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Annex 1.SF.1.  

A1. Metals and Minerals  

The special feature mentions the following metals:  

Aluminum (Al), chromium (Cr), copper (Cu), cobalt (Co), graphite, lead (Pb), lithium (Li), 
manganese (Mn), molybdenum (Mo), nickel (Ni), platinum group metals (PGM), rare earth 
elements (REE) silicon (Si), silver (Ag), vanadium (V), zinc (Zn) and the mineral: graphite (C).   

Rare earth elements (REE) and platinum group metals are beyond the scope of our present 
analysis. These metals are quite heterogeneous. REE refer to 17 metals and PGM to 6 metals. 
Some REE are important for wind turbines and electric vehicles, while some PGM are relevant 
for hydrogen. The energy transition is expected to have a modest contribution to their demand 
growth, especially for REE. 

We do not consider graphite or vanadium as one of the four representative metals, because 
their consumption is expected to increase significantly, albeit from a much lower base than the 
one for lithium and cobalt. For aluminum, while important, there are no comparable estimates 
available from the IEA for their usage in the energy transition.  

A2. Methodology for Effects of Metal Price Shocks on Exporters and Importers 

To evaluate the effects of metal price shocks on countries’ GDP and government revenues, we 
estimate a panel VAR model with each country’s real GDP growth, its government balance-to-
GDP ratio, current account-to-GDP ratio, the Commodity Research Bureau’s real metal price 
index (year-on-year growth rate), and with world GDP growth and real oil prices (year-on-year 
growth rate) as additional control variables. To reduce multicollinearity, oil prices and metal 
prices were orthogonalized vis-à-vis world GDP growth prior to the VAR estimation (although 
the results were very similar without such filtering), as metals and oil prices tend to correlate 
with world GDP (as a proxy for the global business cycle). 

We use generalized impulse responses following Pesaran and Shin (1998), to estimate the 
effects of a 1 standard deviation shock to real metal prices (which amounts to about 15 
percentage points) on GDP growth and the government balance-to-GDP ratio. Doing so gives 
an orthogonal set of innovations that do not depend on the VAR ordering. Figure 1.SF.7 shows 
the differences of the impulse responses for the 15 largest metals exporters and the 15 largest 
metals importers in 2020.  

Data are from the IMF WEO and cover the period 1960-2020 (annual data). The 15 largest 
metals exporters (in trade value, from UN Comtrade statistics, consistent with the extended list 
listed in A1) included in the sample are Australia, Brazil, Chile, Peru, South Africa, Canada, 
Mexico, United States, Ukraine, Guinea, Sweden, Kazakhstan, Mongolia, Indonesia, and Russian 
Federation". The 15 largest metals importers in the sample are China, Japan, Korea, Germany, 
Taiwan POC, Spain, United Kingdom, France, Finland, Netherlands, Austria, Vietnam, Bulgaria, 
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Italy, Malaysia. In another iteration, the group of importers also included Poland, Egypt, Czech 
Republic, Bahrain, and Slovak Republic.  

A3. Methodology for Long-term Demand, Supply and Price Projections 

We set up separate VAR models for each metal. Each reduced form model includes three 
endogenous variables 𝑦 𝛥𝑌 ,𝛥𝑄 , log 𝑃 ′, namely the percentage change of global real 
GDP 𝛥𝑌 , the percentage change of global production of the respective metal 𝛥𝑄 , and the 
log of the real price of the respective metal 𝑃 . We estimate 

𝑦  𝐴 𝑦 ⋯  𝐴 𝑦  Π∗𝐷  𝑢  1  

where 𝐴  are the reduced-form VAR coefficients and 𝑢  the reduced-form forecast errors. These 
errors have no economic interpretation. The matrix of deterministic terms 𝐷  consists of a 
constant and dummies for the years around the world wars. For copper and nickel, we add a 
linear trend to the regression. The analysis is performed at annual frequencies. The reduced-
form VAR can be expressed in a structural form given by  

𝐵 𝑦  𝐵 𝑦 ⋯  𝐵 𝑦  Π∗𝐷  𝜖 . 2  

In equation (2), 𝜖  are independent structural shocks with an economic interpretation, e.g., 
aggregate metal demand and metal supply shocks. The structural shocks are related to the 
reduced-form errors via the linear transformation 𝑢   𝐵 𝜖 . Thus, 𝐵  contains the impact 
effects of the structural shocks on the three endogenous variables in 𝑦 . By assuming a unit 
variance for the uncorrelated structural shocks, i.e., 𝐸 𝜖 𝜖  is an identity matrix, the reduced-
form covariance matrix 𝛴  is related to the structural impact multiplier matrix as 𝛴

𝐸 𝑢 𝑢 𝐵 𝐸 𝜖 𝜖 𝐵 𝐵 𝐵 ′.  

Without further information it is not possible to identify 𝐵  and thereby the structural form 
in (2). The literature has come up with different restrictions that can be assumed to solve this 
identification problem. We apply sign restrictions (e.g., Faust, 1998, Canova and Nicolo, 2002, 
and Uhlig 2005) on the elements in 𝐵 , i.e., we assume that the structural shocks affect the 
endogenous variables either in a positive or negative way based on economic intuition as 
specified in Table 1: The first shock increases global real GDP, the global production of the 
respective metal, and the respective metal’s real price on impact. We interpret it as an aggregate 
demand shock that is related to the global business cycle. The shock also includes periods of 
industrialization, which drive up the demand for copper and other metals. We assume that this is 
the type of shock that characterizes most closely the energy transition in our structural scenario 
analysis.  

The second shock is assumed to drive up global real GDP and global production of the 
respective metal, but to decrease the real price. We interpret this shock as a metal supply shock, 
capturing for example, strikes or other production outages. We assume that the third shock 
increases metal production and price, similar to the aggregate metal demand shock, but decreases 
global real GDP. We interpret it as a metal inventory-demand shock, capturing unexpected 
changes in inventories due to shifts in expectations about future metal demand or supply.  
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Annex 1.SF.Table 1. Sign Restrictions on Impact Effects 

 

Global  
Real 
GDP 

Global Metal 
Production 

Real Metal 
Price 

Aggregate metal 
demand shock  

+  +  + 

Metal supply shock   +  +   

Metal inventory 
demand shock 

  +  + 

Our object of interest is a conditional forecast 𝑦 ,  over the next h=20 years for the 
endogenous variables where T denotes the year 2020. The conditional forecast restricts some of 
the variables in 𝑦 ,  and a subset of the future shocks 𝜖 , , thereby linking the path of 
future variables directly to certain shocks. Antolin-Diaz, Petrella, and Rubio-Ramirez (2021) 
provide a formal framework of this structural scenario analysis. We briefly lay out the underlying 
intuition tailored to the IEA’s scenarios.     

We take the IEA's scenarios for each metal as given, thus prespecifying the future metal 
production in the conditional forecasts 𝑦 , . We set global consumption equal to global 
metal production in the IEA’s forecast, assuming that there are no short-term changes in 
inventories. The levels of future GDP growth and the metal’s price are left unspecified. 
Concerning the path of future shocks, we constrain the metal supply shock and the inventory 
demand shock to their unconditional distributions. The algorithm then finds a series of 
aggregate metals demand shocks that incentivizes the metal production path needed for the 
energy transition. From these shocks we derive the implied price and revenue paths. 

Compared to traditional conditional forecasts, the chosen methodology has the advantage that 
it can attribute the future path of endogenous variables to a certain set of structural shocks. As 
we deem the energy transition as a scenario resulting from future shocks that are similar to 
aggregate metal demand shocks, it is important to specify this directly and not attribute the 
energy transition to exogenous increases in metal supply or some combination.  

Estimation and inference are based on standard Bayesian techniques laid out in Waggoner and 
Zha (1999), Rubio-Ramirez, Wagonner, and Zha (2010), and Antolin-Diaz, Petrella, and Rubio-
Ramirez (2021). We use a standard Minnesota-type prior in combination with a sum-of-
coefficients prior (Doan, Litterman, and Sims 1984) and a dummy-initial-observation prior (Sims 
1993) to estimate equation (1) and the conditional forecasts. Identification via sign restrictions 
does not yield point estimates but instead sets of possible parameter intervals for the different 
elements in 𝐵 . We obtain a set of 1000 admissible draws, where each draw consists of a 
conditional forecast, future shocks, and an associated 𝐵  matrices that satisfies the sign 
restrictions. These draws are also used for inference, i.e., they yield an indication of the 
uncertainty around the point-wise median estimates. It is common to report point-wise median 
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and percentiles of impulse responses for set-identified structural VAR models (Antolín-Díaz and 
Rubio-Ramírez, 2018), although the median does not represent one of the structural models.  

Finally, we obtain the supply elasticities from the 𝐵  matrix of structural impact effects and 
the reduced-form parameters 𝐴  from equation (1). The responses of the variables in 𝑦  to the 
structural shocks 𝜖  can be traced over time via 𝛩 𝛷 𝐵  for h = 1,2,…  where 𝛩  is an (n x 
n) matrix of structural impulse responses for the horizon h and 𝛷 ∑ 𝛷 𝐴  and 𝛷  is an 

identity matrix (Lütkepohl 2005, chapter 2). The impact supply elasticity 𝜂  is calculated as the 
ratio of the metal production response to an aggregate metal demand shock (AD) relative to the 
price response to the same shock written as 𝜂 𝐵 , / 𝐵 , . Demand 
shocks shift the metal demand curve along the metal supply curve and thereby trace out its 
shape which gives the supply elasticity. Elasticities over longer horizons are based on the 
cumulative output response and the cumulative price change response and calculated as 𝜂 ,

∑ 𝛩 , /∑ 𝛩 , . The 1000 different draws again allow for the construction 
of credible sets by estimating an elasticity for each draw and then calculating percentiles. 

A4. Data Descriptions 

We use historical annual data for global real GDP, global production and real prices of the 
respective four metals. Employing long sample periods, partly going back to 1840 for copper, 
1900 for nickel, 1925 for cobalt and 1955 for lithium, allows us to estimate the long-run 
relationships between the variables. This is particularly important due to the long investment 
cycles in the industry.  

However, historical data can come with measurement problems. This is particularly a concern 
for the cobalt and lithium market data. These commodities were not traded on public exchanges 
for a long time. Its value chain and pricing are more complex than for copper and nickel. We 
have ensured that the data is as consistent as possible over time. We have also checked the 
history of these markets for signs of structural changes, which may be a moderate issue for the 
cobalt market. We attribute some of the relatively broad sets of admissible draws in our results 
to some remaining measurement errors. 

A4.1 Global Real GDP Data 

We construct a series for global real GDP data by using data for 1840 to 2007 from 
Schwerhoff and Stuermer (2020), which build on Maddison (2010). We expand the data to 2020 
based on growth rates of global real GDP from the International Monetary Fund’s World 
Economic Outlook database.  

A4.2 Copper Market Data 

Copper has a long track record of trade and production. We use annual price data from the 
London Metal Exchange, which has been and still is the major exchange for the global price 
settlement of the metal. The data for the period from 1840 to 2014 is sourced from Stuermer 
(2018) and the one from 2015 to 2020 from the US Geological Survey (2021). We use the U.S. 
all urban consumers price index to adjust prices for inflation. 
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Production data refer to refined copper production, including production from recycled 
materials. We source the data from Stuermer (2018) for the period 1840 to 2010. For 2011 to 
2019, we obtain data from the International Copper Study Group (2021) and for 2020 from the 
World Bureau of Metals (2021). Note that the data points for 2019 and 2020 are preliminary. 

A4.3 Cobalt Market Data 

Cobalt has a far shorter history than copper and was not traded on metal exchanges for a long 
time. For the period from 1925 to 2015, we use price data from the US Geological Survey (2017) 
computed based on the quantities and value of US import data. Starting in 2016, we use U.S. 
spot price data for cobalt cathodes from the US Geological Survey (2021). As cobalt has a 
relatively high value compared to weight and can be traded relatively freely, we assume that 
changes in US prices are a good approximation for global price movements. 

Cobalt production data refer to the cobalt content of mine or refined production depending on 
the producing country and year.  Recycling does not play an important role in cobalt supply. We 
source the data for the period from 1925 to 2017 from Schwerhoff and Stuermer (2020) and for 
2018 to 2020 from the US Geological Survey (2021). 

A4.4 Lithium Market Data 

Lithium is the least mature market across the four metals. Price data from 1955 to 2000 refer 
to lithium carbonate and from 2001 to 2015 to prices derived from U.S. import data by the US 
Geological Survey (2017). For 2016 to 2020, we use battery grade lithium carbonate for large 
contracts as provided in US Geological Survey (2019, 2021). We have made sure that the price 
series are consistent across time by splicing series on each other and using adjustment factors. As 
lithium has a relatively high value compared to weight and can be traded relatively freely, we 
assume that US price changes are a good approximation for global price movements. 

We source world mine production data for the years 1955 to 2017 from Schwerhoff and 
Stuermer (2020). The data are in metric tons of gross product of lithium minerals and brine. For 
the years 1967 to 2015 it is reported as gross product of ore and ore concentrates from mines 
and lithium carbonate from brine deposits. For the years 2017 to 2020, the U.S. Geological 
Survey (2019, 2021) reports lithium content of mine production. This data series is spliced on 
the earlier lithium ore series to come up with a consistent series over time. The source for the 
data from 2018 to 2020 are US Geological Survey (2020, 2021). 

A4.5 Nickel Market Data 

Nickel price data refer to US prices until 1978 and from 1979 onwards to U.S. dollar prices at 
the London Metal Exchange. The data from 1900 to 2017 is sourced from Stuermer and 
Schwerhoff (2020) and from 2018 to 2020 from the US Geological Survey (2021). 

Global nickel production data is mine production data from 1900 to 1962 from the US 
Geological Survey (2017). From 1963 to 2020, the data are from the World Bureau of Metal 
Statistics (2021) and are described as refined production data, including recycled materials. 
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