

COVID-19 Lockdowns and Exits in Asia: Some Lessons

Pragyan Deb, Davide Furceri, Jonathan D. Ostry, Nathalie Pouokam, Nour Tawk, Irina Yakadina, and Naihan Yang

Quantifying impact of containment measures

- Combine JHU's data on COVID-19 spread with daily containment measures available from Oxford University
- Novel high-frequency indicators of economic activity, such as level of nitrogen oxide emissions
- Assess impact at daily frequency without having to wait for lagged economic data such as GDP or IP
- Help with econometric identification

Local Projection methods by Jordà (2005)

$$\Delta I_{i,t+h} = u_i + \theta_h c_{i,t} + X'_{i,t} \Gamma_h + \sum_{\ell=1}^{\mathcal{L}} \psi_{h,\ell} \Delta I_{i,t-\ell} + \varepsilon_{i,t+h}$$

 $\Delta I_{i,t+h} = I_{i,t+h} - I_{i,t+h-1}$ and $I_{i,t}$ is the log of the number of infections or economic indicator in country i at date t

 $c_{i,t}$ denotes the Containment Stringency Index

X is a vector of control variables which includes daily temperature and humidity levels, in addition to country-specific linear, quadratic and cubic time trends

Impulse response functions computed using the estimated coefficient θ_h

Containment measures have been effective...

Confirmed Cases, Deviation from Baseline (Log percentage points)

Source: Deb and others (2020a).

Impact of Containment Measures

(Log percentage points, deviation from baseline after 30 days)

Source: Deb and others (2020a).

...but massive short-term economic costs...

Growth Revisions and Covid-19 Death per Capita

Source: IMF Asia Pacific Regional Economic Outlook (2020).

NO2 emissions, Deviation from Baseline

Source: Deb and others (2020a).

...equivalent to 12 percent loss in Industrial Production.

- NO₂ emissions are strongly associated with level of economic activity
- Total man-made emissions of nitrogen oxides over the long term (1990-2018) are strongly correlated with conventional measures of economic activity such as GDP growth, manufacturing VA and IP (see annex slide)
- At higher-frequency, over the period covered in the analysis of containment measures, estimated relationship between NO₂ and IP statistically significant
- This suggests a 12 percent loss in IP due to containment measures

NO₂ Emissions and Industrial Production

Variables	Industrial Production (percent)	NO ₂ emissions (percent)
NO ₂ emissions	0.015**	
(percent)	(0.006)	
Industrial		0.27*
Production		(0.151)
(percent)		
Constant	0.004***	0.023***
	(0.0003)	(0.001)
Observations	421	421
R-Squared	0.016	0.005
Number of	38	38
countries		

Source: Deb and others (2020b).

NO2 emissions and Industrial Production

Standard errors clustered at the country level in parentheses.

*** ρ<0.01, ** ρ<0.05, *** ρ<0.1.

What are the lessons from Asia?

- The rest of the presentation will focus on experience of Asian countries
- They were first to be hit and many of them locked down their economies to halt the spread of the virus.
- Their quick and decisive action allowed some of them to gradually reopen economic activity.
- What lessons can we draw from their experience?

Add interactions to allow response to vary

$$\Delta I_{i,t+h} = u_i + \theta_h^L F(z_{i,t}) c_{i,t} + \theta_h^H (1 - F(z_{i,t})) c_{i,t} + X'_{i,t} \Gamma_h +$$

$$\sum_{\ell=1}^{L} F(z_{i,t}) \, \psi_{h,\ell} \Delta I_{i,t-\ell} + \sum_{\ell=1}^{L} (1 - F(z_{i,t})) \psi_{h,\ell} \Delta I_{i,t-\ell} + \varepsilon_{i,t+h}$$

with
$$F(z_{it}) = exp^{-\gamma z_{it}}/(1 - exp^{-\gamma z_{it}})$$
, $\gamma > 0$

where *z* is a country-specific characteristic normalized to have zero mean and a unit variance.

The coefficients θ_h^L and θ_h^H capture the impact of containment measures at each horizon h in cases of very low and very high levels of z.

Lesson 1: Act fast

Public Health Response Time

(Number of days)

Source: Deb and others (2020b).

Confirmed Cases, Deviation from Baseline

(Log percentage points)

Source: Deb and others (2020b).

Lesson 1: Delays can significant increase costs

Confirmed Cases without Transfers, Relative to Optimal Containment

(Per million)

Source: Engler and others (2020).

GDP (percent of pre-pandemic level)

Source: Engler and others (2020).

Lesson 2: Put in place strong testing and tracing policies to avoid a second wave

Testing and Tracing Policies at Time of Exit

(Index, 7-day moving average)

Source: Deb and others (2020b).

Note: Median and 75th percentile overlaps for Americas

Confirmed Cases, Deviation from Baseline

(Log percentage points, 30 days after relaxation of containment measures)

Source: Deb and others (2020b).

Lesson 3: Get the timing of exit right

New Cases at Time of Exit

(Per million people, 7-day moving average)

Source: Deb and others (2020a).

Transit Mobility, Deviation from Baseline

Source: Deb and others (2020a).

Lesson 3: Premature exits can make the situation worse

Industrial Production, Deviation from Baseline

(Percent, implied impact on industrial production 30 days after reopening)

Source: Deb and others (2020a).

GDP Recovery from Trough

(Percent growth from trough)

Source: Engler and others (2020).

Lesson 4: Use macroeconomic policies as cushion

Industrial Production, Deviation from Baseline

(Percent, implied impact on industrial production after 30 days)

Source: Deb and others (2020a).

Impact of Fiscal Shocks on Industrial Production (Betas, percent)

Source: Deb and others (2020).

Limit the scarring and lay the foundation for a stronger recovery

Industrial Production, Deviation from Baseline

(Percent, implied impact on industrial production 30 days after containment/reopening)

Source: Deb and others (2020a).

Lessons Learnt from Asia

- Lesson 1: Act fast.
- Lesson 2: Put in place strong testing and tracing policies.
- Lesson 3: Get the timing of exit right.
- Lesson 4: Use macroeconomic policies as cushion

Thank you