JAPAN-IMF SCHOLARSHIP PROGRAM FOR ASIA 2024

Basic Mathematics Aptitude Test

(Full score: 40)

\mathbf{D}^{1}	lease	N	oto.
\mathbf{r}	I C A C C	- 1 - 1	me.

- You have 60 minutes to complete.
- No calculators are allowed.
- Please show all your work and write your answers in the designated space.

Thank you.

Country:		
Reference Number:		
Name:		

In each question below, choose the correct answer from A-E (2 points for each question):

- 1. Calculate $5 \times 3 + 15 \div 3 \div (-5) (-6)$.
- A. 4
- B. 6
- C. 8
- D. 11
- E. 20

- 2. Calculate $\frac{\sqrt{5}}{\sqrt{5}-\sqrt{3}} + \frac{\sqrt{5}}{\sqrt{5}+\sqrt{3}}$.
- A. $\frac{2}{\sqrt{5}}$
- B. 2
- C. 5
- D. $\frac{10+\sqrt{5}}{2}$
- E. $\frac{10+2\sqrt{5}}{2}$

3. Suppose that

$$f(x) = \frac{e^{\ln x^2}}{e^{\ln x}}$$

Which of the following is true?

- A. $f(x) = x^2$
- B. f(x) = 2x
- C. f(x) = x
- D. f(x) = -x
- $E. f(x) = \ln x$
- 4. Suppose that

$$\begin{cases} f(Q) = A - BQ \\ g(Q) = C + DQ \end{cases}$$

where A, B, C and D are constants and $B \neq -D$. Find the value of Q at which the two functions intersect.

- A. $Q = \frac{C-A}{D+B}$
- B. $Q = \frac{A-C}{D+B}$
- C. $Q = \frac{D+B}{A+C}$
- D. $Q = \frac{A+C}{D+B}$
- E. $Q = \frac{A+D}{C-B}$

- 5. Solve for x in the following equation: $2x^2 + 7x 4 = 0$.
- A. $x = -\frac{7}{4}$
- B. $x = \frac{-7 \pm \sqrt{17}}{4}$
- $C. \quad x = \frac{7 \pm \sqrt{17}}{4}$
- D. x = -0.5 and x = 4.
- E. x = 0.5 and x = -4.
- 6. Solve for x in the following equation. $2^{3x} 7(2^{2x}) 2^{x+3} = 0$
- A. x = 0
- B. x = 1
- C. x = 2
- D. x = 3
- E. x = 4

7. Find the set of natural number(s) of x that satisfy the following inequality:

$$7x^2 - 91x + 280 < 0$$

- A. {5}
- B. {5,6}
- C. {6,7}
- D. {6,7,8}
- E. {7,8,9}

8. Given the sets $S_1 = \{1,4,8\}$, $S_2 = \{1,7,8\}$, and $S_3 = \{3,8\}$, find: $(S_1 \cap S_2) \cup S_3$, where \cup and \cap denote union and intersection of sets, respectively.

- A. {1,3}
- B. {1,4,7}
- C. {1,3,8}
- D. {3,4,8}
- E. {4,7,8}

9. In a class of 50 students, 30 take Microeconomics, 23 take Macroeconomics, and 12 take both. What is the probability that a randomly selected student takes neither Microeconomics nor Macroeconomics?

- A. 18 percent.
- B. 22 percent.
- C. 24 percent.
- D. 36 percent.
- E. 41 percent.

10. If an individual starts a business, there is a 30% chance of earning \$100,000, a 50% chance of earning \$200,000, and a 20% chance of incurring a loss of \$100,000 in the first year. What would be the expected income for the first year?

- A. \$100,000
- B. \$110,000
- C. \$130,000
- D. \$150,000
- E. \$170,000

11. Find the first-order derivative of the function $f(x) = x \log_e x$.

- A. f'(x) = 1
- B. f'(x) = x
- $C. f'(x) = \log_e x$
- $D. f'(x) = \log_e x + 1$
- $E. f'(x) = \log_e x + x$

12. Find the cross partial derivative $\frac{\partial^2 f(x,y)}{\partial x \partial y}$ of $f(x,y) = e^{2y} \log_e(3x)$.

- A. $\frac{e^{2y}}{x}$
- B. $\frac{2e^{2y}}{x}$
- $C. -\frac{e^{2y}}{x^2}$
- D. $2e^{2y}\log_e(3x)$
- E. $4e^{2y}\log_e(3x)$

13. Evaluate the integral $\int_{-2}^{2} (4x^2 + 3x) dx$.

- A. 0
- B. 12
- C. $\frac{50}{3}$
- D. $\frac{64}{3}$
- E. $\frac{100}{3}$

- 14. Coordinates of points A and B in the three-dimensional space are given by A = (1, 4, -2) and B = (3, 4, 5). Find the distance between A and B.
- A. 7
- B. $\sqrt{53}$
- C. $\sqrt{56}$
- D. 8
- E. $\sqrt{59}$
- 15. Evaluate the following sum $S_n = a + \frac{a}{1+r} + \frac{a}{(1+r)^2} + \frac{a}{(1+r)^3} + \dots + \frac{a}{(1+r)^{n-1}}$, when $a=6, r=0.05, \text{ and } n\to\infty$.
- A. 120
- B. 123
- C. 126
- D. 129
- E. 132
- 16. Find the quadratic approximation of the following function at the point $x \approx 0$.

$$f(x) = 4\log_{\mathrm{e}}(1+x) + 6$$

- A. $6 + 4x 4x^2$
- B. $6 + 4x 2x^2$
- C. 6 + 4x
- D. $6 + 4x + 2x^2$
- E. $6 + 4x + 8x^2$

- 17. Find the absolute minima (as an ordered pair of x and y) for the function $y = 3x^4 + 8x^3 18x^2$ over $(-\infty, \infty)$.
- A. (-5, -425)
- B. (-3,-135)
- C. (-1,-23)
- D. (0,0)
- E. (3,-297)
- 18. Find the values of x and y that solve the following problem: maximize $\log_e(2x) + \log_e(3y + 6)$ subject to x + 2y = 8.
- A. (x, y) = (1,3.5)
- B. (x, y) = (2,3)
- C. (x, y) = (3, 2.5)
- D. (x, y) = (4,2)
- E. None of the above.
- 19. Find the determinant of matrix $\begin{pmatrix} -1 & 1 & 6 & 8 \\ 9 & 1 & 0 & 9 \\ 2 & 0 & 0 & 4 \\ 0 & 0 & 0 & 3 \end{pmatrix}$.
- A. -36
- В. -9
- C. 0
- D. 18
- E. 72

20. Let X' denote the transpose matrix of matrix X, and X^{-1} denote the inverse matrix.

Calculate $(Z'Z)^{-1}$ for the following non-square matrix $Z = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$.

$$A.\begin{bmatrix} \frac{3}{7} & -\frac{1}{7} \\ -\frac{1}{7} & \frac{3}{14} \end{bmatrix} \quad B.\begin{bmatrix} \frac{1}{2} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{1}{4} \end{bmatrix} \quad C.\begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{8} \end{bmatrix} \quad D.\begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{4} \end{bmatrix} \quad E.\begin{bmatrix} \frac{\frac{3}{2}}{2} & -\frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{4} & -\frac{1}{2} & \frac{3}{4} \end{bmatrix}$$