

What role for privacy-preserving computation for inter-institutional data sharing?

Fabio Ricciato

Unit A5 – Methodology; Innovation in Official Statistics Eurostat - European Commission

G20 DGI-2 Workshop on Recommendation II.20 "Promotion of Data Sharing" 24-25 March 2021

How to deliver information in B from data in A?

Strategy #2: compute locally at source (only for single source)

Strategy #3: Trusted Third Party (TTP)

Strategy #4: privacy-preserving computation (PPC) infrastructure

TTP vs PPC: delegating control vs. sharing control

Commission

https://ec.europa.eu/eurostat/cros/system/files/sji190584.pdf

Privacy-preserving computation technologies

- *Privacy-preserving computation technologies*
 - Secure Multi-Party Computing, Secret Sharing (software)
 - Homomorphic Encryption (software)
 - Trusted Execution Environment (hardware)
 - Different combinations of the above ...
 - ... possibly integrated with distributed ledger technologies
- PPC technologies have been maturing quickly in the last decade, now ready for deployment
- PPC infrastructure := combination of <u>technological</u> and <u>organisational</u> measures
- Privacy-preserving computation-as-a-service?

Which strategy to prefer?

- Costs vs benefits
 - All four strategies have different benefits and costs, strengths and limitations, ... each strategy entails a different *trust model*
 - Preferred strategy (legally, technically) depends on scenario
- Advantages of PPC
 - Flexible configurations of ex-ante and ex-post controls for different stakeholders
 - Allows each participating institution to **stay in control** of each computation instance (shared, non-exclusive control)
 - Extends naturally to multiple input parties (next slide)
- Potential limitations
 - Computational scalability (depending on technology)
 - Interactive analysis / data exploration may be difficult

PPC with two multiple input parties

PPC-as-a-service?

Legal aspects

- Receiving institutions need anyway a legal basis/mandate to acquire final information y
 - may be less critical than legal basis/mandate to acquire full input data x
- PPC technologies enable a paradigm shift
 - Let only the desired (output) information y flow, not all (input) data x
 - From "sharing data" to "sharing control" on computation
 - Data processing gets strictly bound to specific method f()
 → the object of discourse shifts from "access to data x" to "processing of data x with method f()"
- PPC and GDPR
 - Enable tight application of GDPR principles "data minimization", "purpose limitation", "storage limitation", "integrity and confidentiality"
 - Related open issue: encryption/secret sharing qualify as anonymization or pseudonymization ???

Examples of queries for microdata

For follow-up

- Trusted Smart Statistics: Motivations and Principles
 <u>https://ec.europa.eu/eurostat/cros/system/files/sji190584.pdf</u>
- Trusted Smart Statistics: How new data will change official statistics <u>https://doi.org/10.1017/dap.2020.7</u>
- Trusted Smart Surveys: a possible application of Privacy Enhancing Technologies in Official Statistics <u>https://ec.europa.eu/eurostat/cros/system/files/</u> <u>main ricciato sis2020 v4c noita.pdf</u>
- Towards a reference architecture for Trusted Smart Surveys
 <u>https://ec.europa.eu/eurostat/cros/system/files/</u>
 <u>tssurveys_ipp_ricciato_v4.pdf</u>

Thanks for your attention

Fabio.Ricciato@ec.europa.eu