Trade Diversion Effects from Global Tensions: Higher Than We Think

Mengqi Wang (University of Wisconsin-Madison) & Swarnali Ahmed Hannan (IMF)

October 2023

Ninth IMF-WB-WTO Trade Conference

The views expressed herein are those of the authors and do not necessarily represent the views of the IMF, its Executive Board, or IMF management.

Motivation and Key Questions

- What is the impact of global trade tensions on countries with high trade exposure and supply linkages?
 - 2018 U.S./China trade tensions
 - 2014 U.S. Sanctions on Russia
- Why look at Mexico?
 - Trade open economy with supply linkages
 - Exposure to key countries (U.S. and China)

Contribution

Unique industry-level dataset

- Quantifies input-output and supply linkages
- 258 industries versus cross-country coverage of 56 industries
- Nationally sourced input-output tables show higher trade diversion

Recent Work

- Lovely et al. 2021; Utar et al. 2023
- Complements cross-country studies in 2023: Freund et al., Alfaro et al., Fajgelbaum et al.

INEGI Compared to WIOD

Aggregate trade diversion effects from one standard deviation change in tariffs

(1) (2) (3)(4) INEGI WIOD INEGI WIOD INEGI WIOD INEGI WIOD 7.2*** 8.34** Output 0.7 0.0 -5.91.2 Upstream 0.2 Downstream 2.0 6.2*** Total 1.6 6.4*** 1.4

Dynamic trade diversion effects

Monthly data from January 2016 to May 2019

Findings Preview: Trade Diversion Higher Than We Think

Overall positive trade diversion

- A one standard deviation increase in net tariff change (5.8 ppt) on Chinese products increases Mexico's exports to U.S. by 6.4 percent
- Output tariffs play a more important role with some evidence on a positive impact through downstream tariffs

Industry-level trade diversion effect

- Correlated with:
 - change in the U.S. imports from China
 - tariff imposed on China
 - product substitutability
 - [weakly] GVC integration
- Not correlated with:
 - Mexico's industry-level trade exposure to the U.S.

2014 U.S. sanctions on Russia

10 percent increase in Mexico's exports to the U.S. after four months

The Dataset

- Input-output table of the Mexican economy from INEGI
 - 258 industries (NAICS 4-digit), 2003-2018
- Granular trade data (HS 6-digit) from UN Comtrade
- Cross-country input-output table from World Input-Output Database (WIOD)
 - 56 industries (ISIC 2-digit), 43 countries, 2003-2014

New information:

- Detailed information on the sources of imported input for a specific industry
- Granular information on input-output linkages matched with trade data

Information in the Dataset

For a specific industry (NAICS 4-digit), for example, *motor vehicle* manufacturing industry

Production:

- Input structure (INEGI I/O table)
- How much inputs are imported (INEGI I/O table)
- Where to source inputs (Matched INEGI and WIOD/UN Comtrade)

Sales:

Where to sell products (WIOD/UN Comtrade)

2018 U.S.-China Trade Tensions

- The focus of the paper is on the first three rounds of tariffs imposed by the U.S. on China
 - List 1. 25 percent duties covering \$34 billion imported products imposed on July 6, 2018
 - List 2. 25 percent duties on \$16 billion of imports, imposed on August 23, 2018
 - List 3. 10 percent tariff on \$200 billion of imports, enacted on September 24, 2018

Why Trade Diversion Occurs

Direct Tariffs

Upstream (left) and Downstream (right) Tariffs for Motor Vehicle Parts

Empirical Methodology

Data: monthly industry-level Mexican exports value to the U.S.

Difference in differences

- Aggregate trade diversion effect
- Diff. 1: Before-and-after tariffs were increased on Chinese products
- Diff. 2: Variation in tariff-change exposure across industries

Industry-level trade diversion effects

- Heterogeneity in trade diversion across industries
- For each industry, estimate the change in export value to the U.S.
- Link the variation in export value change with exposure to tariff change

Difference-in-Differences

U.S. imports from Mexico (in log) in industry *j* in month *t*, 2016/01-2019/05

Treatment variable, the industry-level tariff change by the U.S. on Chinese products

Time dummy = 1 after tariff increases for industry *j*

Trade diversion effect

Trade Diversion: Mexico's Exports to the U.S.

Percent change in Mexico's exports to the U.S. in response to one standard deviation of tariff change

	(1)	(2)	(3)	(4)
Output	7.2***	8.34**		
Upstream		-5.9		
Downstream		2.0		
Total			6.2***	
Net				6.4***

- A one S.D. increase in net tariff change (5.8 p.p.) on Chinese products increases Mexican exports to the U.S. by 6.4 percent
- Effect of output tariff exposure is significantly positive and robust
- Some evidence for positive effect of downstream tariff but no pattern for upstream tariff

Total tariffs: Output + Downstream + Upstream
Net tariffs: Output + Downstream - Upstream

The Impact of Tariffs on Mexico's Exports to the U.S.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	$1(\Delta au > 0)$						$1(\Delta au > median)$					
Output	0.161***			0.158***			0.161***			0.159**		
•	(0.045)			(0.049)			(0.045)			(0.071)		
Up		0.851		-0.000				-0.015		-0.049		
		(0.852)		(0.090)				(0.126)		(0.120)		
Down			0.699***	0.075					0.185***	0.011		
			(0.269)	(0.137)					(0.062)	(0.100)		
Total					0.851						0.180***	
					(0.852)						(0.037)	
Net						0.163***						0.174***
						(0.033)						(0.035)

Time-varying Treatment Effect

Industry-level Analysis

$$Y_{j,t} = \alpha_j + \beta_j Post_{j,t} + \rho_j Y_{j,t-1} + \gamma_j X_{j,t} + \epsilon_{j,t}$$

U.S. imports from Mexico (in log) in industry *j* in month *t*, 2016/01-2019/05

Time dummy = 1 after tariff increases for a particular industry

Control variables: growth and CPI of Mexico and the U.S., Mexican peso vis-à-vis dollar

Trade diversion effect in a particular industry

Correlates of Industry-specific Trade Diversion Effect

Industry characteristics	Correlation coefficient	p-value
Change in U.S. imports from China	-0.72	0.00
Net tariff change	0.25	0.02
Output tariff change	0.27	0.01
Export share to the U.S. in 2017	0.01	0.87
Imported input value share in production in 2016	0.07	0.30
Export share in sales in 2016	0.06	0.32
Product substitutability (s)	0.23	0.00

Concluding Thoughts

- Positive trade diversion effects for Mexico's exports to the U.S., emanating mainly from output tariffs (and downstream tariffs)
- Results provide a good complement to recent cross-country studies—e.g., Freund et al. (2023)
 - China's decline in the U.S. exports was concentrated in tariffed goods
 - Mexico was one of the biggest winners
 - Evidence of nearshoring to Mexico
- Implications?
 - Geoeconomic fragmentation, short- versus long-term effects
 - Supply chains
 - Proper accounting of input-output data