How do environmental policies affect green innovation and trade?

New evidence from the WTO Environmental Database (EDB)*

Francesco S. Bellelli², Ankai Xu¹

¹Research economist, WTO

²Quantitative analyst, UBS

October 25, 2023

Table of Contents

Introduction

- Data and stylized facts
- 3 Research question & empirical strategy

4 Results

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

- Increase use of industrial policies to address environmental challenges
- A lack of cross-country information on the use and magnitude of environmental polices
- The domestic and international impacts of these policies are little understood

ELE SQC

The paper has the following two objectives:

- Extract information from the WTO environmental database (EDB) to make it more accessible to economic research
- Study how environmental measures impact green innovation and trade in environmental goods

A = A = A = A = A = A = A

4 / 23

Table of Contents

Introduction

2 Data and stylized facts

B Research question & empirical strategy

4 Results

5/23

< □ > < /□ >

Data - WTO Environmental Databas

- The WTO Environmental Database (EDB) contains over 14000 environment-related measures notified to the WTO from 2009 to 2020
- For each policy, the database contains a description of the measure and information on the economic sector, the type of instruments used and the environmental goal pursued by the policy.

Figure: Number of notified measures by country

Environmental Measures

We make information more accessible for economic research by:

• Extracting the implementation years of policy measures

Figure: Number of active policy measures detected in the EDB

_			
Re	امال	1. 8	/ X II
00	nei	11 04	. /\u

4 E b

We make information more accessible for economic research by:

- Extracting the implementation years of policy measures
- Identifying products affected by the policy measures and link them to HS chapters.

Figure: Detected products targeted by EDB measures

Environmental Measures

To link EDB measures to HS codes:

- Step 1: Extract and clean keywords
- Step 2: Link policy measures and HS chapters details
- Step 3: Incorporate info from the harmonized sectors & objectives details
- Step 4: Link ICS codes with HS codes
- Step 5: Calculate relative link strength details
- Step 6: Reducing the number of links details
- Step 7: Calibrating cut-off value for parameters details

We categorize policy measures into two groups: REG measures and SUB measures.

Figure: Frequency of instruments used in REG and SUB measures

Bellelli & Xu

Environmental Measures

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ October 25, 2023

We develop an index to measure the strength of each policy measure $Score_i = Breadth_i \times Depth_i$

Where

 $Breadth_i = 1.5 \cdot sectors_i + 0.75 \cdot (objectives_i + keywords_i)$ $Depth_i = wording_i + variety_i + type_i$ (details)

Figure: Measure score distribution for two groups of policy measures

Table of Contents

Introduction

Data and stylized facts

Research question & empirical strategy

Results

Be	llel	li a	&	Xι

< □ > < 凸

⇒ ↓ = ↓ = |= √QQ

Research question

Bellell

- Environmental policy can be used to direct the economy on a green growth path. A key role is played by green innovation (Acemoglu et al., 2012, 2014).
- Leveraging the EDB dataset, we evaluate how different types of environment-related measures have impacted green innovation and trade.

& Xu	Environmental Measures	October 25, 2023	13 / 23
------	------------------------	------------------	---------

- Our strategy: comparing variation in patenting in green technologies and/or trade in green goods following environmental policies with non-green technologies and/or goods
- The policy treatment variable in country (*i*), sector (*k*) and time (*t*) is defined as:

$$Policy_{ikt} = \sum_{m=1}^{M} Active_{mit} \times Depth_m \times \bar{L}_{mk}$$
(1)

• We experiment with different policy measurements: dummy, count, policy score

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

$$patent_{ikt} = \exp[\alpha_i + \alpha_k + \alpha_{it} + \beta_1 ENV_k \times \log(Policy_{ikt}) + \beta_2 \log(Policy_{ikt}) + \gamma_1 \log(K_{ikt}) + \gamma_2 ENV_k \cdot \log(EK_{it}) + \gamma_3 \log(\bar{X}_{ik}) + \gamma_4 \log(\bar{M}_{ik})] \cdot u_{ikt}$$

- We proxy innovation by the fractional count of patents within the triadic family
- In defining green technologies, we rely on OECD ENV-TECH lists (Haščič & Migotto, 2015) using HS-IPC conversion table (Lybbert & Zolas, 2014)

⇒ ↓ ≡ ↓ ≡ |= √Q ∩

$$T_{ijkt} = \exp[\beta_1 ENV_k \times \log(Policy_{ikt}) + \beta_2 ENV_k \times \log(Policy_{jkt}) + \beta_3 \log(Policy_{ikt}) + \beta_4 \log(Policy_{jkt}) + \gamma_1 \log(K_{ikt}) + \gamma_2 \log(K_{jkt}) + \gamma_3 ENV_k \times \log(EK_{it}) + \gamma_4 ENV_k \times \log(EK_{jt}) + \gamma_5 RTA_{ijt} + \alpha_{ij} + \alpha_{it} + \alpha_{jt} + \alpha_k] \cdot u_{ijkt}$$

 In defining green goods, we rely on the OECD Combined List of Environmental Goods (CLEG) (Sauvage, 2014).

Table of Contents

Introduction

- Data and stylized facts
- 3 Research question & empirical strategy

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Results

Dependent Variables:	Innovation		Trade			
			Exporter	Importer	Exporter	Importer
	1yr lag	3yr lag	1yr	lag	Зуr	lag
$ENV \times Regulation$, tax and standards	-0.001	-0.022	-0.019	0.002	-0.005	-0.001
	(0.010)	(0.015)	(0.014)	(0.014)	(0.018)	(0.002)
ENV imes Subsidies and $support$	0.012	0.005	0.073***	-0.041**	0.061***	-0.001
	(0.018)	(0.021)	(0.016)	(0.020)	(0.018)	(0.002)
Regulation, tax and standards	-0.006	0.001	0.171***	-0.068***	0.233***	-0.010***
	(0.007)	(0.010)	(0.013)	(0.012)	(0.016)	(0.002)
Subsidies and support	-0.007	-0.004	-0.127***	0.064***	-0.135***	0.007***
	(0.008)	(0.010)	(0.013)	(0.015)	(0.015)	(0.001)
ENV $ imes$ Tot stock env. patents	-0.0003	0.009	0.192***	0.016***	0.190***	0.012**
	(0.006)	(0.007)	(0.006)	(0.005)	(0.008)	(0.006)
Stock patents sector	0.974***	0.989***	0.583***	0.050***	0.590***	0.053***
	(0.007)	(0.008)	(0.011)	(0.007)	(0.013)	(0.007)
Pre-sample exports	0.038***	0.032***				
	(0.007)	(0.008)				
Pre-sample imports	-0.020**	-0.022**				
	(0.008)	(0.010)				
Country-Year FE	Yes	Yes		_		_
Sector FE	Yes	Yes	Y	és	Y	és
Exporter-Importer FE	-	-	Y	és	Y	és
Exporter-Year FE	-	-	Y	'es	Y	és
Importer-Year FE	-	-	Y	'es	Y	és
Observations	176,401	109,727	4,99	6,420	3,55	2,890
Pseudo R ²	0.931	0.931	0.8	821= 🕨 🤘 🖉	₽ ► ◄ ≣ 0.8	821 🗈 🛌
Bellelli & Xu	Environ	mental Mea	sures		October 2	5, 2023

Results

Trade

Figure: Environmental specialisation effect by type of policy instrument

Results

	GVC linkage		R&D subsidies			
	1yr lag	3yr lag	1yr lag	3yr lag	1yr lag	3yr lag
GVC linkage	0.304***	0.282***				
-	(0.028)	(0.029)				
GVC forward linkage	· · /	· · ·	-2.45***	-2.62***		
0			(0.356)	(0.374)		
GVC backward linkage			2.73***	2.88***		
			(0.354)	(0.371)		
R&D expenditure			(0.00.)	(****=)	0.343***	0.346***
					(0.024)	(0.029)
ENV \times Regulation, tax and standards	-0.004	-0.0006	-0.007*	-0.005	0.002	0.0009
	(0.004)	(0.006)	(0.004)	(0.005)	(0.005)	(0.006)
ENV \times Subsidies and support	-0.031***	-0.019**	-0.026***	-0.017**	-0.005	-0.007
	(0.006)	(0.008)	(0.005)	(0.007)	(0.005)	(0.006)
Regulation tax and standards	0.002*	0.003**	0.001	0.002	0.001	0.001
rieganation, tax and standards	(0.001)	(0.001)	(0.001)	(0.001)	(0.0010)	(0.001)
Subsidies and support	-0.007***	-0.006***	-0.006***	-0.005***	-0.0010	_0 001
Subsidies and support	(0.000)	(0.001)	(0.000	(0.001)	(0,0000)	(0,0001)
ENV × Tot stock env. patents	0.010***	0.009***	0.010***	0.009***	0.010***	0.010***
2.11 X for stock city, putchts	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)
Stock patents sector	0.003***	0.003***	0.003***	0.003***	0.002***	0.002***
	(0.0003)	(0.0003)	(0.0003)	(0.0003)	(0.0002)	(0.0005)
Pre-sample exports	0.003***	0.003***	0.002***	0.002***	0.004***	0.004***
	(0.0006)	(0.0006)	(0.0005)	(0.0005)	(0.0005)	(0.0007)
Pre-sample imports	-0.003***	-0.003***	-0.003***	-0.003***	-0.004***	-0.004***
	(0.0005)	(0.0005)	(0.0005)	(0.0005)	(0.0005)	(0.0006)
Observations	6,368	6,368	6,368	6,368	3,836	2,840
Pseudo R ²	0.976	0.975	0.976	0.976	0.975	0.974

Bellelli & Xu

Environmental Measures

October 25, 2023

Table of Contents

Introduction

- Data and stylized facts
- 3 Research question & empirical strategy

4 Results

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

- The paper fills the information gap on the use of trade related environmental measures over time
- We shed some light on the effects of trade-related environmental measures on innovation and trade
 - Environmental support policies (e.g. income or price support, non-monetary support) are associated with increase in exports of environmental goods relative to non-environmental ones.
 - While R&D support is positively associated with innovation, general subsidies do not have significant impact on innovation.

References

- Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and directed technical change. American Economic Review, 102(1), 131-166.
- Acemoglu, D., Aghion, P., & Hémous, D. (2014). The environment and directed technical change in a North–South model. Oxford Review of Economic Policy, 30(3), 513-530.
- Haščič, I. & Migotto, M. (2015). Measuring environmental innovation using patent data. OECD Environment Working Papers, No. 89. Available from http: //www.oecd.org/env/indicators-modelling-outlooks/green-patents.htm.
- Lybbert, T. J. & Zolas, N. J. (2014). Getting patents and economic data to speak to each other: An 'algorithmic links with probabilities' approach for joint analyses of patenting and economic activity. Research Policy, 43, 530-542.
- Sauvage, J. (2014). The stringency of environmental regulations and trade in environmental goods. OECD Trade and Environment Working Papers, 2014/03. Available from https://dx.doi.org/10.1787/5jxrjn7xsnmq-en.

Table of Contents

D		• •	~ ~ ~
Re			- X II
De	i e i i	1 02	_/\u

To link EDB measures to HS codes:

- Step 1: Extract and clean keywords
- Step 2: Link policy measures and HS chapters
 - For every notified measures *i* that share at least one key word with the HS 2-digit category *j*, let N_{ik} be the frequency of a keyword *k* in description of the measure *i* and N_{jk} the frequency of keywords in the HS category *j*. The strength of the link *L* is measured by:

$$L_{ij} = \sum_{k=1}^{K_i} N_{ik} \cdot (N_{jk} \cdot \omega_k)$$

• A weighting scheme ω gives more importance to keyword k which are specific to single HS chapter.

$$\omega_k = 1 + \log\left(\frac{1+J^*}{1+J_k}\right)$$

To link EDB measures to HS codes:

- Step 1: Extract and clean keywords
- Step 2: Link policy measures and HS chapters
- Step 3: Incorporate info from the harmonized sectors & objectives

Harmonised sector	HS chapters
Specific sectors: Agriculture Chemicals Energy Forestry Fisheries Manufacturing Mining	6–14 28–40 84–85 44–48 3 15–24, 50–70, 84–96 25–27, 71–83
Other sectors: All products/economic activities Not specified Other Services	1–97 1–97 1–2, 4–5, 41–43, 49, 97–99 —

To link EDB measures to HS codes:

- Step 1: Extract and clean keywords
- Step 2: Link policy measures and HS chapters
- Step 3: Incorporate info from the harmonized sectors & objectives
 - Let S_i denote the set of HS categories that match the harmonised sectors of measure *i*, and E_i be the set of HS chapters that are consistent with the harmonised environmental objective of measure *i*. Then we can introduce a weight W_{ij}^S and W_{ij}^E to adjust the link strength:

$$\begin{split} \tilde{L}_{ij} &= L_{ij} \cdot W_{ij}^{S} \cdot W_{ij}^{E} \quad \text{with} \quad W_{ij}^{S} = \begin{cases} 1 & \text{if } j \in S_{i} \\ 0.5 & \text{otherwise} \end{cases} \\ W_{ij}^{E} &= \begin{cases} 1 & \text{if } j \in E_{i} \\ 0.9 & \text{otherwise} \end{cases} \end{split}$$

To link EDB measures to HS codes:

- Step 1: Extract and clean keywords
- Step 2: Link policy measures and HS chapters
- Step 3: Incorporate info from the harmonized sectors & objectives
- Step 4: Link ICS codes with HS codes
- Step 5: Relative link strength \bar{L}_{ij} of each one of its links:

$$ar{L}_{ij} = rac{ ilde{L}_{ij}}{\sum_{j=1}^{J^*} ilde{L}_{ij}}$$

back

28 / 23

To link EDB measures to HS codes:

- Step 1: Extract and clean keywords
- Step 2: Link policy measures and HS chapters
- Step 3: Incorporate info from the harmonized sectors & objectives
- Step 4: Link ICS codes with HS codes
- Step 5: Calculate relative link strength
- Step 6: Reduce the number of policy-HS links (back

To link EDB measures to HS codes:

- Step 1: Extract and clean keywords
- Step 2: Link policy measures and HS chapters
- Step 3: Incorporate info from the harmonized sectors & objectives
- Step 4: Link ICS codes with HS codes
- Step 5: Calculate relative link strength
- Step 6: Reduce the number of policy-HS links
- Step 7: Calibrate cut-off value for parameters

$$\omega_k = \begin{cases} 1 + \log\left(\frac{1+J^+}{1+J_k}\right) & \text{, if } J_k \leq J^+ \\ 0 & \text{, if } J_k > J^+ \end{cases}$$

 $J^+=20$, $ilde{L}^+pprox$ 9.4 (70% quantile) and $ar{L}^+=0.1$

● ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

$$wording_i = rac{\log(1+W_i)}{\log(1+max(W))}$$

where:

$$W_i = \log(n_i^W) + 2\log(n_i^A) + 3\log(n_i^S)$$

 n^{W} , n^{A} and n^{S} indicate respectively the number of weak, average and strong verbs in the descriptions of measure *i*.

Neutral	Weak	Average	Strong
include	promote	protect	regulate
use	support	ensure	prevent
establish	contain	provide	require
propose	encourage	improve	prohibit
make	implement	reduce	exclude

Table: Verb grouping examples

Variety is based on the number of different policy tools that are adopted in the measure.

$$variety_i = rac{\log(1+M_i)}{\log(1+max(M))}$$

D -	H . H	. 0	\sim
ве	пеш	× 1	- 8 11

Rank Harmonised measure type

Standards and regulations

- Ban/Prohibition
- Internal taxes 1
- 22 Import tariffs
- Export tariffs
- 3 Technical regulation or specifications
- Risk assessment 4
- 4 Intellectual property measures

Subsidies

- Grants and direct payments
- 1 Income or price support
- 22 Tax concessions
- Loans and financing

3 Other support measures

