main reasons: first, any non-emptycompact convex set
can be reasonably well approximated by an ellipsoid, and second, ellipsoidal sets
arise naturally from the application of Lyapunov’s stability theory to linear
systems. The link can perhaps be best understood through a simple example in
continuous time.

Consider the following system of ordinary differential equations defined on a
domainΩ ⊂ R2:

dx(t)
dt

= f (x(t)).

and suppose that the system has an equilibrium at zero, i.e.,f(0)=0. We want to
know under what conditions the origin is a stable equilibrium in the sense that
every trajectory that starts close to zero att0 remains so for allt > t0. A famous
result by A. Lyapunov states that if there exists a continuously differentiable
functionV : Ω → R, such thatV(0) = 0,V(x)> 0,∀x∈ Ω\{0} and
V̇(x)≤ 0,∀x∈ Ω, thenx= 0 is stable. The last condition is equivalent to requiring
that∇V(x). f (x)≤ 0, i.e., the gradient ofV(x) and the velocity vectorf (x) do not
form an acute angle, implying that on the boundary of the sublevel setV(x)≤ a,
all velocity vectors point to the interior of the set when theangle is obtuse (Figure
1). Thus, within the invariant set a point can wander around,but once it gets close
to the border it will move back.
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In physical systems, the Lyapunov function typically has the meaning of total
energy and the stability condition requires that total energy decreases along every
trajectory. In an economics context, one could interpretV(x) as the value function
of an infinite-horizon linear-quadratic control problem whereby the
decision-maker minimizes a loss function that penalizes deviations of the state
from equilibrium. With this interpretation, the definitionof sustainability adopted
here is closely related to the criterion of Arrow et al. (2004). This criterion is
derived from an optimization problem where a representative agent maximizes
intertemporal utility. Sustainability is achieved when the value function associated
with this problem is non-decreasing with time. Since in our setup we can think of
the Lyapunov function as the value function of a minimization problem, it is
natural to require that the loss function be non-increasing.

In a discrete-time framework, the conditionV̇(x)≤ 0 is replaced with
V(xt+1)−V(xt)≤ 0. Further, it is well known that for linear systems the Lyapunov
function has the form:

V(x) = x′tQxt

whereQ is some positive definite matrix. Note that the sublevel setsof V(x) are
ellipsoids, so there is a close link between Lyapunov functions and the invariant
ellipsoids introduced earlier. Specifically, sinceQ is positive definite, the set
E = {xt : x′tP

−1xt ≤ 1} whereP−1 = Q defines an ellipsoid. In order for this
ellipsoid to be invariant, for anyxt ∈ E we needxt+1 ∈ E as well.

If the matrixQ (or equivalentlyP) were known, we would only need to verify
whether the current state falls inside the setE; if it does, then we can ascertain that
the debt trajectories will remain bounded even in case of realization of the worst
combination of parameters and shocks, as long as they are within the specified
limits. All that it takes to stabilize the system is to adjustthe primary deficit in
accordance with a linear rule which reacts to the output gap and the debt ratio, i.e.,
to follow the ruleut = Kxt , whereK in this case is a (1×2) matrix. The problem,
however, is that the matrixQ is not known in advance and there can be many such
matrices or none. In the latter case, the problem is not feasible, implying that debt
may not be sustainable, and in the former case, we need a criterion to choose
among the possible options. It appears reasonable to aim forthe largest invariant
set since typically policy-makers and markets are interested in the highest debt
ratio that can be stabilized and eventually reduced. Thus, anatural criterion is to
seek the invariant ellipsoid with the largest volume. Sincethe volume of an
ellipsoid is proportional to the determinant of its shape matrix, this leads to a
constrained maximization problem of the following kind:

logdetP→ max (4)
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subject to
(

P− (1− τ)−1DWD′ (AiP+B jY)
(AiP+B jY)′ τP

)

≥ 0, (5)

(

P PC′

CP z2maxI

)

≥ 0, (6)

P> 0. (7)

Problem (4)-(7) is not standard in the sense that the variable of interest is not a
scalar or vector but a matrix, and this matrix must possess certain properties,
notably to be symmetric and positive definite, and to satisfyadditional constraints
arising from the nature of the problem. Such are constraints(5)-(6) which
represent linear matric inequalities or LMIs (see Boyd et al., 1994).

The first LMI ensures that the ellipsoidal set defined by the shape matrixP−1 is
invariant (see Appendix A). The second LMI is necessary because of economic
considerations; it arises from the definition of the output gap. Clearly, neither
actual, nor potential GDP can be negative, so as a minimum we have to impose the
requirementy≥−1. More generally, it may be desirable to constrain the size of
the output gap to some valueymax, i.e., to have‖yt‖ ≤ ymax for all t. To incorporate
this condition (which has to be symmetric in order to be able to use LMI
techniques), it is convenient to introduce an auxiliary equation of the form

zt =Cxt ,

wherezt is a vector that depends linearly on the statext , and to establish a more
general result based on the constraint‖zt‖ ≤ zmax (see Proposition 2 in Appendix
A). The constraint related to the output gap definition is a special case of inequality
(6) with zmax= 1 andC being a(2×2) matrix with an entry of 1 in the (1,1)
position and zeroes elsewhere.

In the above problem,Y is an auxiliary matrix which is related to matrixK
appearing in the feedback law andτ is a free parameter taking values in(0,1). 5

In order for problem (4)-(7) to have a solution, the LMI constraints must be
feasible. Even for simple problems, feasibility is often difficult to establish
explicitly, so numerical methods are used. While a completeanalytical
characterization of feasibility in our case is challengingas well, it can be shown

that if
δ 2

1 w11

1− τ
> y2

max, i.e., when the shock on the output gap equation is large

5In fact the parameterτ is related to the spectral radius of the matrixA+BK, whereK =YP−1

so thatλ 2
max< τ < 1, whereλmax is the largest eigenvalue ofA+BK (see Nazin et al., 2007).
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relative to the maximum admissible output gap, LMI (6) is notfeasible and the
problem does not admit a solution (Appendix A).

In summary, the invariant set approach to debt sustainability reduces the problem
of stabilizing debt and output in the presence of uncertainty to that of finding a
matrixP with certain properties, as described above. The existenceof such a
matrix ensures that the debt ratio will eventually converge, and moreover, if at any
point in time the state of the system (represented by the combination of debt level
and output gap) falls within the ellipsoidal set determinedby P, all future states
will remain within this set, as long as the shocks do not exceed the specified
bounds. If in a given period there is a large one-off shock that takes the state
outside the invariant set, the system would still be stabilizable; however, the
required adjustment will likely be larger, and it will take longer to move to the
equilibrium. On the other hand, if no such matrix exists, then the system cannot be
stabilized and the debt ratio would likely grow indefinitely. An important feature
of the approach is that whenever debt is sustainable it provides a fiscal rule – a
linear function of the state variables which guarantees stabilization even if the
worst admissible combination of shocks occurs.

Below we illustrate how this analytical framework can be used to determine the
stability regions for specific values of the parameters involved. The numerical
solutions have been obtained using CVX, a package for specifying and solving
convex programs (Grant and Boyd, 2008 and 2013) and the figures have been
generated with the aid of the Ellipsoidal Toolbox by A. Kurzhanski and P. Varaiya
(2007).

3 Application

As an application of invariant set methods to debt sustainability, we consider three
distinct scenarios depending on the interest-growth differential. Scenario (1)
assumes that future growth rates are consistently higher than interest rates, that is
gl > rh; Scenario (2) makes the opposite assumption, namely thatr l > gh and
finally, Scenario (3) considers an intermediate case wheregl < r l < gh < rh. In all
simulations, we assume that the fiscal multiplierα takes values in the interval [0.3,
1] and the autoregressive parameterρ is equal to 0.7, values consistent with the
typical findings in the literature.6 The shape matrix of the disturbance ellipsoid
W−1 is diagonal with entries 0.012 and 0.022 which correspond to persistent

6The fiscal multiplier is assumed positive, implying that an increase in the primary deficit relative
to the baseline has a positive effect on the output gap. We do not consider the case of “expansionary
fiscal consolidations” which is of lesser interest as there is no tension between reducing debt and
supporting economic activity.
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shocks to the output gap of up to 1 percent of potential GDP peryear and to debt of
up to 2 percent of potential GDP per year. These values are purely illustrative and
do not draw on any particular empirical work. Further, the matrix D is the identity
matrix and for simplicity we fix the free parameterτ = 0.95. In principle, we
cannot optimize with respect toτ but we can do a grid search to find the value that
maximizes the objective. The results presented below, however, are not very
sensitive to the choice of this parameter. In all simulations, the initial condition is
set at(−0.02;0.6), that is, the economy starts with a 2 percent negative outputgap
and 60 percent debt to potential GDP ratio. For the graphicalpresentation of the
state trajectory, we takeA= 0.5A1+0.5A2, B= 0.5B1+0.5B2 and the
disturbances are generated randomly from uniform distributions on[−0.01,0.01]
for w1 and[−0.02,0.02] for w2, respectively.
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Figure 2: Scenario 1: Invariant set for r l < rh < gl < gh.

3.1 Scenario 1: Growth rates higher than interest rates

In this scenario, we assume that future interest rates are consistently lower than
growth rates:r l < rh < gl < gh. Specifically,r ∈ [0.03,0.045] andg∈ [0.05,0.06].
The maximal invariant set and the simulated primary deficit path are shown in
Figure 2. As one would expect, under these favorable interest and growth
assumptions, debt sustainability is not an issue; initial debt can be 8 times larger
than potential GDP, and the state would still remain in the invariant set. Although
Scenario 1 may correspond to the economic realities that many countries currently
face in an environment of historically low interest rates, it is unlikely that this
situation will be sustained in the long run. Therefore, froma policy point of view,
the case where the growth rate is always higher than the interest rate is perhaps the
least interesting one.
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3.2 Scenario 2: Interest rates higher than growth rates

Scenario 2 assumes thatgl < gh < r l < rh. In this scenario,r ∈ [0.05,0.07],
g∈ [0.03,0.04] and it corresponds to a dynamically efficient economy. As one
would expect, maintaining debt sustainability is more challenging in this case.
Figure 3 confirms this; the invariance bounds for debt are more than twice as
narrow as in the previous scenario. Moreover, the implied adjustment of the
primary balance in the first period of 12 percent of potentialGDP is unrealistically
large. It is underpinned by the high (in absolute terms) coefficient on debt in the
fiscal reaction function, which for this example has the formF =−0.64y−0.22d.
For comparison, the coefficient on debt in fiscal reaction functions typically found
in the empirical literature ranges between 0.02 and 0.10 (Berti et al., 2016).
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Figure 3: Scenario 2a: Invariant set for gl < gh < r l < rh.

Given that adjustment of the magnitude suggested by the model is not feasible in
most cases, introducing an additional constraint to limit the size of the primary
balance change in each period seems warranted:‖ut‖ ≤ umax. 7 This gives rise to
another LMI:

(

P Y′

Y u2
maxI

)

≥ 0. (8)

The proof that this LMI is equivalent to the constraint on thecontrol variable
follows the same steps as Proposition 2 in Annex A and can be found in Nazin et
al. (2007), for example. In line with the literature (see IMF, 2016a), we choose the
maximum adjustment to be 4 percent of potential GDP per year in the subsequent
simulations.

7In this case the control variable is one-dimensional, so theconstraint is simply an interval cen-
tered at zero. Symmetry is important for the applicability of the method.
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As Figure 4 suggests, when the constraint on the primary deficit is taken into
account, the invariant set shrinks further, so that the initial condition is no longer
inside it. Still, eventually the state moves toward equilibrium (reflecting the
attracting property of the invariant ellipsoid), but outside of the set the constraint
on control is violated (right panel). Once the point gets into the invariant set all
constraints are satisfied. The calculated feedback rule prescribes zero response to
the output gap and deficit reduction of 0.08 percent of potential GDP for each
percentage point of the debt ratio. If we relax slightly the constraint on the primary
balance from 4 percent to 5 percent, the initial point falls into the stability region
and all constraints are satisfied. A similar result is obtained if we reduce the shock
to the debt equation from 2 percent to below 1 percent of potential GDP. If, on the
other hand, the size of the admissible permanent shocks is doubled (i.e., matrix
W−1 has diagonal elements 0.022 and 0.042), then an invariant set no longer exists
and debt cannot be stabilized.
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Figure 4: Scenario 2b: Invariant set for gl < gh < r l < rh, constrained control.

As an alternative to imposing an explicit limit on the improvement of the primary
balance, one can opt for a tighter constraint on the output gap, such that at no point
in time actual GDP is allowed to deviate from potential by more than a specified
amount. Figure 5 presents the case when the maximum output gap is set at 15
percent. Under this assumption, the invariant set becomes smaller and the required
adjustment to move the state to the stability region is againvery large in the initial
period (the fiscal reaction function isF =−0.61x1−0.30x2), so constraining the
output gap does not appear to be a viable alternative to limiting the size of
adjustment.



17

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Output gap

D
e

b
t 

ra
tio

Largest Invariant Set

0 20 40 60 80 100
−0.2

−0.15

−0.1

−0.05

0

0.05

Time

P
ri
m

a
ry

 d
e

fic
it 

(C
o

n
st

ra
in

e
d

 C
o

n
tr

o
l)

Primary Deficit Path 

Figure 5: Scenario 2c: Invariant set for gl < gh < r l < rh, constrained output.

3.3 Scenario 3: Intermediate case

Finally, Scenario 3 considers the intermediate, and perhaps most realistic case
where in some periods interest rates are higher than potential GDP growth rates
and in others they are lower (gl < r l < gh < rh). Nominal growth under this
scenario is assumed to be between 4 and 6 percent and interestrates between 5 and
7 percent. The results are shown on Figure 6. Again, the adjustment in the initial
period is quite substantial, which calls for imposing constraints on the change in
the primary balance. The maximal invariant set under the 4 percent constraint is
presented on Figure 7.
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Figure 6: Scenario 3a: Invariant set for gl < r l < gh < rh.
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Figure 7: Scenario 3b: Invariant set for gl < r l < gh < rh, constrained control.

4 Conclusion

This paper discusses how invariant set techniques can be used to aid debt
sustainability assessments. The method provides an estimate of a debt threshold
and a fiscal reaction function which is guaranteed to stabilize debt taking into
account bounded parameter uncertainty and exogenous shocks. In the case of
linear systems, there is a close link between invariant ellipsoids and Lyapunov
functions, which in turn can be related to the debt sustainability criterion proposed
by Arrow et al. (2004).

Application of the invariant set approach leads to an optimization problem which
involves a system of linear matrix inequalities. This problem can be efficiently
solved using numerical methods and the paper provides several examples which
differ in terms of key model parameters. Simulations suggest that debt
sustainability issues arise in scenarios where future interest rates are consistently
higher than potential growth rates and the size of the primary balance adjustment is
constrained. In those scenarios, the resulting invariant sets are relatively tight; debt
can still be stabilized (if shocks are not large) but at the cost of violating the
constraints on adjustment.

Although the analysis in the paper is restricted to a simple system of two
equations, the method has a rather general applicability. It can be used for an
arbitrary linear system, e.g., an estimated VAR. Besides debt sustainability,
invariant sets could be useful in addressing problems of stabilization in other areas,
such as monetary policy. Deriving analytical criteria for the existence of invariant
sets, however, remains a challenge.
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Appendix A Invariant sets, Lyapunov functions and
LMIs

Proposition 1 below demonstrates that the existence of an invariant ellipsoid for
system (3) is equivalent to establishing the feasibility ofa set of LMIs.
Specifically, we show how LMIs (5)- (7) can be derived based onpurely geometric
considerations. The proofs are standard and closely followthe existing literature,
e.g., Nazin et al. (2007), Luca et al. (2009), Khlebnikov et al. (2011), but we
provide all the details since our model is slightly different from the models
considered in the control literature. As noted earlier, thedifference pertains to the
bounds for the additive disturbances; the standard assumption is that‖wt‖ ≤ 1,
whereas we assume thatwt ∈ Wt as defined in the main text. All results are
formulated for constant matricesA andB not to overload notation but the
respective LMIs should be satisfied for all(Ai,B j), j = 1,2. The following lemmas
will be used in the proofs:

Lemma 1 (Schur complement) The linear matrix inequality (LMI)
(

Q S
S′ R

)

≥ 0

where Q= Q′,R= R′ is equivalent to

(i) R≥ 0 , Q−SR−1S′ ≥ 0,

(ii) Q ≥ 0 , R−S′Q−1S≥ 0,

where the sign≥ used for matrices means positive semidefiniteness.

Lemma 2 (S-procedure; Polyak, 1998) Given quadratic forms x′A0x, x′A1x, x′A2x
in Rn and numbersα0,α1,α2, suppose for n≥ 3, there exist numbersµ1,µ2 and
vector x0 such thatµ1A1+µ2A2 > 0 and x′0A1x0 < α1, x′0A2x0 < α2. Then,

x′A0x≤ α0 for each x such that x′A1x≤ α1,x
′A2x≤ α2

if and only if there exist numbersτ1 ≥ 0, τ2 ≥ 0 such that

A0 ≤ τ1A1+ τ2A2 andα0 ≥ τ1α1+ τ2α2.
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Lemma 3 (S-procedure; Boyd et al., 1994) Let F0, ...,Fp be quadratic functions in
ξ ∈ Rn:

Fi(ξ ) = ξ ′Tiξ +2u′iξ +vi

where T= T ′. Consider the following condition on F0, ..,Fp:

F0(ξ )≥ 0 for all ξ : Fi(ξ )≥ 0, i = 1, ..., p. (9)

If there exist numbersτ1 ≥ 0, ...,τp ≥ 0 such that for allξ

F0(ξ )−
p

∑
i=1

τiFi(ξ )≥ 0 (10)

then (9) holds. Inequality (10) can be written also as

(

T0 u0

u′0 v0

)

−
p

∑
i=1

τi

(

Ti ui

u′i vi

)

Proposition 1 Consider the discrete-time system (3). Assume that the control law
takes the state feedback form ut = Kxt , where K is a constant matrix of appropriate
dimension. Then, the existence of an invariant ellipsoid E= {x : x′P−1x≤ 1} for
(3) is equivalent to the feasibility of the following LMI:

(

P− (1− τ)−1DWD′ (AP+BY)
(AP+BY)′ τP

)

≥ 0, (11)

where Y= KP and0< τ < 1.

Proof. Invariance implies that starting from any point in the setE at timet, i.e.,
anyxt such thatx′tP

−1xt ≤ 1, all future states will remain inE; in particular,xt+1
will lie in the set. This leads to the following inequalities (settingP−1 = Q):

x′tQxt ≤ 1

x′t+1Qxt+1 ≤ 1

w′
tW

−1wt ≤ 1

By replacingxt+1 with the right-hand side of (3), the second inequality is
equivalent to

[(A+BK)xt +Dwt ]
′Q[(A+BK)xt +Dwt ]≤ 1
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x′t [(A+BK)′Q(A+BK)]xt +x′t(A+BK)′QDwt

+w′
tD

′Q(A+BK)xt +w′
tD

′QDwt ≤ 0

or

(

xt

wt

)′(
(A+BK)′Q(A+BK) (A+BK)′QD

D′Q(A+BK) D′QD

)(

xt

wt

)

≤ 1.

In addition, the inequalities
x′tQxt ≤ 1

w′
tW

−1wt ≤ 1

can be represented as

(

xt

wt

)′(
Q 0
0 0

)(

xt

wt

)

≤ 1,

(

xt

wt

)′( 0 0
0 W−1

)(

xt

wt

)

≤ 1.

Using the S-procedure (Lemma 2), withα0 = α1 = α2 = 1 we obtain
(

(A+BK)′Q(A+BK) (A+BK)′QD
D′Q(A+BK) D′QD

)

≤

(

τ1Q 0
0 0

)

+

(

0 0
0 τ2W−1

)

.

which is equivalent to
(

(A+BK)′Q(A+BK)− τ1Q (A+BK)′QD
D′Q(A+BK) D′QD− τ2W−1

)

≤ 0.

together with
τ1+ τ2 ≤ 1.

Takingτ2 = 1− τ1 and settingτ1 = τ, yields

(

(A+BK)′Q(A+BK)− τQ (A+BK)′QD
D′Q(A+BK) D′QD− (1− τ)W−1

)

≤ 0. (12)

The above inequality is not linear inK, so we need a few additional steps to arrive
at an LMI. One approach would be to follow Nazin et al. (2007). From the Schur
complement formula, (12) is equivalent to
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τQ−(A+BK)′Q(A+BK)−(A+BK)′QD((1−τ)W−1−D′QD)−1D′Q(A+BK)≥0

τQ≥ (A+BK)′[Q+QD((1− τ)W−1−D′QD)−1D′Q](A+BK)

Using a variant of the Woodbury matrix identity
(L−MNM′)−1 = L−1−L−1M(M′L−1M−N−1)−1M′L−1 with L−1 = Q, M = D
andN−1 = τW−1, we obtain

τQ≥ (A+BK)′(Q−1− (1− τ)−1DWD′)−1(A+BK)

Applying the Schur formula again yields:
(

τQ (A+BK)′

(A+BK) Q−1− (1− τ)−1DWD′

)

=

=

(

τP−1 (A+BK)′

(A+BK) P− (1− τ)−1DWD′

)

≥ 0

which by Schur’s formula (version (ii)) is equivalent to

P−
1

1− τ
DWD′−

1
τ
(A+BK)P(A+BK)′ ≥ 0

SetY := KP. Then,

P−
1

1− τ
DWD′−

1
τ
(A+BK)PP−1P(A+BK)′ =

= P−
1

1− τ
DWD′−

1
τ
[(AP+BY)P−1(AP+BY)′]≥ 0

and finally
(

P− (1− τ)−1DWD′ (AP+BY)
(AP+BY)′ τP

)

≥ 0.

�

Remark 1 It is possible to obtain LMI (11) based on the Lyapunov function
V(x) = x′Qx and requiring that the stability condition

V(xt+1)−V(xt) = x′t+1Qxt+1−x′tQxt ≤ 0

holds for all xt outside the boundaries of the invariant ellipsoid, i.e., for all xt , such
that V(xt)≥ 1.
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Indeed, the stability condition can be rewritten as

(

xt

wt

)′(
(A+BK)′Q(A+BK)−Q (A+BK)′QD

D′Q(A+BK) D′QD

)(

xt

wt

)

≤ 0.

Similar to Proposition 1, the constraintsx′tQxt ≥ 1 andw′
tW

−1wt ≤ 1 can be stated
as

(

xt

wt

)′(
−Q 0
0 0

)(

xt

wt

)

≤−1,

(

xt

wt

)′( 0 0
0 W−1

)(

xt

wt

)

≤ 1.

Apply Lemma 2 withα0 = 0, α1 =−1 andα2 = 1. Then, the existence ofτ1 ≥ 0,
τ2 ≥ 0 such that

(

(A+BK)′Q(A+BK)−Q (A+BK)′QD
D′Q(A+BK) D′QD

)

≤

(

−τ1Q 0
0 0

)

+

(

0 0
0 τ2W−1

)

,

τ2− τ1 ≤ 0

implies the first inequality. Takeτ2 = τ1 = 1− τ and substitute above. Inequality
(12) obtains. The rest follows as in Proposition 1.

The next proposition establishes that LMI (6) corresponds to the constraint on the
system state‖zt‖ ≤ zmax.

Proposition 2 In addition to (11), the LMI
(

P PC′

CP z2maxI

)

≥ 0. (13)

ensures that the constraint‖zt‖ ≤ zmax is satisfied.

Proof. The constraint
‖zt‖ ≤ zmax
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is equivalent to
‖zt‖

2 = ‖Cxt‖
2 = x′tC

′Cxt ≤ z2
max

The above should hold true for anyxt in the invariant ellipsoid, i.e., anyxt such that
x′tP

−1xt ≤ 1. Applying the S-procedure (Lemma 3), if there existsτ ≥ 0 such that

(

C′C 0
0 z2

max

)

−

(

τP−1 0
0 τ

)

≤ 0

or
(

C′C− τP−1 0
0 z2

max− τ

)

≤ 0 (14)

then the inequalityx′tC
′Cxt ≤ z2

max will hold. For the above matrix to be negative
semi-definite we needz2

max− τ ≤ 0, so we can assumez2
max= τ and then (14)

becomes equivalent to
z2
maxP

−1−C′C≥ 0.

Pre- and post-multiplying byP and dividing byz2
max> 0 yields:

P−
1

z2
max

PC′CP≥ 0

which is equivalent (by Lemma 1) to
(

P PC′

CP z2maxI

)

≥ 0.

�

Although powerful numerical methods have been developed todetermine the
feasibility of LMIs, it is of interest whether analytical criteria can be found for
relatively simple systems such as the one considered here. For the debt
sustainability problem the relevant LMIs are (5) and (6) (and also (8) if a constraint
on the control is imposed).

One possible approach to establishing infeasibility is based on a generalization of
Sylvester’s criterion: for a real symmetric matrix to be positive semi-definite, it is
necessary and sufficient that all its principal minors are non-negative. Applied to
(6) withC as defined in the main text, the criterion requires checking the principal
minors of the matrix

(

P PC′

CP z2maxI

)

=
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







p11 p12 p11 0
p12 p22 p12 0
p11 p12 y2

max 0
0 0 0 y2

max









.

This is straightforward, so we skip the calculations of the various determinants and
only state the resulting inequalities:

y2
max≥ p11

p11p22 ≥ p2
12

p22 ≥ p11

Also, from the condition that the elements of the main diagonals of (5) should be
non-negative, it follows (withD being a diagonal matrix with elementsδi) that:

p11 ≥
δ 2

1 w11

1− τ

p22 ≥
δ 2

2 w22

1− τ

Therefore, if
δ 2

1 w11

1− τ
≥ y2

max, the LMI is not feasible.

Calculating all principal minors of (5), however, is a daunting task. Instead, one
can resort to results from control theory pertaining to controllability and
stabilization. If a system is controllable, then it is also stabilizable, which implies
the existence of a matrixP as above. This in turn requires that the matrixA+BK is
stable. Therefore, we need to see under what conditions thismatrix is stable. In
our example,

A+BK =

(

a11+b1k1 b1k2

b2k1 a22+b2k2

)

.

We want the eigenvalues of this matrix to be between -1 and 1. The characteristic
polynomial of the above matrix is the quadratic equation:

λ 2−λ (a11+a22+b1k1+b2k2)+a11a22+a22b1k1+a11b2k2 = 0,

so we have an explicit formula for the eigenvalues. It remains to establish for
which values ofk1 andk2 the roots of the above equation will fall into the desired
range.
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