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1. Introduction 
 
Economics is the study of choice under constraints. Thus the economic approach to index number theory 
applied to households generally involves the assumption of cost minimizing or utility maximizing behavior 
on the part of consumers subject to one or more constraints. It is unlikely that actual consumer behavior is 
completely described by the optimization models that will be considered in this chapter but it seems that the 
economic approach to index number theory allows us to address some difficult measurement problems that 
other approaches to index number theory cannot address.  
 
Some of the material in this chapter relies on advanced microeconomic theory. Some attempt is made to 
explain the various theories but if the explanations are not adequate, references to the underlying literature 
are given. 
 
In section 2, the Konüs Cost of Living Index (COLI) for a single household is explained. This section is a 
fundamental one. It allows us to conceptualize the role of substitution as a response to changes in relative 
prices. In this section, the underlying utility or preference function is a general one. In section 3, the theory 
described in section 2 is specialized to the case of homothetic preferences. Preferences are homothetic if 
they can be represented by a linearly homogeneous utility function. It turns out that the assumption of 
homothetic preferences enables the price statistician to deal with product substitution in a very 
straightforward way. In section 4, two results from microeconomic theory are discussed: Wold’s Identity 
and Shephard’s Lemma. These two results will be used in sections 5-7 where certain formulae or functional 
forms for price and quantity indexes are introduced and their connection to the economic approach to index 
number theory will be established. Section 5 introduces the concept of a flexible functional form for a utility 
function. A flexible functional form can approximate an arbitrary twice continuously differentiable linearly 
homogeneous functional form to the second order around any given point. Thus it is useful to have index 
number formulae that are exactly consistent with preferences that can be represented by a flexible functional 
form since these functions can accommodate a wide variety of substitution responses on the part of 
consumers to changes in prices. Sections 5, 6 and 7 show that there are flexible functional forms for 
consumer utility functions that are exactly consistent with three well known index number formulae: the 
Fisher, Walsh and Törnqvist Theil indexes. An index number formula that is exactly consistent with a 
flexible functional form is called a superlative index. In section 8, it is shown that the superlative indexes 
studied in sections 5-7 all approximate each other to the second order around an equal price and quantity 
point and so in general, it will not matter too much which one of these three formulae is chosen in practice. 
The first eight sections of this chapter are the most important ones. The remaining sections deal with specific 
measurement topics that extend the basic theory in various directions. 
 
In sections 9 and 10, index number formulae are given that are exact for two functional forms for the 
consumer’s utility function that are not flexible. These two functional forms are the Cobb Douglas and 
Constant Elasticity of Substitution (CES) functions. Since they are widely used by economists and 
statisticians, it is useful to study these two functional forms and their corresponding exact index number 
formulae.  
 
In section 11, the Allen quantity index is introduced. In the previous sections, quantity indexes that were 
exact for homothetic preferences were defined. The Allen quantity index is well defined even if preferences 
are not homothetic. It turns out that various Allen indexes match up with various Konüs cost of living 
indexes. The Törnqvist Theil price and quantity indexes turn out to be very useful in this context. They are 
also very useful in the following two sections which show how changes in tastes can be accomodated 
(section 12) and how price indexes that are conditional on environmental factors can be defined (section 13). 
 
In section 14, the concept of a Hicksian reservation price is introduced. A reservation price is an imputed 
price that is just high enough to induce consumers to not purchase a product. It turns out that this concept is 
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useful in the context of dealing with the problems that arise when new products are introduced and old, 
obsolete products disappear.  
 
In section 15, it is noted that consumers face not only a budget constraint, but they also face a time 
constraint. The consumer’s allocation of time interacts with his or her budget constraint and this interaction 
leads to difficult measurement problems when constructing consumer price indexes. An introduction to 
some of these problems is provided in this section.  
 
Sections 16 and 17 generalize the single household Konüs price index and Allen quantity index concepts to 
many households. Fisher indexes play a large role in these sections. 
 
There are demands on statistical agencies to produce price and volume indexes that take into account 
changes in the distribution of income over households. Section 18 provides the reader with an introduction 
to this topic.  
 
Finally section 19 discusses the matching problem. If we attempt to construct a cost of living index for a 
single household, then due to the fact that many household purchases are made infrequently, it proves to be 
difficult to match the prices and quantities of purchased products over consecutive periods. For example, a 
seasonal product may be purchased only during certain seasons. Or a big discounted price may induce a 
household to stock up on a product this month and not purchase the product again for several months. This 
leads to a lack of matching of products problem that makes the construction of price indexes difficult. 
Section 19 offers some possible solutions to this problem.  
 
An Appendix has proofs of various theoretical results that are stated in the main text.       
 
2. The Konüs Cost of Living Index for a Single Consumer 
 
In this section, we outline the theory of the cost of living index for a single consumer (or household)2 that 
was first developed by the Russian economist, Konüs (1924). This theory relies on the assumption of 
optimizing behavior on the part of households. Given an observed vector of commodity or input prices pt 
that the household faces in a given time period t, it is assumed that the corresponding observed quantity 
vector qt is a solution to a cost (or expenditure) minimization problem that involves the consumer’s 
preference or utility function f(q). Thus in contrast to the axiomatic approach to index number theory, the 
economic approach does not assume that the two quantity vectors q0 and q1 discussed in previous chapters 
are independent of the two price vectors p0 and p1 that the household faces in periods 0 and 1. In the 
economic approach, the period t quantity vector  qt is determined by the consumer’s preference function f 
and the period t vector of prices pt that the consumer faces in period t.3  
 
We assume that the consumer (or household) has well defined preferences over different combinations of 
the N consumer commodities or items.4 Each combination of items can be represented by a nonnegative 
vector q º [q1,…,qN]. The consumer’s preferences over alternative possible consumption vectors q are 
assumed to be representable by a continuous, increasing5 and concave6 utility function f.7 Thus if f(q1) > 

 
2 A household may consist of more than one individual. Our exposition ignores the complications that can arise in 
multi-person households; i.e., we assume that the household has consistent preferences of the type explained below. 
3 In principle, the price pnt is a period t unit value price for product n for the household under consideration. The 
corresponding qnt is equal to the total purchases of product n by the household in period t. Thus the product pntqnt is the 
total expenditure of the household on product n during period t.   
4 In this section, these preferences are assumed to be invariant over time. Changing preferences and the complications 
that arise when the number of available products changes over time will be postponed to sections 12 and 14 and 
subsequent chapters. 
5 f(q) is increasing in q if q2 >> q1 ³ 0N implies f(q2) > f(q1). 
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f(q0), then the consumer prefers the consumption vector q1 to q0. It is further assumed that the consumer 
minimizes the cost of achieving the observed period t utility level ut º f(qt) for periods t = 0,1. Thus the 
economic approach to index number theory assumes that the observed period t consumption vector qt >> 0N 
solves the following period t cost minimization problem:8 
 
(1)  C(ut,pt) º min q {pt×q : f(q) ³ ut ; q³ 0N} = pt×qt ;                                                                                t = 0,1. 
 
The consumer’s cost minimization problem for period 0 is to choose a consumption vector q º [q1,...,qN] 
which will minimize the cost p0×q º Sn=1

N pn
0qn of achieving at least the given utility level u0, given that the 

consumer’s preferences can be represented by the function f(q). The period 0 observed consumption vector 
for the consumer is q0 º [q1

0,...,qN
0] where it is assumed that each qn

0 is positive. An assumption which is 
imbedded in the above definition for the period 0 cost minimization problem is that the period 0 reference 
utility level is u0 defined as f(q0). The final assumption which is imbedded in the period 0 cost minimization 
problem defined by (1) above is that the consumer’s observed period 0 quantity vector is a solution to the 
period 0 cost minimization problem. A similar interpretation applies to the period 1 cost minimization 
problem. We also assume that the period t price vector for the N commodities under consideration that the 
consumer faces in each period is strictly positive; i.e., we assume that pt >> 0N for t = 0,1.  Thus there is a 
fair amount of complexity hidden behind the cost minimization problems (and their solutions) defined by 
(1).     
 
Note that the solution to the cost or expenditure minimization problem (1) for a general utility level u and 
general vector of commodity prices p defines the consumer’s cost function, C(u,p). This cost function will be 
used in order to define the consumer’s cost of living price index. It can be shown that C(u,p) has the 
following mathematical properties under our regularity conditions on f(q): (i) C(u,p) is nonnegative for all u 
³ 0 and p >> 0N; (ii) for each p >> 0N, C(u,p) is an increasing continuous function of u and (iii) for each u ³ 
0, C(u,p) is a continuous, concave and linearly homogeneous function of p 9 that is also increasing10 if all 
components of p increase.11  
 
The Konüs (1924) family of true cost of living indexes pertaining to two periods, PK(p0,p1,q), where the 
consumer faces the strictly positive price vectors p0 º (p1

0,…,pN
0) and p1 º (p1

1,…,pN
1)  in periods 0 and 1 

respectively, is defined as the ratio of the minimum costs of achieving the same utility level u º f(q) where q 
º (q1,…,qN) > > 0N is a positive reference quantity vector: 
 
(2) PK(p0,p1,q) º C[f(q),p1]/C[f(q),p0].  
 
Definition (2) defines a family of price indexes because there is one such index for each reference quantity 
vector q chosen. 
 

 
6 f is concave over the set of nonnegative q if f(lq1 + (1-l)q2) ³ lf(q1) + (1-l)f(q2)  for all 0 £ l £ 1 and all q1 ³ 0N and 
q2 ³ 0N. Note that q ³ 0N means that each component of the N dimensional vector q is nonnegative, q >> 0N means that 
each component of q is positive and q > 0N means that q ³ 0N but q ¹ 0N; i.e., q is nonnegative but at least one 
component is positive.  
7 For convenience, we assume that f(0N) = 0 and f(q) tends to plus infinity as all components of q tend to plus infinity. 
8 Notation: pt º [p1t,...,pNt], qt º [q1t,...,qNt] and pt×qt º Sn=1N pntqnt for t = 0,1. Note that we are assuming that all prices 
and quantities are positive. Thus C(f(qt),pt) > 0 for t = 0,1.  
9 This property is the following one: let u ³ 0, p >> 0N and l ³ 0; then C(u,lp) = lC(u,p). 
10 This property is the following one: let u > 0 and 0N << p1 << p2; then C(u,p1) < C(u,p2). 
11 For additional materials on these properties of cost functions and references to the literature, see Diewert (1993a). 
The restriction that f(q) be a concave function is not the usual assumption in the economics literature but drawing on 
the work of Afriat (1967) and Diewert (1973), it can be shown that this assumption is not restrictive in practice. 
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It is natural to choose two specific reference quantity vectors q in definition (2): the observed base period 
quantity vector q0 and the current period quantity vector q1. The first of these two choices leads to the 
following Laspeyres-Konüs true cost of living index: 
 
(3) PK(p0,p1,q0) º C[f(q0),p1]/C[f(q0),p0] 
                          = C[f(q0),p1]/p0×q0                                                                 using (1) for t = 0 
                          = min q {p1×q : f(q) ³ f(q0) ; q ³ 0N}/p0×q0                             using the definition of C[f(q0),p1] 
                          £ p1×q0/p0×q0                                                   since q0 is feasible for the minimization problem 
                          = PL(p0,p1,q0,q1) 
 
where PL is the Laspeyres price index defined in earlier chapters. Thus the (unobservable) Laspeyres-Konüs 
true cost of living index is bounded from above by the observable Laspeyres price index.12  
 
The second of the two natural choices for a reference quantity vector q in definition (2) leads to the 
following Paasche-Konüs true cost of living index: 
 
(4) PK(p0,p1,q1) º C[f(q1),p1]/C[f(q1),p0] 
                         = p1×q1/C[f(q1),p0]                                                                   using (1) for t = 1 
                         = p1×q1/min q{p0×q : f(q) ³ f(q1) ; q ³ 0N}                               using the definition of C[f(q1),p0] 
                         ³ p1×q1/p0×q1                         since q1 is feasible for the minimization problem and thus 
                                                                      min q{p0×q : f(q) ³ f(q1)} £ p0×q1 and hence 1/C[f(q1),p0] ³ 1/p0×q1   
                         = PP(p0,p1,q0,q1) 
 
where PP is the Paasche price index defined in earlier chapters. Thus the (unobservable) Paasche-Konüs true 
cost of living index is bounded from below by the observable Paasche price index.13 
 
Figure 1 illustrates the bounds given by (3) and (4) for the case of two commodities. 
 
The solution to the period 0 cost minimization problem is the vector q0 and the straight line through C 
represents the consumer’s period 0 budget constraint, the set of quantity points q1,q2 such that p1

0q1+p2
0q2 = 

p1
0q1

0+p2
0q2

0. The curved line through q0 is the consumer’s period 0 indifference curve, the set of points 
q1,q2 such that f(q1,q2) = f(q1

0,q2
0); i.e., it is the set of consumption vectors that give the same utility as the 

observed period 0 consumption vector q0. The solution to the period 1 cost minimization problem is the 
vector q1 and the straight line through D represents the consumer’s period 1 budget constraint, the set of 
quantity points q1,q2 such that p1

1q1+p2
1q2 = p1

1q1
1+p2

1q2
1. The curved line through q1 is the consumer’s 

period 1 indifference curve, the set of points q1,q2 such that f(q1,q2) = f(q1
1,q2

1); i.e., it is the set of 
consumption vectors that give the same utility as the observed period 1 consumption vector q1. The point q0* 
solves the hypothetical cost minimization problem of minimizing the cost of achieving the base period utility 
level u0 º f(q0) when facing the period 1 price vector p1 = (p1

1,p2
1). Thus we have C[u0,p1] = p1

1q1
0*+p2

1q2
0* 

and the dashed line through A is the corresponding isocost line p1
1q1+p2

1q2 = C[u0,p1]. 
 
Note that the hypothetical cost line through A is parallel to the actual period 1 cost line through D. From (3), 
the Laspeyres-Konüs true index is C[u0,p1]/[p1

0q1
0+p2

0q2
0] while the ordinary Laspeyres index is 

[p1
1q1

0+p2
1q2

0]/[p1
0q1

0+p2
0q2

0]. Since the denominators for these two indexes are the same, the difference 
between the indexes is due to the differences in their numerators. In Figure 1, this difference in the 
numerators is expressed by the fact that the cost line through A lies below the parallel cost line through B. 
 

 
12 This inequality was first obtained by Konüs (1924) (1939; 17).  See also Pollak (1983). 
13 This inequality is also due to Konüs (1924) (1939; 19). 
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Figure 1: The Laspeyres and Paasche Bounds to the True Cost of Living 
 q2 
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If the consumer’s indifference curve through the observed period 0 consumption vector q0 were L shaped 
with vertex at q0, then the consumer would not change his or her consumption pattern in response to a 
change in the relative prices of the two commodities while keeping a fixed standard of living. In this case, 
the hypothetical vector q0* would coincide with q0, the dashed line through A would coincide with the 
dashed line through B and the true Laspeyres-Konüs index would coincide with the ordinary Laspeyres 
index. However, L shaped indifference curves are not generally consistent with consumer behavior; i.e., 
when the price of a commodity decreases, consumers generally demand more of it. Thus in the general case, 
there will be a gap between the points A and B. The magnitude of this gap represents the amount of 
substitution bias between the true index and the corresponding Laspeyres index; i.e., the Laspeyres index 
will generally be greater than the corresponding true cost of living index, PK(p0,p1,q0). 
 
Figure 1 can also be used to illustrate the inequality (4). First note that the dashed lines through E and F are 
parallel to the period 0 isocost line through C. The point q1* solves the hypothetical cost minimization 
problem of minimizing the cost of achieving the current period utility level u1 º f(q1) when facing the period 
0 price vector p0 = (p1

0,p2
0). Thus we have C[u1,p0] = p1

0q1
1*+p2

0q2
1* and the dashed line through E is the 

corresponding isocost line p1
1q1+p2

1q2 = C[u0,p1]. From (4), the Paasche-Konüs true index is 
[p1

1q1
1+p2

1q2
1]/C[u1,p0] while the ordinary Paasche index is [p1

1q1
1+p2

1q2
1]/[p1

0q1
1+p2

0q2
1]. Since the 

numerators for these two indexes are the same, the difference between the indexes is due to the differences 
in their denominators. In Figure 1, this difference in the denominators is expressed by the fact that the cost 
line through E lies below the parallel cost line through F. The magnitude of this difference represents the 
amount of substitution bias between the true index and the corresponding Paasche index; i.e., the Paasche 
index will generally be less than the corresponding true cost of living index, PK(p0,p1,q1). Note that this 
inequality goes in the opposite direction to the previous inequality between the two Laspeyres indexes. The 
reason for this change in direction is due to the fact that one set of differences between the two indexes takes 
place in the numerators of the two indexes (the Laspeyres inequalities) while the other set takes place in the 
denominators of the two indexes (the Paasche inequalities).  
 



 7 

The bound (3) on the Laspeyres-Konüs true cost of living PK(p0,p1,q0) using the base period level of utility as 
the living standard is one sided as is the bound (4) on the Paasche-Konüs true cost of living PK(p0,p1,q1) 
using the current period level of utility as the living standard. In a remarkable result, Konüs (1924; 20) 
showed that there exists an intermediate consumption vector q* that is on the straight line joining the base 
period consumption vector q0 and the current period consumption vector q1 such that the corresponding 
(unobservable) true cost of living index PK(p0,p1,q*) is between the observable Laspeyres and Paasche 
indexes, PL and PP.14 The Konüs result is the following Proposition: 
 
Proposition 1:  There exists a number l* between 0 and 1 such that  
 
(5)  PL £ PK(p0,p1, l*q0 + (1-l*)q1) £ PP   or   PP £ PK(p0,p1, l*q0 + (1-l*)q1) £ PL. 
 
The first set of inequalities holds when PL £ PP and the second holds when PP £ PL. For a proof of this result, 
see the Appendix. 
 
The above inequalities are of some practical importance. If the observable (in principle) Paasche and 
Laspeyres indexes are not too far apart, then taking a symmetric average of these indexes should provide a 
good approximation to a true cost of living index where the reference standard of living is somewhere 
between the base and current period living standards. To determine the precise symmetric average of the 
Paasche and Laspeyres indexes, we can appeal to the results in Chapter 2 above and take the geometric 
mean, which is the Fisher price index. Thus the Fisher ideal price index receives a fairly strong justification 
as a good approximation to an unobservable theoretical cost of living index. 
 
The bounds (3)-(5) are the best bounds that we can obtain on the true cost of living indexes without making 
further assumptions. In subsequent sections, we will make further assumptions on the class of utility 
functions that describe the consumer’s tastes for the N commodities under consideration. By making specific 
functional form assumptions about the utility function f(q) or about the corresponding cost function C(u,p), 
it will be possible to determine the functional form for the consumer’s true cost of living index. 
 
Before proceeding further, it may be useful to discuss some problems with the economic approach to index 
number theory. A major objection to this approach is the assumption of cost minimizing (or equivalently of 
utility maximizing) behavior on the part of households. Do households even have consistent preferences 
over alternative combinations of goods and services, let alone minimize the cost of achieving a given level 
of utility or welfare? Even if households do not have perfectly consistent preferences, experience has shown 
that when the price of a product is significantly decreased, households will buy more of it and conversely, if 
the price of a product rises significantly, households will tend to purchase less of it. The economic approach 
to index number theory simply formalizes this behavior and at the same time, it is able to generate measures 
of possible changes in consumer welfare along with measures of changes in the cost of living. These 
measures are imperfect but they are valued by economists and policy makers. Thus it is useful to take an 
economic approach to index number theory. Moreover, government statisticians are obliged to produce 
economic statistics. It seems sensible for official statisticians to be at least aware of economic approaches to 
index number theory while producing economic statistics. Finally, as will be seen in later sections, the 
economic approach to index number theory provides useful insights into difficult measurement problems 
that other approaches to index number theory are unable to address.  
 
Some of the limitations of the present framework will be relaxed in subsequent sections; i.e., the assumption 
that all prices and quantities are positive will be relaxed, the assumption of constant preferences will also be 
relaxed and the problems associated with the appearance of new products and the disappearance of existing 
products will be addressed. However, one problem that will not be addressed is the stock piling problem; 

 
14 See  Diewert (1983;191).  
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i.e., when storable products go on sale, households may purchase large amounts of the products so that the 
period of consumption of these products does not coincide with the period of purchase. These left over 
stocks will affect demand for the products in subsequent periods and the model of economic behavior used 
in this section does not take this possibility into account.15 The problem of storable goods not being 
consumed in the period of purchase suggests that the Konüs true cost of living index should not be 
implemented if the length of the period is very short. Thus daily economic price indexes for individual 
households may be more or less meaningless from the viewpoint of the economic approach to index 
numbers. The length of the accounting period for individual households should be a longer period, such as a 
month or a quarter.   
 
3.  The Cost of Living Index when Preferences are Homothetic 
    
Up to now, the consumer’s preference function f did not have to satisfy any particular homogeneity 
assumption.  In this section, we assume that f is (positively) linearly homogeneous16; i.e., we assume that the 
consumer’s utility function has the following property: 
 
(6)  f(lq) = lf(q) for all l > 0 and all q ³ 0N. 
 
Given the continuity of f, it can be seen that property (6) implies that f(0N) = 0. Furthermore, f also satisfies 
f(q) > 0 if q >> 0N. 
 
In the economics literature, assumption (6) is known as the assumption of homothetic preferences.17 This 
assumption is not strictly justified from the viewpoint of actual economic behavior, but, as will be seen 
below, it leads to economic price indexes that do not depend on the consumer’s standard of living; i.e., the 
resulting aggregate prices do not depend on quantities.18 Under this assumption, the consumer’s expenditure 
or cost function, C(u,p) defined by (1) above, decomposes into the product of two terms. For positive 
commodity prices p >> 0N and a positive utility level u, we have the following decomposition of the cost 
function:  
 
(7) C(u,p)  º min q{p×q : f(q) ³ u; q ³ 0N} 
                  = min q{p×q : (1/u)f(q) ³ 1; q ³ 0N}                             dividing both sides of the constraint by u > 0 
                  = min q{p×q : f(q/u) ³ 1; q ³ 0N}                                  using the linear homogeneity of f  
                  = u min q{p×q/u : f(q/u) ³ 1; q ³ 0N}                            using the assumption that u is positive 
                  = u min z{p×z : f(z) ³ 1; z ³ 0N}                                   defining z º q/u 
                  = uC(1,p)                                                                      using definition (1) with u = 1 
                  = uc(p) 
 

 
15 The treatment of purchases of durable goods will be addressed in Chapter 10. A durable good (e.g., an automobile or 
a house) is able to provide a stream of services over its useful lifetime; a storable good (e.g., a can of beans) can only 
be used once but its consumption can be postponed from its period of purchase to a later period of consumption.  
16 This assumption is fairly restrictive in the consumer context. It implies that each indifference curve or surface is a 
radial projection of the unit utility indifference curve or surface. It also implies that all income elasticities of demand 
are unity, which is contradicted by empirical evidence. However, at lower levels of aggregation, the homotheticity 
assumption for the relevant subutility function is probably an acceptable approximation to reality.    
17 More precisely, Shephard (1953) defined a homothetic function to be a monotonic transformation of a linearly 
homogeneous function. However, if a consumer’s utility function is homothetic, we can always rescale it to be linearly 
homogeneous without changing consumer behavior. Hence, we simply identify the homothetic preferences assumption 
with the linear homogeneity assumption. 
18 This particular branch of the economic approach to index number theory is due to Shephard (1953) (1970) and 
Samuelson and Swamy (1974). Shephard in particular realized the importance of the homotheticity assumption in 
conjunction with separability assumptions in justifying the existence of subindexes of the overall cost of living index.   
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where c(p) º C(1,p) is the unit cost function that corresponds to f.19 It can be shown that the unit cost 
function c(p) satisfies the same regularity conditions that f satisfies; i.e., c(p) is positive, concave and 
(positively) linearly homogeneous for positive price vectors.20 Substituting (7) into (1) and using ut = f(qt) 
leads to the following equations: 
 
(8) pt×qt = c(pt)f(qt)                                                                                                                             for t = 0,1. 
 
Thus under the linear homogeneity assumption on the utility function f, observed period t expenditure on the 
N commodities (the left hand side of (8) above) is equal to the period t unit cost c(pt) of achieving one unit 
of utility times the period t utility level, f(qt), (the right hand side of (8) above). Obviously, we can identify 
the period t unit cost, c(pt), as the period t price level Pt and the period t level of utility, f(qt), as the period t 
quantity level Qt. Note that Pt does not depend on qt and Qt does not depend on pt. This is the main 
advantage of assuming homothetic preferences when we use the economic approach to index number theory: 
we can decompose period t aggregate value, pt×qt, into the product of an aggregate period t price level, Pt º 
c(pt), which just depends on the vector of period t commodity prices pt, times an aggregate period t quantity 
level, Qt º f(qt), which just depends on the period t quantity vector qt.     
 
The linear homogeneity assumption on the consumer’s preference function f leads to a simplification for the 
family of Konüs true cost of living indexes, PK(p0,p1,q), defined by (2) above. Using definition (2) for an 
arbitrary reference quantity vector q, we have:21 
 
(9) PK(p0,p1,q) º C[f(q),p1]/C[f(q),p0]   
                        = c(p1)f(q)/c(p0)f(q)                                                                                              using (8) twice 
                        = c(p1)/c(p0). 
 
Thus under the homothetic preferences assumption, the entire family of Konüs true cost of living indexes 
collapses to a single index, c(p1)/c(p0), the ratio of the minimum costs of achieving unit utility level when the 
consumer faces period 1 and 0 prices respectively. Put another way, under the homothetic preferences 
assumption, PK(p0,p1,q) does not depend on the reference quantity vector q.  
 
Substitute (9) into the inequalities (3) and (4), which, of course, are still valid under the homothetic 
preferences assumption. The resulting two inequalities simplify into the following two inequalities: 
 
(10) p1×q1/p0×q1 º PP(p0,p1,q0,q1) £ c(p1)/c(p0) = PK(p0,p1,q) £ PL(p0,p1,q0,q1) º p1×q0/p0×q0. 
 
Thus under the homothetic preferences assumption, every Konüs true cost of living index PK(p0,p1,q) is 
bounded from above by the ordinary Laspeyres price index and bounded from below by the ordinary 
Paasche price index. Moreover, if we can observe the quantity vectors for periods 0 and 1 that are generated 
by a cost minimizing consumer that has homothetic preferences, then we can calculate the Laspeyres and 
Paasche indexes for this consumer and it must be the case that not only will the consumer’s true cost of 

 
19 Economists will recognize the producer theory counterpart to the result C(u,p) = uc(p): if a producer’s production 
function f is subject to constant returns to scale, then the corresponding total cost function C(u,p) (where u > 0 is output 
and p is a vector of input prices) is equal to the product of the output level u times the unit cost c(p). 
20 Obviously, the utility function f determines the consumer’s cost function C(u,p) as the solution to the cost 
minimization problem defined by (1). Then the unit cost function c(p) is defined as C(1,p). Thus f determines c. But we 
can also use c to determine f under appropriate regularity conditions. In the economics literature, this is known as 
duality theory. For additional material on duality theory and the properties of f and c, see Samuelson (1953), Shephard 
(1953), McFadden (1966) (1978) and Diewert  (1974a; 110-113) (1993a; 107-123). 
21 Konus and Byushgens (1926; 168) were the first to establish this result. Pollak (1971) (1983) independently  
established this result later. 
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living index be bounded by these two indexes, it must also be the case that the Paasche index is equal to or 
less than the corresponding Laspeyres index.22   
 
If we use the Konüs true cost of living index defined by the right hand side of (9) as our price index concept, 
then the corresponding implicit quantity index defined by deflating the value ratio by this price index is the 
following index:23 
 
(11) Q(p0,p1,q0,q1,q) º p1×q1/{p0×q0PK(p0,p1,q)}     
                                  = c(p1)f(q1)/{c(p0)f(q0)PK(p0,p1,q)}                                                           using (8) twice 
                                  = c(p1)f(q1)/{c(p0)f(q0)[c(p1)/c(p0)]}                                                         using (9) 
                                  = f(q1)/f(q0). 
 
Thus under the homothetic preferences assumption, the implicit quantity index that corresponds to the true 
cost of living price index c(p1)/c(p0) is the utility ratio f(q1)/f(q0). Since the utility function is assumed to be 
homogeneous of degree one, this is a natural definition for a quantity index. 
 
The bounds (3), (4) and (10) are the best nonparametric bounds that we can obtain on the Konüs true cost of 
living index PK(p0,p1,q). In subsequent sections, we will assume specific functional forms for f(q) or c(p) and 
find price indexes that are consistent with the chosen functional forms. Before this is done, we will require 
two additional results from microeconomic theory: Wold’s Identity and Shephard’s Lemma.   
 
4. Wold’s Identity and Shephard’s Lemma 
 
Instead of using the assumption that a household minimizes the cost of achieving a given utility level, one 
can use the assumption that the household maximizes utility subject to a budget constraint. Thus let pt >> 0N 
and qt >> 0N be the household’s observed period t price and quantity vectors for t = 0,1. Define the 
household’s period t observed expenditure et as 
 
(12) et º pt×qt ;                                                                                                                                            t = 0,1. 
 
The household’s period t utility maximization problem is defined as the following constrained maximization 
problem: 
 
(13) max q {f(q) : pt×q £ et ; q ³ 0N} º g(et,pt) ;                                                                                         t = 0,1. 
 
Instead of assuming that the household’s observed consumption vector qt is a solution to the period t cost 
minimization problem defined earlier by (1), an equivalent assumption (under the section 2 regularity 
conditions on f) is that the observed qt solves the period t utility maximization problem defined by (13). The 
period t optimized objective function in (13) is defined as the consumer’s indirect utility function, g(et,pt).24 
This function is the maximum utility that the consumer can achieve given that he or she faces the period t 
price vector pt and has “income” et to spend on the N commodities under consideration. 
 

 
22 This result is due to Konüs and Byushgens (1926; 168).   
23 The Product Test from Chapter 2 is used to define the implicit quantity index that corresponds to the price index 
defined by (9). 
24 When the consumer’s utility function f(q) is linearly homogeneous, concave and increasing in q, then the 
corresponding indirect utility function defined by (13) is equal to ut º g(et,pt) = et/c(pt) since et = utc(pt). Thus if we set 
et = 1 in (13), we obtain the following explicit formula for calculating the unit cost function from a knowledge of f: 
c(pt) = 1/max q {f(q) : pt×q £ 1 ; q ³ 0N}. Alternatively, we can define c(pt) in the usual way as c(pt) º min q {pt×q ; f(q) ³ 
1; q ³ 0N}.    
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If we assume that the observed period t consumption vector qt is a solution to (13) for t = 0,1 and, in 
addition, f(q) has partial derivatives at q0 and q1, then it is possible to establish the following connection of 
these partial derivatives to the observed period 0 and 1 price vectors, p0 and p1.   
 
Proposition 2 (Wold’s (1944; 69-71) (1953; 145) Identity): Suppose that: (i) p0 >> 0N, p1 >> 0N; (ii) the 
consumer’s utility function f(q) is increasing, continuous and concave for all q ³ 0N; (iii) f(q) has first order 
partial derivatives at the points q0 and q1 and (iv) qt >> 0N is a solution to the household’s period t utility 
maximization problem (13) for t = 0,1. Then the following equations hold:  
 
(14)  pi

t/pt×qt = [¶f(qt)/¶qi]/åk=1
N qk

t¶f(qt)/¶qk ;                                                                       t = 0,1 ; i = 1,…,N 
 
where ¶f(qt)/¶qi denotes the partial derivative of the utility function f with respect to the ith quantity qi 
evaluated at the period t quantity vector qt. 
 
A proof of Proposition 2 may be found in the Appendix. 
 
It is useful to express equations (14) using some alternative notation. Denote the N dimensional vector of 
first order partial derivatives of f(qt) as Ñf(qt) º [¶f(qt)/¶q1,...,¶f(qt)/¶qN] for t = 0,1. Using this notation, 
equations (14) can be rewritten more succinctly as follows: 
 
(15) pt/pt×qt = Ñf(qt)/qt×Ñf(qt);                                                                                                                    t = 0,1. 
                    
If in addition to the assumptions made for Proposition 2, the utility function f(q) is linearly homogeneous, 
then it turns out that the terms qt×Ñf(qt) = Sn=1

N qn
t¶f(qt)/¶qn are equal to f(qt) for t = 0,1; i.e., if f(lq) = lf(q) 

for all l > 0, then we have the following identities: 25 
 
(16) f(qt) = qt×Ñf(qt) ;                                                                                                                                 t = 0,1. 
 
Substituting (16) into (15) leads to the following very useful equations:  
 
(17) pt/pt×qt = Ñf(qt)/f(qt);                                                                                                                          t = 0,1. 
 
We turn now to the implications of differentiability of the consumer’s cost function, C(u,p), with respect to 
components of the commodity price vector p. If C(f(qt),pt) has first order partial derivatives ¶C(ut,pt)/¶pn for 
n = 1,...,N and t = 0,1 where ut = f(qt), then we have the following Proposition: 
 
Proposition 3 (Shephard’s (1953; 11) Lemma): Suppose: (i) the utility function f(q) is increasing, 
continuous and concave in q; (ii) pt >> 0N for t = 0,1; (iii) qt º [q1

t,...,qN
t] > 0N is a solution to the cost 

minimization problem defined by (1) for t = 0,1 and (iv) for ut º f(qt), the first order partial derivatives of 
C(ut,pt) with respect to the components of p exist for t = 0,1, then: 
 
(18) qn

t = ¶C(ut,pt)/¶pn ;                                                                                                          n = 1,...,N; t = 0,1. 
 
Moreover, qt is the unique solution to the cost minimization problem defined by (1) for t = 0,1. 
 
A proof of Proposition 3 can be found in the Appendix. 
 

 
25 Proof: partially differentiate both sides of f(lq) = lf(q) with respect to l and evaluate the resulting partial derivatives 
at l = 1 and q = qt. This is Euler’s Theorem on linearly homogeneous functions.    
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Let the vector of first order partial derivatives of C(ut,pt) with respect to the components of the price vector p 
be denoted as ÑpC(ut,pt)  º [¶C(ut,pt)/¶p1,...,¶C(ut,pt)/¶pN] for t = 0,1. Using this notation, equations (18) can 
be written more succinctly as follows: 
 
(19) qt = ÑpC(ut,pt) ;                                                                                                                                  t = 0,1. 
 
The above result has the following implication: postulate a differentiable functional form for the cost 
function C(u,p) that satisfies the appropriate regularity conditions on the cost function listed below 
definitions (1) above. Then differentiating C(u,p) with respect to the components of the product price vector 
p generates the consumer’s system of Hicksian cost minimizing input demand functions,26 x(u,p) º 
ÑpC(u,p). 
 
If we make the homothetic preferences assumption and assume that the utility function is linearly 
homogeneous, then using (7), we have C(ut,pt) = utc(pt) = pt×qt where ut º f(qt) for t = 0,1. Shephard’s 
Lemma (19) becomes qt = ÑpC(ut,pt) = utÑc(pt) for t = 0,1. Using these equations, we find that: 
 
(20) qt/pt×qt = Ñc(pt)/c(pt) ;                                                                                                                        t = 0,1. 
 
These equations will be very useful in subsequent sections of this chapter. Note the nice symmetry between 
the Shephard’s Lemma equations (20) and the Wold Identity equations (17). In the following sections, 
specific functional forms for a linearly homogeneous utility function f(q) or for a unit cost function c(p) will 
be made and index number formulae that are exactly correct for these specific functional forms will be 
derived. Thus for the next two sections, we assume that the consumer’s preference function is linearly 
homogeneous.   
 
5.  Superlative Indexes: The Fisher Ideal Index 
 
Suppose the consumer has the following utility function:27 
 
(21) f(q1,…,qN) º [åi=1

Nåk=1
N aikqiqk]1/2    

 
where the N2 parameters aik satisfy the symmetry conditions aik = aki for all indices i and k. Thus there are 
only N(N+1)/2 independent parameters in this functional form. Note that the f(q) defined by (21) is linearly 
homogeneous.  
   
Differentiating f(q) defined by (21) with respect to qi yields the following equations: 
 
(22) ¶f(q)/¶qi = (1/2)[åj=1

Nåk=1
N ajkqjqk]-1/2 2åk=1

N aikqk ;                                                                    i = 1,…,N 
                       = åk=1

N aikqk/f(q)                                                                                              
 
where it is necessary to use the symmetry conditions, aik = aki for 1 £ i,k £ N in order to derive the first set of 
equations in (22) and the second set of equations follows using definition (21). Now evaluate the second set 
of equations in (22) at the observed period t quantity vector qt º (q1

t,…,qN
t) and divide both sides of the 

resulting equations by f(qt). We obtain the following equations: 
 

 
26 Hicks (1946; 311-331) introduced this type of demand function into the economics literature. 
27 This functional form was indirectly introduced into the economics literature by Konüs and Byushgens (1926; 171) 
and Diewert (1974b; 123) (1976; 116). Pollak (1971), Afriat (1972; 45) and others also considered this functional form 
but did not work out the region where the utility function was well behaved.   
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(23)  [¶f(qt)/¶qi]/f(qt) = åk=1
N aikqk

t/[f(qt)]2                                                                            t = 0,1 ; i = 1,…,N. 
 
At this point, it is convenient to rewrite equations (23) using matrix notation. Thus in what follows, we 
interpret the vectors pt and qt for t = 0,1 as column vectors. Denote the transpose of a column vector x by xT 
which is the row vector [x1,...,xN]. Define A º [aik] as the N by N matrix that has component aik in row i and 
column k of A. We assume that A is a symmetric matrix so that its transpose AT is equal to the original 
matrix A. Thus using matrix notation, f(q) º [qTAq]1/2 where A = AT. 
 
Using the above matrix notation, equations (22) can be written as the following vector equation: 
 
(24) Ñf(q) = Aq/[qTAq]1/2 
                 = Aq/f(q) 
 
where the second equation in (24) follows because f(q) º [qTAq]1/2. Using matrix notation, equations (23) 
become the following equations: 
 
(25) Ñf(qt)/f(qt) = Aqt/[f(qt)]2 ;                                                                                                                  t = 0,1. 
 
The f(q) defined by (21) is obviously linearly homogeneous. But we also need it to be positive (if q > 0N), 
nondecreasing and concave in q over at least a subset of the nonnegative orthant. Suppose the symmetric 
matrix A has one positive eigenvalue with a corresponding strictly positive eigenvector and the remaining 
N-1 eigenvalues of A are either 0 or negative.28 Then the f(q) defined by (21) will be positive, 
nondecreasing and concave over the region of regularity S defined as follows:29 
 
(26) S º {q : q ³ 0N; Aq ³ 0N; qTAq > 0}.                                                                                
 
Now assume utility maximizing behavior for the consumer in periods 0 and 1; i.e., assume that qt >> 0N is a 
solution to the period t utility maximization problem defined by (13) where pt >> 0N and et º pt×qt for t = 0,1 
and the utility function f(q) is defined by (21) where the matrix A satisfies the above regularity conditions. 
Assume that q0 and q1 are both in the regularity region defined by (26). Since the utility function f defined 
by (21) is linearly homogeneous and differentiable over S, equations (17) (Wold’s Identity) will hold for 
periods 0 and 1. Thus using (17), we have: 
 
(27) pt/pt×qt = Ñf(qt)/f(qt);                                                                                                                           t = 0,1 
                   = Aqt/[f(qt)]2 
 
where the second set of equations in (27) follows using equations (25).  
 
As usual, the Fisher (1922) ideal quantity index, QF, is defined as QF(p0,p1,q0,q1) º [p0×q1p1×q1/p0×q0p1×q0]1/2. 
 
Thus the square of the Fisher quantity index is equal to: 
 
(28) QF(p0,p1,q0,q1)2 = p0×q1p1×q1/p0×q0p1×q0 
                                 = [p0/p0×q0]Tq1/[p1/p1×q1]Tq0 
                                 = {q0TATq1/f(q0)2}/{q1TATq0/f(q1)2}                       using (27) 

 
28 These conditions were imposed on A by Diewert (1976; 116).  
29 See Diewert and Hill (2010; 272-274) for a proof of this result. It turns out that f(q) º (qTAq)1/2 is a concave function 
over the regularity region S º {q: Aq ³ 0N; q ³ 0N and qTAq > 0} if A has a positive eigenvalue with a corresponding 
strictly positive eigenvector and the other eigenvalues of A are negative or zero. 
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                                 = {1/f(q0)2}/{1/f(q1)2}                                            since q0TATq1 = q1TATq0 using A = AT 
                                 = [f(q1)/f(q0)]2. 
 
Taking positive square roots of both sides of (28) shows that, under the above hypotheses, the Fisher 
quantity index is exactly equal to the utility ratio, which is the consumer’s true volume index; i.e., we have 
 
(29) QF(p0,p1,q0,q1) = f(q1)/f(q0). 
 
Finally, use the following Product Test to define the price index that corresponds to the Fisher volume 
index: 
 
(30) PF(p0,p1,q0,q1) º p1×q1/{p0×q0QF(p0,p1,q0,q1)} 
                               = [p1×q0p1×q1/p0×q0p0×q1]1/2                                                                    using definition (27). 
                                
Let c(p) be the unit cost function that corresponds to the utility function f(q) defined by (21).30 Then for this 
c(p), equations (8) will hold; i.e., we will have pt×qt = f(qt)c(pt) for t = 0,1. Substitute these equations into the 
first line of (30) and we obtain the following equation: 
 
(31) PF(p0,p1,q0,q1) º c(p1)f(q1)/{c(p0)f(q0)QF(p0,p1,q0,q1)} 
                               = c(p1)f(q1)/{c(p0)f(q0)[f(q1)/f(q0)]}                                                                      using (29) 
                               = c(p1)/c(p0) 
 
which is the Konüs true cost of living index defined by (9) when preferences are homothetic. Thus under the 
assumption that the consumer engages in cost minimizing behavior during periods 0 and 1 and has 
preferences over the N commodities that correspond to the utility function defined by (21), the Fisher ideal 
price index PF is exactly equal to the true cost of living index, c(p1)/c(p0).  
 
What is useful about the above results is that it is not necessary to estimate econometrically the N(N+1)/2 
parameters in the A matrix in order to find an estimator for the consumer’s true cost of living index and the 
corresponding true volume index.  
 
There is another useful property of the utility function f(q) that is defined by (21) above: this function is a 
flexible functional form. Diewert (1974a; 113) defined a twice continuously differentiable linearly 
homogeneous function of N variables, f(q), to be a flexible functional form if it could approximate an 
arbitrary twice continuously differentiable linearly homogeneous function of N variables, say f*(q), to the 
second order around an arbitrary positive vector q* >> 0N. Thus if f*(q) is an arbitrary linearly homogeneous 
function that is twice continuously differentiable at the given arbitrary point q* >> 0N, then the linearly 
homogeneous twice continuously differentiable function f(q) is a flexible functional form if it has a sufficient 
number of free parameters so that the following 1 + N + N2 equations can be satisfied: 
 
(32)     f(q*) = f*(q*) ; 
(33)  Ñf(q*) = Ñf*(q*) ; 
(34) Ñ2f(q*) = Ñ2f*(q*) 
 

 
30 It may not be easy to find an explicit formula for c(p) in terms of the A matrix. If the matrix A has an inverse, then it 
can be shown that the unit cost function that corresponds to the utility function f(q) defined by (21) is c(p) º (pTA-1p)1/2 
for price vectors p belonging to the region of prices defined by S* º {p: A-1p ³ 0N ; p ³ 0N and pTA-1p > 0N}.   
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where Ñf(q*) º [¶f(q*)/¶q1,..., ¶f(q*)/¶qN]T is the vector of first order partial derivatives of f(q) evaluated at 
the point q* and Ñ2f(q*) º [¶2f(q*)/¶qi¶qk] is the N by N matrix of second order partial derivatives of f(q) 
evaluated at the point q* where the element in row i and column k is ¶2f(q*)/¶qi¶qk for i,k = 1,...,N. 
 
If f(q) is a flexible functional form, then it can approximate an arbitrary twice differentiable linearly 
homogeneous utility function very closely in a neighbourhood of any arbitrarily chosen point q*. Thus if q0 
and q1, the consumer’s observed quantity choices for periods 0 and 1, are fairly close to each other, then a 
flexible utility function f(q) can approximate the consumer’s true utility function f*(q) reasonably closely 
and so index numbers based on the assumption that the consumer maximizes utility using the utility function 
f(q) instead of the true one f*(q) will be able to provide a good approximation to the consumer’s behavior.31 
 
Proposition 4: The utility function defined as f(q) º (qTAq)1/2 over the region S defined by (27) where A = 
AT is a flexible functional form. 
 
For a proof, see the Appendix.         
 
Diewert (1976; 117) termed an index number formula QF(p0,p1,q0,q1) that was exactly equal to the true 
quantity index f(q1)/f(q0) (where f is a flexible functional form) a superlative index number formula.32  
Equation (29) plus the fact that the homogeneous quadratic function f(q) defined by (21) is a flexible 
functional form shows that the Fisher ideal quantity index QF defined (27) is a superlative index number 
formula. Since the corresponding implicit Fisher ideal price index PF satisfies (31) where c(p) is the unit cost 
function that is generated by the homogeneous quadratic utility function, we also call PF a superlative index 
number formula. 
 
There is a special case of the homogeneous quadratic preferences that will play an important role in later 
chapters and that is the case of linear preferences. Thus suppose that the consumer has the following linear 
utility function: 
 
(35) f(q) = Sn=1

N anqn 
 
where the parameters an are positive. If N = 2, the indifference curves for a consumer with linear preferences 
are a family of parallel straight lines. The parameters an are quality adjustment parameters; i.e., an is the 
marginal increment to the consumer’s welfare due to the consumption of an extra unit of the nth commodity. 
The absolute magnitudes of the an are not meaningful (since the units of measurement for utility are not 
observable) but the relative valuations an/ak are meaningful. If a consumer has linear preferences, then we 
say that the N products are perfect substitutes. 
 
To see that the preferences defined by (35) are a special case of the preferences defined by f(q) = (qTAq)1/2, 
let the matrix A be defined as the following rank 1 matrix: 
 
(36) A º aaT  
 
where the row vector aT is defined as aT º [a1,...,aN]. Thus if f(q) is defined as (qTAq)1/2, then using the A 
defined by (36), we have f(q) = (qTAq)1/2 = (qTaaTq)1/2 = ([aTq]2)1/2 = aTq = Sn=1

N anqn. With linear 
 

31 A first order approximation to a consumer’s utility function will not be able to provide a first order approximation to 
the consumer’s system of consumer demand functions. A first order approximation will not be able to adequately 
describe a consumer’s reactions to changes in relative prices. 
32 Fisher (1922; 247) used the term superlative to describe the Fisher ideal price index. Thus Diewert adopted Fisher’s 
terminology but attempted to give some precision to Fisher’s definition of superlativeness. Fisher defined an index 
number formula to be superlative if it approximated the corresponding Fisher ideal results using his data set. 



 16 

preferences, the consumer’s utility maximization problem (13) becomes the following linear programming 
problem:    
 
(37) max q {aTq : pt×q £ et ; q ³ 0N}= max n {etan/pn

t ; n = 1,...,N}. 
 
Thus if a consumer has linear preferences, then he or she will usually end up at a corner solution where one 
or more commodities are not consumed at all. However, if a utility maximizing consumer with linear 
preferences ends up choosing a positive amount of each commodity for period t, then it must be the case that 
an/pn

t = lt for n = 1,...,N. Thus if a utility maximizing consumer with linear preferences consumes positive 
amounts of all N products in periods 0 and 1, then it must be the case that prices are varying in a 
proportional manner over periods 0 and 1; i.e., the period t price vector pt must be equal to lta where lt > 0 
for t = 0,1.33 It is not realistic to assume that prices vary in strict proportion over time but if the variation in 
prices is approximately proportional, then it is not unrealistic to assume that a utility maximizing consumer’s 
preferences can be adequately approximated by a linear utility function. The assumption of linear 
preferences will play a large role in our treatment of quality change in Chapter 8. The important point to take 
away from this discussion of utility maximizing behavior where the consumer has a linear utility function is 
that the use of the Fisher quantity index to measure quantity change (and hence to measure welfare change) 
is perfectly consistent with the assumption of linear preferences.  
 
It is possible to show that the Fisher ideal price index is a superlative index number formula by a different 
route. Instead of starting with the assumption that the consumer’s utility function is the homogeneous 
quadratic function defined by (21), we can start with the assumption that the consumer’s unit cost function is 
a homogeneous quadratic. Thus suppose that the consumer has the following unit cost function: 
 
(38)  c(p1,…,pN) º [åi=1

Nåk=1
N bikpipk]1/2  

 
where the parameters bik satisfy the symmetry conditions bik = bki for all 1 £  i, k £ N. Thus there are 
N(N+1)/2 independent parameters in the functional form for c(p) defined by (38).34 Let B º [bik] be the N by 
N matrix that has bik in row i and column k of B. Then c(p1,...,pN) = c(p) can be defined as follows: 
 
(39) c(p) = (pTBp)1/2 ; B = BT. 
 
Using the above matrix notation, the vector of first order partial derivatives of the unit cost function defined 
by (39) is equal to the following expression: 
 
(40) Ñc(p) = Bp/[pTBp]1/2 
                  = Bp/c(p) 
 
where the second equation in (40) follows because c(p) º [pTBp]1/2. Now evaluate (40) when p = pt for t = 
0,1, where pt >> 0N is the positive period t price vector facing the consumer. Divide the resulting equation t 
by c(pt) for t = 0,1 and we obtain the following equations: 
 
(41) Ñc(pt)/c(pt) = Bpt/[c(pt)]2 ;                                                                                                                 t = 0,1. 
 

 
33 In this case, the solution set to the period t utility maximization problem defined by (37) is the set {q : pt×q = et ; q ³ 
0N}. This analysis for the case of a linear utility function follows that of Pollak (1971) (1983).  
34 This functional form for a unit cost function is essentially due to Konüs and Byushgens (1926; 168) and they showed 
the relationship of this functional form to the Fisher ideal price index. See also Diewert (1976) and Diewert and Hill 
(2010).  
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The c(p) defined by (39) is obviously linearly homogeneous. But we also need it to be positive (if p > 0N), 
nondecreasing and concave in p over at least a subset of the nonnegative orthant. Suppose the symmetric 
matrix B has one positive eigenvalue with a corresponding strictly positive eigenvector and the remaining 
N-1 eigenvalues of B are either 0 or negative.35 Then c(p) defined by (39) will be positive, nondecreasing 
and concave over the region of regularity S* defined as follows:36 
 
(42) S* º {p : p ³ 0N; Bp ³ 0N; pTBp > 0}.                                                                                
 
Now assume cost minimizing behavior for the consumer in periods 0 and 1; i.e., assume that qt >> 0N is a 
solution to the consumer’s period t cost minimization problem  when the consumer faces the price vector pt 
>> 0N for t = 0,1. Assume that the consumer has homothetic preferences and the consumer’s unit cost 
function is c(p) defined by (39). Finally assume that pt belongs to the regularity region for prices S* defined 
by (42) for t = 0,1. Shephard’s Lemma (20) applied to the c(p) defined by (39) gives us the following 
equations: 
   
(43) qt/pt×qt = Ñc(pt)/c(pt)                                                                                                                     t = 0,1  
                   = Bpt/[c(pt)]2                                                                                                                     using (41). 
 
Recall that the Fisher (1922) ideal price index was defined earlier by (30); i.e., PF(p0,p1,q0,q1) was defined as 
[p1×q0p1×q1/p0×q0p0×q1]1/2. Thus the square of the Fisher price index is equal to: 
 
(44) [PF(p0,p1,q0,q1)]2 = p1×q0p1×q1/p0×q0p0×q1 
                                   = p1T[q0/p0×q0]/p0T[q1/p1×q1] 
                                   = p1T{Bp0/[c(p0)]2}/p0T{Bp1/[c(p1)]2} 
                                   = {1/c(p0)2}/{1/c(p1)2}                                            since p1TBp0 = p0TBp1 using B = BT 

                                   = [c(p1)/c(p0)]2. 
 
Taking positive square roots of both sides of (44) shows that, under the above hypotheses, the Fisher price 
index is exactly equal to the unit cost ratio, which is the consumer’s true cost of living index in the case of 
homothetic preferences i.e., we have 
 
(45) PF(p0,p1,q0,q1) = c(p1)/c(p0). 
 
Finally, use the Product Test to define a quantity index QF

* that corresponds to the Fisher price index 
defined by (30): 
 
(46) QF

*(p0,p1,q0,q1) º p1×q1/{p0×q0PF(p0,p1,q0,q1)} 
                                 = [p0×q1p1×q1/p0×q0p1×q0]1/2                                                                  using definition (30) 
                                 = QF(p0,p1,q0,q1) 
 
where QF(p0,p1,q0,q1) was defined earlier by (27). Thus the implicit quantity index that corresponds to the 
Fisher price index defined by (30) is the Fisher quantity index defined by (27) and the implicit price index 
that corresponds to the Fisher quantity index defined by (27) is the Fisher price index. 
 
Since preferences are homothetic, equations (8) will hold; i.e., we have pt×qt = c(pt)f(qt) for t = 0,1. From 
(46), we have 
 

 
35 These regularity conditions on B are counterparts to our earlier regularity conditions that were imposed on A.  
36 Again see Diewert and Hill (2010; 272-274) for a proof of this result. 
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(47) QF(p0,p1,q0,q1) = p1×q1/{p0×q0PF(p0,p1,q0,q1)} 
                                = c(p1)f(q1)/{c(p0)f(q0)PF(p0,p1,q0,q1)}                                                                 using (8) 
                                = c(p1)f(q1)/{c(p0)f(q0)[c(p1)/c(p0)]}                                                                    using (45) 
                                = f(q1)/f(q0). 
 
Again, the Fisher quantity index is equal to the utility ratio under our assumptions on consumer behavior.  
                                
The proof of Proposition 4 can be adapted to show that c(p) º (pTBp)1/2 is a flexible functional form. Thus 
we have again shown that the Fisher ideal price index is a superlative index; i.e., it is exact for a flexible 
functional form for the unit cost function. 
 
An important special case of this functional form is the case where the matrix B is equal to a rank 1 matrix; 
i.e., suppose B is given by: 
 
(48) B = bbT 
 
where bT º [b1,...,bN] where the bn > 0 for n = 1,...,N. Using Shephard’s Lemma (19) for the cost function 
C(ut,pt) º utc(pt) = ut(pTbbTp)1/2 = utbTp for periods t = 0,1 leads to the following equations to describe the 
period t demand vectors, qt: 
 
(49) qt = utÑc(pt) = utb ;                                                                                                                            t = 0,1.   
 
Thus qn

1/qn
0 = u1/u0 for n = 1,...,N and the demand for each commodity moves in a proportional manner over 

the two periods. Note also that changes in commodity prices do not change the demands. Thus preferences 
are such that the consumer will not substitute cheaper products for more expensive products as prices change 
over time. For N = 2, the consumer’s family of indifference curves are L shaped. The preferences that are 
represented by the cost function uc(p) = ub×p = u Sn=1

N bnpn are called no substitution or Leontief preferences 
in the economic literature.37 These preferences are completely opposite to linear preferences where products 
were perfect substitutes. What is interesting is that the Fisher ideal price and quantity indexes are completely 
consistent with utility maximizing behavior for both types of preferences.  
 
We conclude this section by showing how a linearly homogeneous utility function f(q) can be derived from 
its dual unit cost function c(p). Suppose that the unit cost function c(p) is given and it is nonnegative, 
increasing, linearly homogeneous, concave and continuous for q ³ 0N. Let q* >> 0N. The utility level u º f(q) 
that corresponds to c(p) must satisfy the inequality c(p)u £ p×q* for all p > 0N. Since c(p) and p×q* are linearly 
homogeneous in p, we can replace the set of p such that p > 0N by the set {p : p ³ 0N; p×q* = 1}. Thus the 
inequalities c(p)u £ p×q* for all p > 0N are equivalent to the inequalities c(p)u £ 1 for all p ³ 0N; p×q* = 1. 
Since c(p) will be positive for all such p vectors, this last set of inequalities can be replaced by u £ 1/c(p) for 
all p ³ 0N; p×q* = 1. The biggest such u = f(q*) that will satisfy all of the inequalities is given by 1/c(p*) 
where p* solves the concave programming problem: max p {c(p) : p×q* = 1; p ³ 0N}. Thus we have the 
following representation for f(q*) in terms of c(p):38 
 
(50) f(q*) = 1/max p {c(p) : p×q* = 1; p ³ 0N}.           
 
We can use the above formula in order to calculate the utility function that corresponds to the no substitution 
unit cost function defined as c(p) º b×p. The constrained maximization problem that appears in (50) for this 
unit cost function is: 

 
37 See Diewert (1971).  
38 This formula may be found in Diewert (1974a; 112). 
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(51) max p {Sn=1

N bnpn : Sn=1
N qn

*pn = 1; p ³ 0N}= max n {bn/qn
* : n = 1,...,N}. 

 
Since all of the numbers bn and qn

* are assumed to be positive, 1/max n {bn/qn
* : n = 1,...,N} will equal min n 

{qn
*/bn : n = 1,...,N}. Using this equality and (51), (50) becomes the following explicit representation for the 

no substitution preference function: 
 
(52) f(q*) = min n {qn

*/bn : n = 1,...,N}.    
 
Another special case of the homogeneous quadratic unit cost function defined by (39) is the case where the 
B matrix has an inverse.39 Let c(p) = (pTBp)1/2 where B = BT and B has one positive eigenvalue with a 
strictly positive eigenvector and the remaining N- 1 eigenvalues of B are negative. In this case, B has full 
rank and so B-1 exists. We show in the Appendix how a modification of formula (50) can be used to 
calculate f(q*) for some q* >> 0N.  
 
Proposition 5: Let c(p) = (pTBp)1/2 where B = BT and B has one positive eigenvalue with a strictly positive 
eigenvector and the remaining N- 1 eigenvalues of B are negative. Let q* >> 0N and suppose also that B-1q* 
>> 0N. Let f(q) be the utility function that is dual to c(p). Then f(q*) = (q*TB-1q*)1/2.    
 
In the following sections, we will exhibit some additional exact index number formulae.  
 
6. Quadratic Means of Order r and the Walsh Index 
 
It turns out that there are many other superlative index number formulae; i.e., there exist many quantity 
indexes Q(p0,p1,q0,q1) that are exactly equal to f(q1)/f(q0) and many price indexes P(p0,p1,q0,q1) that are 
exactly equal to c(p1)/c(p0) where the aggregator function f or the unit cost function c is a flexible functional 
form. We will define two families of superlative indexes in this section. 
 
Suppose the consumer has the following quadratic mean of order r utility function:40 
 
(53) f r(q1,…,qN) º [åi=1

N åk=1
N aikqi

r/2qk
r/2

 ]1/r  
 
where the parameters aik satisfy the symmetry conditions aik = aki for all i and k and the parameter r satisfies 
the restriction r ¹ 0. It turns out that fr(q) is a flexible functional form. 
 
Proposition 6: For each r ¹ 0, fr(q) defined by (53) is a flexible functional form. 
 
See the Appendix for a proof. From the proof of Proposition 6, it can be seen that the quadratic mean of 
order r utility function defined by (53) can adequately represent the preferences for a utility maximizing 
consumer for quantity vectors q in a neighbourhood around any strictly positive q* since there will be a 
neighbourhood around q* where fr(q) will be concave and increasing. Hence for this region, fr(q) can provide 
an adequate approximation to arbitrary differentiable homothetic preferences. However, this neighbourhood 
may not be very large and this point should be kept in mind.41   
 
Let r ¹ 0 and define the quadratic mean of order r quantity index Qr by: 
 

 
39 This is the model of consumer behavior considered by Konüs and Byushgens (1926; 168). 
40 This terminology is due to Diewert (1976; 129). When r = 1, fr(q) simplifies into the Generalized Linear Utility 
Function; see Diewert (1971). 
41 This index number formula is due to Diewert (1976; 130). 
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(54)  Qr(p0,p1,q0,q1) º {åi=1
N si

0(qi
1/qi

0)r/2}1/r{åi=1
N si

1(qi
1/qi

0)-r/2}-1/r 
 
where si

t º pi
tqi

t/åk=1
N pk

tqk
t is the period t expenditure share for commodity i for i = 1,...,N and t = 0,1. It can 

be verified that when r = 2, Qr simplifies into QF, the Fisher ideal quantity index. 
 
Proposition 7: Let r ¹ 0 and define fr(q) by (53) over an open convex set S of positive quantity vectors q. 
We assume that fr(q) defined by (53) is positive, increasing and concave over S.42 Finally assume that qt 
solves the following period t local utility maximization problem where pt >> 0N and et > 0 for t = 0,1: 
 
(55) max q {fr(q) : pt×q £ et ; qÎS}.      
 
Then Qr(p0,p1,q0,q1) defined by (54) is exact for fr(q) defined by (53); i.e., we have  
 
(56)  Qr(p0,p1,q0,q1) = fr(q1)/fr(q0). 
 
See the Appendix for a proof of Proposition 7.  
 
Thus under the assumption that the consumer engages in utility maximizing behavior during periods 0 and 1 
and has local preferences over the N commodities that  correspond to the utility function defined by (53) for 
a region that includes q0 and q1, then the quadratic mean of order r quantity index Qr is exactly equal to the 
true quantity index, fr(q1)/f r(q0).43 Since Qr is exact for fr and fr is a flexible functional form, we see that the 
quadratic mean of order r quantity index Qr is a superlative index for each r ¹ 0. Thus there are an infinite 
number of superlative quantity indexes.44 
 
For each quantity index Qr, we can use the product test in order to define the corresponding implicit 
quadratic mean of order r price index Pr*: 
 
(57)  Pr*(p0,p1,q0,q1) º p1×q1/{p0×q0Qr(p0,p1,q0,q1)} 
                                 = cr*(p1)/cr*(p0) 
 
where cr* is the unit cost function that corresponds to the aggregator function fr defined by (53) above. For 
each r ¹ 0, the implicit quadratic mean of order r price index Pr* is also a superlative index. 
 
When r = 2, as noted earlier, Qr defined by (54) simplifies to QF, the Fisher ideal quantity index and Pr* 
defined by (57) simplifies to PF, the Fisher ideal price index. When r = 1, Qr defined by (54) simplifies to: 
 
(58)  Q1(p0,p1,q0,q1) º {åi=1

N si
0(qi

1/qi
0)1/2}/{åi=1

N si
1(qi

1/qi
0)-1/2} 

                                ={[åi=1
N pi

0qi
0/åi=1

N pi
0qi

0](qi
1/qi

0)1/2}/{[åi=1
N pi

1qi
1/åi=1

N pi
1qi

1](qi
1/qi

0)-1/2} 
                                ={åi=1

N pi
0(qi

0qi
1)1/2/p0×q0}/{åi=1

N pi
1(qi

0qi
1)1/2/p1×q1} 

                                = [p1×q1/p0×q0]/PW(p0,p1,q0,q1) 
 

 
42 Using the techniques described in Blackorby and Diewert (1979), the utility function fr(q) which satisfies the 
appropriate regularity conditions over the set S can be extended to preferences that are defined over q ³ 0N. 
43 See Diewert (1976; 130). 
44 However, as r becomes large in magnitude, the region where fr(q) can approximate a well behaved utility function 
will tend to shrink. In the limiting cases where r tends to plus or minus infinity, Hill (2006) showed that fr(q) loses its 
flexibility property. Thus it is recommended that Qr(p0,p1,q0,q1) only be used for r small in magnitude.   
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where PW is the Walsh (1901) (1921) price index defined in Chapter 2. Thus P1* is equal to PW, the Walsh 
price index, and hence it is also a superlative price index.45 
 
Suppose the consumer has the following quadratic mean of order r unit cost function:46 
 
(59)  cr(p1,…,pN) º [åi=1

N åk=1
N bikpi

r/2
 pk

r/2
 ]1/r  

 
where the parameters bik satisfy the symmetry conditions bik = bki for all i and k and the parameter r satisfies 
the restriction r ¹ 0. Note that when r = 2, cr equals the homogeneous quadratic unit cost function defined by 
(39) above.47 
 
Proposition 8: For each r ¹ 0, cr(p) defined by (59) is a flexible functional form.48 
 
The proof of this proposition is analogous to the proof of Proposition 6: just replace q by p and replace fr(q) 
by cr(p). 
 
Since cr(p) is unlikely to be a well behaved unit cost function over the entire set of positive price vectors, we 
need a method for recovering preferences defined by a unit cost function defined over a smaller set of prices 
where cr(p) satisfies the necessary conditions for unit cost function; i.e., where it is increasing and concave.49 
Thus let S* be a set of prices that satisfies the following conditions:50 
 
(60) S* is a set of N dimensional vectors that has the following properties: (i) if pÎS*, then p >> 0N; (ii) S* is 
an open set 51; (iii) S* is a convex set 52; (iv) S* is a cone 53; (v) if p belongs to S*, then Ñcr(p) >> 0N and (vi) 
cr(p) is a concave function over S*.  
 
We need to find  the utility function fr*(q) that is consistent with the unit cost function cr(p) defined by (59) 
over S*. We can find this corresponding utility function but it will not be defined over all nonnegative 
quantity vectors, q ³ 0N. It will be defined over the set S defined as follows: 
 
(61) S º {q: q = lÑcr(p); l > 0; pÎS*}. 
 
It can be seen using property (v) in (60) that S will also be a cone and moreover, if qÎS, then q >> 0N. 
 
If S* turns out to be the interior of the nonnegative orthant, then the fr*(q*) that is generated by the unit cost 
function cr(p) for q* >> 0N can be defined as follows: 

 
45 For r = 1, the utility function defined by (53) turns out to be the Generalized Linear function that was introduced to 
the economics literature by Diewert (1971).  
46 This terminology is due to Diewert (1976; 130). This unit cost function was first defined by Denny (1974). We 
restrict p to belong to a set of prices S* that is defined in Proposition 8. 
47 When r = 1, cr(p) defined by (59) becomes the Generalized Leontief functional form for a cost function; see Diewert 
(1971). 
48 See Diewert (1976; 130). 
49 The cr(p) defined by (59) is automatically linearly homogeneous over the set of prices where it is positive, increasing 
and concave since linear homogeneity is imposed on the functional form by its definition. 
50 Using the techniques described in Blackorby and Diewert (1979), if cr(p) is linearly homogeneous, increasing and 
concave over S*, then the domain of definition of cr(p) can be extended to all p ³ 0N.  
51 This means: if pÎS*, then there exists a d > 0 such that the open ball of radius d, Bd(p), also belongs to S* where 
Bd(p) º {x: (x-p)×(x-p) < d2}.   
52 This means: if p1 and p2 belong to S* and 0 < l < 1, then lp1 + (1-l)p2 also belongs to S*. 
53 If p belongs to S* then lp also belongs to S* for all l > 0.  
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(62) fr*(q*) º max u>0,p {u: cr(p)u £ p×q*; p > 0N} 
                  = max u>0,p {u: cr(p)u £ e; e = p×q*; p > 0N} where e > 0 is an arbitrary positive number54 
                  = max u>0,p {u: u £ e/cr(p); e = p×q*; p ³ 0N}55 
                  = e/max p {cr(p); e = p×q*; p ³ 0N}. 
 
However, in general, cr(p) will not be a well behaved unit cost function for all p > 0N. Thus in the following 
definition for fr*(q*), we restrict p to belong to the set S* that has the properties listed in (60) above and we 
restrict q* to belong to S where S is defined by (61). Thus let q* belong to S and define fr*(q*) as follows:56 
 
(63) fr*(q*) º max u>0,p {u: cr(p)u £ p×q*; pÎS*} 
                  = max u>0,p {u: cr(p)u £ e; e = p×q*; pÎS*} where e > 0 is an arbitrary positive number 
                  = max u>0,p {u: u £ e/cr(p); e = p×q*; pÎS*} 
                  = e/max p {cr(p); e = p×q*; pÎS*}. 
 
The above representation for fr*(q*) will be used in the proof of the following Proposition: 
 
Proposition 9: Let cr(p) be defined by (59) for pÎS* where S* is defined by (60).  Let et > 0 and ptÎS*. 
Define qt as 
 
(64) qt º etÑcr(pt)/cr(pt). 
 
Then pt is a solution to max p {cr(p); e = p×qt; pÎS*}. Define fr*(q) by (63) (with e = et) for qÎS where S is 
defined by (61).  Then fr*(qt) is equal to the following expression: 
 
(65) fr*(qt) = et/cr(pt).  
 
Finally, the qt defined by (64) is a solution to the consumer’s local utility maximization problem defined as 
follows: 
 
(66) max q {fr*(q) : pt×q = et; qÎS}. 
 
For a proof of Proposition 9, see the Appendix.  
 
Note that using (64), we have: 
 
(67) pt×qt = pt×etÑcr(pt)/cr(pt)  
               = etcr(pt)/cr(pt)                                                                                                since cr(pt) = pt×etÑcr(pt)  
               = et  
               = fr*(qt)cr(pt)                                                                                                  using (65).  
  
 Using (64) and pt×qt = et, we also have the Shephard’s Lemma equality:57 

 
54 The number e is a fixed positive number. In order to justify moving from the first equality in (62) to the second 
equality, we need to use the fact that cr(p) is linearly homogeneous. 
55 Since e > 0, p ³ 0N, q* >> 0N and p×q* = e, we can replace the constraints p > 0N by p ³ 0N. 
56 Again, using the methods described in Blackorby and Diewert (1979), the domain of definition for fr*(q) can be 
extended to q ³ 0N. However, for q > 0N but qÏS, the extended fr*(q) may not represent the true preferences of the 
consumer.  
57 Recall (20) above. 
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(68) qt/pt×qt = Ñcr(pt)/cr(pt). 
 
We will relate the preferences defined by cr(p) to the following price index formula. Let r ¹ 0 and define the 
quadratic mean of order r price index Pr by: 
 
(69)  Pr(p0,p1,q0,q1) º {åi=1

N si
0(pi

1/pi
0)r/2}1/r{åi=1

N si
1(pi

1/pi
0)-r/2}-1/r 

 
where si

t º pi
tqi

t/pt×qt is the period t expenditure share for commodity i for i = 1,...,N and t = 0,1. It can be 
verified that when r = 2, Pr simplifies into PF, the Fisher ideal price index. 
 
Proposition 10: Let r ¹ 0 and assume that cr(p) given by (59) is defined over a set S* which satisfies 
conditions (60). Define the set S by (61) and define the locally dual utility function fr*(q*) for q*ÎS by (63) 
for any e > 0. Let et equal the consumer’s “income” in period t that is allocated to spending on the N 
commodities for t = 0,1. Let p0 and p1 belong to S* and define q0 and q1 by: 
 
(70) qt º etÑcr(pt)/cr(pt) ;                                                                                                                            t = 0,1. 
 
Then qt solves the local utility maximization problem, max q {fr*(q) ; pt×q = et; qÎS}, for t = 0,1. Moreover, 
Pr defined by (69) is exact for the preferences defined by fr*(q) over the set S; i.e., we have 
 
(71) Pr(p0,p1,q0,q1) = cr(p1)/cr(p0). 
 
See the Appendix for a proof.  
 
Thus under the assumption that the consumer engages in cost minimizing behavior during periods 0 and 1 
and has preferences over the N commodities that correspond to the unit cost function defined by (59), the 
quadratic mean of order r price index Pr is exactly equal to the true price index, cr(p1)/cr(p0).58 Since Pr is 
exact for cr and cr is a flexible functional form, we see that the quadratic mean of order r price index Pr is a 
superlative index for each r ¹ 0. Thus there is an infinite number of superlative price indexes. 
 
For each price index Pr, we can use the product test in order to define the corresponding implicit quadratic 
mean of order r quantity index Qr*: 
 
(72)  Qr*(p0,p1,q0,q1) º p1×q1/{p1×q1Pr(p0,p1,q0,q1)} 
                                 = fr*(q1)/fr*(q0) 
 
where fr* is the utility function that corresponds to the unit cost function cr defined by (53) above. For each r 
¹ 0, the implicit quadratic mean of order r quantity index Qr* is also a superlative index. 
 
When r = 2, Pr defined by (69) simplifies to PF, the Fisher ideal price index and Qr* defined by (72) 
simplifies to QF, the Fisher ideal quantity index. When r = 1, Pr simplifies to: 
 
(73)  P1(p0,p1,q0,q1) º {åi=1

N si
0 (pi

1/pi
0)1/2}/{åi=1

N si
1 (pi

1/pi
0)-1/2} 

                                ={[åi=1
N pi

0qi
0/ p0×q0](pi

1/pi
0)1/2}/{[ p1×q1/åi=1

N pi
1qi

1](pi
1/pi

0)-1/2} 
                                ={åi=1

N qi
0(pi

0pi
1)1/2/p0×q0}/{åi=1

N qi
1(pi

0pi
1)1/2/p1×q1} 

                                = [p1×q1/p0×q0]/QW(p0,p1,q0,q1) 
 

 
58 See Diewert (1976; 133-134). 
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where QW is the Walsh quantity index. Thus Q1* is equal to QW, the Walsh quantity index, and hence it is 
also a superlative quantity index.59 
 
The results in this section can be summed up as follows: 
 

• Superlative indexes are nice in theory since they enable statisticians to compute price and volume 
indexes that are consistent with the economic approach to index number theory where the 
underlying preference functions and their corresponding unit cost functions can approximate 
arbitrary differentiable preferences to the second order around an arbitrary point. These superlative 
indexes do not require econometric estimation in order to be implemented. 

• These indexes are consistent with a wide range of substitution responses on the part of consumers to 
changes in prices. 

• However, superlative indexes have the disadvantage that the quantity and price regions where the 
underlying preferences are well behaved is generally not known to the statistician. If there are large 
fluctuations in prices and quantities across periods, then the various exact indexes may no longer be 
exact!60  

• It is of some comfort that the Fisher and Walsh indexes that have been recommended as “best” from 
the approaches to index number theory that were described in previous chapters emerge as being 
“best” from the economic approach as well.  

 
We turn our attention to yet another superlative index number formula.  
       
7.  Superlative Indexes:  The Törnqvist Theil Index 
 
In this section, we will revert to the assumptions made on the consumer in section 2 above. In particular, we 
do not assume that the consumer’s utility function f is necessarily linearly homogeneous as in sections 3-6 
above. 
 
Before we derive our main result, we require a preliminary result. Suppose the function of N variables, 
f(z1,…,zN) º f(z), is quadratic; i.e.,  
 
(74)  f(z1,…,zN) º a0 + åi=1

N ai zi + (1/2) åi=1
N åk=1

N aikzizk  ;  aik = aki for all i and k, 
 
where the ai and the aik are constants. Let fi(z) denote the first order partial derivative of f evaluated at z with 
respect to the ith component of z, zi. Let fik(z) denote the second order partial derivative of f with respect to 
zi and zk. Then it is well known that the second order Taylor series approximation to a quadratic function is 
exact; i.e., if f is defined by (74) above, then for any two points, z0 and z1, we have 
 
(75)  f(z1) - f(z0) = åi=1

N fi(z0)[zi
1-zi

0] + (1/2) åi=1
N åk=1

N fik(z0)[zi
1-zi

0][zk
1-zk

0] 
                            = Ñf(z0)×[ z1 - z0] + (1/2)[ z1 - z0]TÑ2f(z0)T[z1 - z0]. 
 

 
59 The Walsh quantity index is a useful one for national income accountants since it is a superlative index but it is also 
an index that defines real output for periods 0 and 1 as Qt º Sn=1N (pn0pn1)1/2qnt for t = 0,1. Thus the price weights are 
constant over the two periods and the quantity aggregate Qt for period t is linear in the period t quantities, qnt. See 
Diewert (1996).  
60 This warning is particularly relevant for the use of the quadratic mean of order r functional forms where r is large in 
magnitude. The regularity regions for these functions will tend to shrink as r approaches plus or minus infinity.  
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It is less well known that an average of two first order Taylor series approximations to a quadratic function 
is also exact; i.e., if f is defined by (74) above, then for any two points, z0 and z1, we have61 
 
(76)  f(z1) - f(z0) = (1/2)åi=1

N [fi(z0) + fi(z1)][zi
1-zi

0] = (1/2)[Ñf(z0) + Ñf(z1)]T[z1 - z0]. 
 
Diewert (1976; 118) and Lau (1979) showed that equation (76) characterized a quadratic function and called 
the equation the quadratic approximation lemma. We will refer to (76) as the quadratic identity.   
 
We now suppose that the consumer’s cost function,62 C(u,p), has the following translog functional form:63 
  
(77)  lnC(u,p) º a0 + åi=1

N ailnpi + (1/2) åi=1
N åk=1

N aiklnpilnpk 
                                     + b0lnu + åi=1

N bilnpilnu + (1/2) b00[lnu]2 
 
where ln is the natural logarithm function and the parameters ai, aik, and bi satisfy the following restrictions: 
 
(78)         aik = aki ;                                                                                                                            i,k = 1,…,N; 
(79)  åi=1

N ai = 1 ; 
(80)  åi=1

N bi = 0 ; 
(81)  åk=1

N aik = 0 ;                                                                                                                            i = 1,…,N. 
 
The parameter restrictions (78)-(81) ensure that C(u,p) defined by (77) is linearly homogeneous in p, a 
property that a cost function must have. It can be shown that the translog cost function defined by (77)-(81) 
can provide a second order Taylor series approximation to an arbitrary cost function.64 
 
We assume that the consumer has preferences that correspond to the translog cost function and that the 
consumer engages in cost minimizing behavior during periods 0 and 1. Let p0 and p1 be the period 0 and 1 
observed price vectors65 and let q0 and q1 be the period 0 and 1 observed quantity vectors. Using the 
assumption of cost minimizing behavior, we have: 
 
(82)  C(u0,p0) = p0×q0 and C(u1,p1) = p1×q1  
 
where C is the translog cost function defined above. We can also apply Shephard’s Lemma66 to C(ut,pt) 
defined by (77): 
 
(83)  qi

t = ¶C(ut,pt)/¶pi ;                                                                                                          i = 1,…,N ; t = 0,1 
             = [C(ut,pt)/pi

t]¶lnC(ut,pt)/¶lnpi. 

 
61 To prove that (75) and (76) are true, use definition (74) and substitute into the left hand sides of (75) and (76).  Then 
calculate the partial derivatives of the quadratic function defined by (74) and substitute these derivatives into the right 
hand side of (75) and (76). 
62 The consumer’s cost function was defined by (1) above. 
63 Christensen, Jorgenson and Lau (1971) (1975) introduced this function into the economics literature. 
64 It can also be shown that if b0 = 1 and all of the bi = 0 for i = 1,...,N and b00 = 0, then C(u,p) = uC(1,p) º uc(p); i.e., 
with these additional restrictions on the parameters of the general translog cost function, we have homothetic 
preferences. Note that we also assume that utility u is scaled so that u is always positive. 
65 We need to assume that (u0,p0) and (u1,p1) belong to the region of prices S* where the translog C(u,p) satisfies the 
regularity conditions that a cost function must satisfy. If we think of C(u,p) as an approximation to an arbitrary 
differentiable cost function, then because of the flexibility property of the translog cost function, it is not a problem to 
assume that (u0,p0) belongs to S* but if the vector (u1,p1) is not close to (u0,p0), then (u1,p1) may not belong to the 
regularity region so that equation (83) for t = 1 may not hold and hence equation (87) may not be valid.     
66 See (18) above. 
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Now use (82) to replace C(ut,pt) in (83).  After some cross multiplication, equations (83) become the 
following system of equations: 
 
(84)  pi

tqi
t/åk=1

N pk
tqk

t º si
t = ¶lnC(ut,pt)/¶lnpi ;                                                                  i = 1,…,N ; t = 0,1 or 

(85)  si
t = ai + åk=1

N aiklnpk
t + bilnut ;                                                                                  i = 1,…,N ; t = 0,1 

 
where si

t is the period t expenditure share on commodity i and (85) follows from (84) by differentiating (77) 
with respect to lnpi for t = 0,1 and i = 1,...,N. 
 
Define the geometric average of the period 0 and 1 utility levels as u*; i.e., define 
 
(86)  u* º [u0u1]1/2 . 
 
Now observe that the right hand side of the equation that defines the natural logarithm of the translog cost 
function, equation (77), is a quadratic function of the variables zi º lnpi if we hold utility constant at the level 
u*. Hence we can apply the quadratic identity, (76), and get the following equation: 
 
(87)  lnC(u*,p1) - lnC(u*,p0) 
             = (1/2)åi=1

N [¶lnC(u*,p0)/¶lnpi + ¶lnC(u*,p1)/¶lnpi][lnpi
1-lnpi

0] 
             = (1/2)åi=1

N [ai+åk=1
N aiklnpk

0+bilnu* + ai+åk=1
N aiklnpk

1+bilnu*][lnpi
1-lnpi

0] 
                                                                                              differentiating (77) at the points (u*,p0) and (u*,p1)                                                       
             = (1/2)åi=1

N [ai+åk=1
N aiklnpk

0+biln[u0u1]1/2+ai+åk=1
N aiklnpk

1+biln[u0u1]1/2][lnpi
1-lnpi

0]  
                                                                                                                                   using definition (86) for u* 

             = (1/2)åi=1
N [ai+åk=1

N aiklnpk
0+bi lnu0 + ai+åk=1

N aik lnpk
1+bilnu1][lnpi

1-lnpi
0]         rearranging terms 

             = (1/2)åi=1
N [¶lnC(u0,p0)/¶lnpi + ¶lnC(u1,p1)/¶lnpi ][lnpi

1-lnpi
0] 

                                                                                            differentiating (77) at the points (u0,p0) and (u1,p1) 
             = (1/2)åi=1

N [si
0 + si

1][lnpi
1-lnpi

0]                                                                          using equations (85). 
 
The last equation in (87) can be recognized as the logarithm of the Törnqvist67 Theil (1967) index number 
formula PT defined in Chapter 4. Hence exponentiating both sides of (87) yields the following equality 
between the true cost of living between periods 0 and 1, evaluated at the intermediate utility level u* and the 
observable Törnqvist Theil index PT:68 
 
(88)  C(u*,p1)/C(u*,p0) = PT(p0,p1,q0,q1). 
 
Since the translog cost function which appears on the left hand side of (88) is a flexible functional form, the 
Törnqvist Theil price index PT is also a superlative index. Note that it is not necessary to assume homothetic 
preferences to derive this result.   
 
It is somewhat mysterious how a ratio of unobservable cost functions of the form appearing on the left hand 
side of the above equation can be exactly estimated by an observable index number formula but the key to 
this mystery is the assumption of cost minimizing behavior and the quadratic identity (76) along with the 
fact that derivatives of cost functions are equal to quantities, as specified by Shephard’s lemma, (18). In fact, 
all of the exact index number results derived in this section and the previous section can be derived using 

 
67 See Törnqvist and Törnqvist (1937). 
68 This result is due to Diewert (1976; 122). 
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transformations of the quadratic identity along with Shephard’s lemma (or Wold’s identity (15) above).69  
Fortunately, for most empirical applications, assuming that the consumer has (transformed) quadratic 
preferences will be an adequate assumption so the results presented in this section and the previous section 
are quite useful to index number practitioners who are willing to adopt the economic approach to index 
number theory. Essentially, the economic approach to index number theory provides a strong justification 
for the use of the Fisher price index PF, the Törnqvist Theil price index PT, the implicit quadratic mean of 
order r price indexes Pr* defined by (57) (when r = 1, this index is the Walsh price index PW) and the 
quadratic mean of order r price indexes Pr defined by (69), provided that r is a number that is small in 
magnitude. 
 
8. The Numerical Approximation Properties of Superlative Indexes 
 
In the previous section, we have exhibited two families of superlative price and quantity indexes, Qr and Pr* 
defined by (54) and (57), and Pr and Qr* defined by (69) and (72) for each r ¹ 0. The Fisher index PF was a 
special case of Pr with r = 2 and the Walsh index PW was a special case of Pr* with r = 1. Another superlative 
index was the Törnqvist Theil index PT. A natural question to ask at this point is: how different will these 
indexes be? It is possible to show that all of the price indexes Pr approximate each other to the second order 
around any point where the price vectors p0 and p1 are equal and where the quantity vectors q0 and q1 are 
equal; i.e., we have the following equalities if the first and second order partial derivatives are evaluated at 
p0 = p1 = p >> 0N and q0 = q1 = q >> 0N for any r ¹ 0:70

 

 
(89)     PF(p0,p1,q0,q1) =    PT(p0,p1,q0,q1)   =    PW(p0,p1,q0,q1)  =     Pr(p0,p1,q0,q1)  =     Pr*(p0,p1,q0,q1) ;    
(90)  ÑPF(p0,p1,q0,q1) =  ÑPT(p0,p1,q0,q1)  =  ÑPW(p0,p1,q0,q1)  =  ÑPr(p0,p1,q0,q1)  =  ÑPr*(p0,p1,q0,q1) ;    
(91) Ñ2PF(p0,p1,q0,q1) = Ñ2PT(p0,p1,q0,q1)  = Ñ2PW(p0,p1,q0,q1) = Ñ2Pr(p0,p1,q0,q1)  = Ñ2Pr*(p0,p1,q0,q1) . 
 
The vector of first order partial derivatives of the function of 4N variables PF(p0,p1,q0,q1) is the vector of 
dimension 4N denoted by ÑPF(p0,p1,q0,q1) and the matrix of second order partial derivatives of 
PF(p0,p1,q0,q1) is a 4N by 4N matrix denoted by Ñ2PF(p0,p1,q0,q1) and so on. A similar set of equalities holds 
for the companion quantity indexes that match up to PF, PT, PW, Pr and Pr* using the product test, 
Q(p0,p1,q0,q1) º p1×q1/p0×q0P(p0,p1,q0,q1). The implication of the above equalities is that if prices and 
quantities do not change much over the two periods being compared, then all of above price indexes will 
give much the same answer. 
 
For empirical comparisons of some of the above indexes, see Diewert (1978; 894-895) and Hill (2006). Hill 
(2006) showed that the second order approximation property of the mean of order r indexes breaks down as r 
approaches plus or minus infinity. However, in most empirical applications, we generally choose r equal to 2 
(the Fisher case) or 1 (the Walsh case) or 0 (the Törnqvist Theil case). For these cases, the resulting indexes 
generally approximate each other very closely.71   
 
It turns out that the Laspeyres and Paasche price indexes approximate each other (and superlative indexes 
like the Fisher index) to the first order around an equal price and quantity point but not to the second order; 

 
69 See Diewert (2002). However, when applying Wold’s Identity or Shephard’s Lemma to observed price and quantity 
data, we need the assumption of optimizing behavior on the part of the consumer and we need the observed data to be 
in the regions of regularity for the utility function or cost function that we are working with. 
70 The proof is a straightforward differentiation exercise; see Diewert (1978; 889).  In fact, the equalities in (89)-(91) 
are still true provided that p1 = lp0 and q1 = µq0 for any numbers l > 0 and µ > 0.   
71 The approximations will be close if we are using annual time series data where price and quantity changes are 
generally smooth.  However, if we are making international comparisons or using panel data or using subannual time 
series data, then the approximations may not be close. 
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i.e., we have the following equalities if the first order partial derivatives are evaluated at p0 = p1 = p >> 0N 
and q0 = q1 = q >> 0N: 
 
(92)     PF(p0,p1,q0,q1) =    PL(p0,p1,q0,q1)   =    PP(p0,p1,q0,q1) ;    
(93)  ÑPF(p0,p1,q0,q1) =  ÑPL(p0,p1,q0,q1)  =  ÑPP(p0,p1,q0,q1).  
 
Up to this point, we have considered four different approaches to index number theory: 
 

• Fixed basket approaches and averages of baskets; 
• Test approaches to index number theory; 
• Stochastic or descriptive statistics approaches to index number theory and  
• Economic approaches. 

 
The first approach led to the Fisher and Walsh indexes as being “best”, the second approach led to the Fisher 
and Törnqvist Theil indexes as being “best”, the third approach led to the Törnqvist Theil index as “best” 
and the economic approach led to the Fisher, Walsh and Törnqvist Theil indexes as being among the “best” 
indexes. Thus PF, PW and PT keep emerging as “best’ indexes. The results in this section tell us that if prices 
and quantities do not change all that much going from the first period to the second period, then all three of 
these indexes will give us more or less the same answer.    
 
9. The Cobb Douglas Price Index 
 
Suppose that the consumer’s utility function is defined as follows for all q ³ 0N: 
 
(94) f(q) º a0Pn=1

N  
 
where the an > 0 for n = 0,1,...,N and in addition satisfy the following constraint: 
 
(95) Sn=1

N an = 1. 
 
This is the Cobb Douglas functional form.72 It can be seen that f(q) defined by (94) is linearly homogeneous. 
It is also positive, concave and increasing over the set of strictly positive quantity vectors.  
 
Let the consumer’s preferences be represented by f(q) and suppose that the commodity price vector p >> 0N 
and is given. The consumer’s unit cost minimization problem is defined as follows: 
 
(96) min q {p×q : f(q) ³ 1 ; q ³ 0N}º c(p). 
 
Proposition 11: The solution to the unit cost minimization problem defined by (96) when f(q) is the Cobb 
Douglas utility function defined by (94) and (95) is the Cobb Douglas unit cost function defined as follows 
for p >> 0N: 
 
(97) c(p) º kPn=1

N (pn)  ; k º [a0Pn=1
N ]-1.  

 
72 This functional form was used as a production function for the case N = 2 by Cobb and Douglas (1928). It was also 
used by Knut Wicksell as a production function much earlier in 1916; see Olsson (1971). This functional form was first 
used as a utility function for the N commodity case in section 8 of Konüs and Byushgens (1926). Our algebra in this 
section was more or less worked out by Konüs and Byushgens. In particular, these authors realized that the assumption 
of Cobb Douglas preferences implied that commodity expenditure shares must be constant over time. See also Pollak 
(1971) (1983) for his analysis of Cobb Douglas preferences, which is followed in the present section.      

n
nq
a

na n
n
aa



 29 

 
See the Appendix for a proof. 
 
It can be seen that the Cobb Douglas unit cost function has more or less the same functional form as the 
Cobb Douglas utility function: p replaces q when we move from the utility function to the unit cost function. 
 
Let pt >> 0N for t = 0,1. Suppose the consumer has Cobb Douglas preferences and faces the prices pt in 
period t for t = 0,1. The observed period t quantity vector is qt >> 0N. Assume that the consumer minimizes 
the cost of achieving the utility level ut º f(qt) for each period. Then the components of qt º[q1

t,...,qN
t] must 

satisfy the following equations which follow by using (97) and Shephard’s Lemma: 
 
(98) qn

t = [¶c(pt)/¶pn]f(qt) ;                                                                                                      n = 1,...,N; t = 0,1 
            = anc(pt)[pn

t]-1f(qt). 
 
Multiply both sides of equation n in period t by pn

t and we obtain the following equations: 
 
(99) pn

tqn
t = anc(pt)f(qt) ;                                                                                                         n = 1,...,N; t = 0,1. 

 
Summing equations (99) for each period t gives us the following equations, making use of Sn=1

N an = 1: 
 
(100) pt×qt = c(pt)f(qt) ;                                                                                                                              t = 0,1. 
 
Using equations (99) and (100), we see that the following equations hold: 
 
(101) sn

t º pn
tqn

t/pt×qt = anc(pt)f(qt)/c(pt)f(qt) = an ;                                                                 n = 1,...,N; t = 0,1. 
                               
Equations (101) are important: they tell us that a utility maximizing consumer that has Cobb Douglas 
preferences will have expenditure shares on each commodity that will remain constant across all time 
periods. This assumption is unlikely to be satisfied in practice. Nevertheless, equations (101) lead to an exact 
Konüs true cost of living index as will be seen below. 
 
Since Cobb Douglas preferences are homothetic, the true cost of living index going from period 0 to 1 is 
c(p1)/c(p0) where c(p) is defined by (97). Thus we have the following exact index number formula for a 
Cobb Douglas consumer: 
 
(102) c(p1)/c(p0) = kPn=1

N (pn
1) /kPn=1

N (pn
0)     

                           = Pn=1
N (pn

1/pn
0)  

                           = Pn=1
N (pn

1/pn
0)                                                                                      using (101) for t = 0 

                           º PKB(p0,p1,q0,q1) 
 
where PKB(p0,p1,q0,q1) is the Konus Byushgens or Cobb Douglas price index. This formula is a handy one for 
price statisticians: the price index for a current period can be evaluated using only the prices pn

0 and 
expenditure shares sn

0 for a past period 0 and prices pn
1 for the current period 1.  

 
We turn now to a functional form for the utility function that is more flexible than the Cobb Douglas utility 
function but is still not completely flexible. 
 
10. Constant Elasticity of Substitution (CES) Preferences 
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It is useful to introduce a family of functions that calculate an average of N positive numbers, x º [x1,...,xN]. 
Assume that the number r is not equal to zero and the positive weights an sum to 1 so that a º [a1,...,aN] 
satisfies conditions (95). Define the weighted mean of order r of the N components of the x vector as 
follows:73 
 
(103) Mr(x) º [ån=1

N anxn
r]1/r. 

 
The functional form defined by (103) occurs frequently in the economics literature. If r = 1, then Mr(x) 
equals a×x, a linear function of x. As r tends to plus infinity, Mr(x) tends to max n {xn: n = 1,...,N}. As r tends 
to minus infinity, Mr(x) tends to min n {xn: n = 1,...,N}. As r tends to 0, Mr(x) tends to the Cobb Douglas 
functional form which is the weighted geometric mean, Pn=1

N (xn) . It is readily verified that Mr(lx) = 
lMr(x) for all l > 0 and x >> 0N. If we multiply Mr(x) by a constant, then we obtain the CES (Constant 
Elasticity of Substitution) functional form popularized by Arrow, Chenery, Minhas and Solow (1961) in the 
context of production theory (where x is an input vector and a0Mr(x) is the output produced by the input 
vector x). This functional form is also widely used as a utility function and it also used extensively when 
measures of income inequality are constructed.74 We note that the function Mr(x) is flexible if r ¹ 0 and N = 
2. It is not flexible if N > 2. 
 
For future reference, the first and second order partial derivatives of Mr(x) for x >> 0N are as follows:  
 
(104) ¶Mr(x)/¶xi = (1/r)[ån=1

N anxn
r](1/r)-1ai r xi

r-1 = [ån=1
N anxn

r](1/r)-1ai xi
r-1 ;                                    i = 1,...,N. 

 
Differentiating (104) again with respect to xi yields the following second order partial derivatives: for i = 
1,...,N: 
 
(105) ¶2Mr(x)/¶xi

2 = [(1/r) -1][ån=1
N anxn

r](1/r)-2ai rxi
r-1ai xi

r-1 + [ån=1
N anxn

r](1/r)-1ai  (r-1)xi
r-2 ;        i = 1,...,N 

                              = [r -1][ån=1
N anxn

r](1/r)-2{[ån=1
N anxn

r]ai xi
r-2 - ai

2
 xi

2r-2}.    
 
Differentiating (104) with respect to xk for k ≠ i yields: 
 
(106) ¶2Mr(x)/¶xi¶xk = [(1/r) -1][ån=1

N anxn
r](1/r)-2ak rxk

r-1ai xi
r-1 ;                                                      k ¹ i 

                                 = (1 - r)[ån=1
N anxn

r](1/r)-2 aiakxi
r-1xk

r-1. 
 
It can be shown if r £ 1, then the matrix of second order partial derivatives of Mr(x), Ñ2Mr(x), is a negative 
semidefinite matrix for all x >> 0N and this property in turn implies that Mr(x) is a concave function over the 
set of positive x vectors.75 Hence Mr(q) is a suitable functional form for a utility function and Mr(p) is a 
suitable functional form for a unit cost function if r £1. These functions satisfy the required regularity 
conditions over the entire positive orthant. For future reference, the derivatives defined by (104)-(106) can 
be used in order to establish the following equalities: 
 
(107) Mr(x)[¶2Mr(x)/¶xi¶xk]/[¶Mr(x)/¶xi][¶Mr(x)/¶xk] = (1 - r);                                     x >> 0N; 1 £ i ¹ k £ N.   
 

 
73 Hardy, Littlewood and Polya (1934; 12-14) refer to this family of means or averages as elementary weighted mean 
values and study their properties in great detail. Mr(x) has the following properties where x >> 0N: (i) Mr(l1N) = l for 
any l > 0; (ii) ÑMr(x) >> 0N so that Mr(x) is increasing in x; (iii) min {xn ; n =1,...,N} £ Mr(x) £ max {xn ; n =1,...,N} 
and (iv) Mr(lx) = lMr(x). Thus Mr(x) is a homogeneous mean. See Diewert (1993b) for materials on mean functions 
and their application to economics. 
74 See Diewert (1993b). 
75 The definition of Mr(x) can be extended to the set x ³ 0N; see Hardy, Littlewood and Polya (1934). 
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Suppose that the unit cost function has the following CES functional form for r £ 1: 
 
(108) c(p) º a0 [ån=1

N an (pn)r]1/r if r ¹ 0; 
                 º a0 Õn=1

N pn          if r = 0 
 
where a0 > 0 and a º [a1,...,aN] satisfies conditions (95).           
 
Under the assumption of cost minimizing behavior on the part of the consumer in period t, Shephard’s 
Lemma, (18) above, tells us that the observed period t consumption of commodity i, qi

t, will be equal to 
ut¶c(pt)/¶pi where ¶c(pt)/¶pi is the first order partial derivative of the unit cost function with respect to the ith 
commodity price evaluated at the period t prices and ut = f(qt) is the aggregate (unobservable) level of period 
t utility. Using the CES unit cost function defined by (108) and assuming that r ¹ 0, the following equations 
are obtained that express the components of the consumer’s observed consumption vector qt in terms of the 
period t prices pt facing the consumer and either the period t utility level for the consumer ut or the observed 
period t expenditure for the consumer, et º pt×qt: 
 
(109) qi

t = uta0 [ån=1
N an (pn

t) 
r](1/r)-1ai (pi

t)r-1;                                                                          t = 0,1; i = 1,…,N 
              = utc(pt) ai(pi

t)r-1/ån=1
N an(pn

t)r  
              = etai(pi

t)r-1/ån=1
N an(pn

t)r 
 
where the last equation in (109) follows because observed period t expenditure, et, is equal to pt×qt which in 
turn is equal to utc(pt). The last set of equations in (109) could be used to estimate the unknown parameters r 
and a that appear in definition (108).76                     
 
Equations (109) can be rewritten as 
 
(110) si

t º pi
tqi

t/pt×qt = pi
tqi

t/utc(pt) = ai(pi
t)r/ån=1

N an(pn
t) 

r ;                                                    t = 0,1; i = 1,…,N.  
 
Equations (110) give observed expenditure shares st as functions of consumer prices pt and the unknown 
parameters r and a1,...,aN. These equations could also be used as estimating equations for the unknown 
parameters in an econometric model.77 
 
Recall the definition of the consumer’s cost function (1), which we repeat here for convenience for some 
positive level of utility u, given that the consumer is facing the positive vector of consumer prices p >> 0N: 
 
(111) C(u,p) º min q {p×q : f(q) ³ u ; q³ 0N}. 
 
If the cost function C(u,p) is differentiable with respect to the components of the commodity price vector p, 
then Shephard’s Lemma (18) applies and the consumer’s system of commodity demand functions as 

 
76 Note that the parameter a0 cannot be identified using observable data. This makes sense since the scale of utility 
cannot be observed and so some arbitrary decision will have to be made in order to determine the utility scale. Usually, 
we normalize period 0 utility u0 (which is equal to the period 0 volume level Q0) to equal period 0 observed expenditure 
e0 = p0×q0. This normalization determines the units of measurement for utility. 
77 Note that the right hand sides of equations (110) are homogeneous of degree 0 in the an parameters. However, the 
normalization Sn=1N an = 1 can be used to solve for say aN = 1 - Sn=1N-1 an which will allow all of the parameters to be 
identified. Because Sn=1N snt = 1 for t = 0,1, the N share equations for period t are not statistically independent and 
hence one of these estimating equations should be dropped from the estimation procedure. Similar adjustments need to 
be made to the system of estimating equations defined by (109) since the equations pt×qt = et hold without error for t = 
0,1.    
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functions of the chosen utility level u and the commodity price vector p, q(u,p), is equal to the vector of first 
order partial derivatives of the cost or expenditure function with respect to the components of p: 
 
(112) q(u,p) = ÑpC(u,p) 
 
where q(u,p) º[q1(u,p),...,qN(u,p)].The demand functions qn(u,p) º ¶C(u,p)/¶pn are known as Hicksian78 
demand functions. We expect that the demand for commodity i will increase if the price of commodity k (not 
equal to i) increases if i and k are substitutes in consumption; i.e., we expect ¶qi(u,p)/¶pk > 0 if i and k are 
substitutes. Note that qi(u,p) = ¶C(u,p)/¶pi so that ¶qi(u,p)/¶pk = ¶2C(u,p)/¶pi¶pk. A unit free measure of the 
magnitude of the response of the demand for product i due to an increase in the price of product k is the 
elasticity function eik(u,p) defined as: 
 
(113) eik(u,p) º [¶qi(u,p)/¶pk][pk/qi(u,p)] = pk[¶2C(u,p)/¶pi¶pk]/¶C(u,p)/¶pi = pk[¶2C(u,p)/¶pi¶pk]/qi(u,p).                                                      
 
Allen (1938; 504) and Uzawa (1962)79 suggested the following measure of the response of product i to a 
change in the price of product k:  
 
(114) sik(u,p) º C(u,p)[¶2C(u,p)/¶pi¶pk]/[¶C(u,p)/¶pi][¶C(u,p)/¶pk] ;                                                         i ¹ k. 
 
The Allen Uzawa measure is also independent of the units of measurement, but their measure converted the 
response into a measure that applied to both i and k. The bigger are eik(u,p) and sik(u,p), the more 
substitutable are the products.80 Thus sik(u,p) defined by (114) is called the elasticity of substitution between 
products i and k. Note that sik(u,p) = ski(u,p).   
   
Define the cost function to be C(u,p) = uc(p) where c(p) is defined by (108). Using equations (104)-(106), 
which apply to the CES functional form, it can be verified that the sik(u,p) defined by (114) simplify to the 
following equations:    
 
(115) sik(u,p) = 1 - r º s ³ 0 ;                                                                                                                     i ¹ k 
 
where we have defined s º 1 - r. Thus if the consumer has CES preferences, which are dual to the unit cost 
function defined by (108), then the elasticity of substitution between every pair of products is equal to the 
same number, 1 - r º s which is equal to or greater than 0, since in order for c(p) to be a concave function, 
we required r £ 1. Thus the CES functional form rules out complementary commodities and is far from 
being able to model arbitrary preferences if N ³ 3. However, the CES functional form is still a useful one, 
since it can model both Leontief and Cobb Douglas preferences: simply set r = 1 or r = 0 to get these two 
special cases.81 
 
We turn now to the problem of finding exact index number formulae for preferences that are defined by the 
CES unit cost function. Our first exact index number formula requires an estimate for the elasticity of 
substitution, s º 1 - r. For s ¹ 1, define the Lloyd (1975) Moulton (1996) price index PLM(p0,p1,q0,q1) as 
follows for pt >> 0N and qt >> 0N, t = 0,1: 
 
(116) PLM(p0,p1,q0,q1) º  [åi=1

N si
0 (pi

1/pi
0) 

1-s]1/(1-s) ;                                                                                   s ¹ 1            
 

78 See Hicks (1946; 311-331). 
79 They suggested their measure in the context of production theory but it carries over to Hicksian demand functions. 
80 Hicks (1946) showed that if N = 2, then e12(u,p) and s12(u,p) must be nonnegative. However, if N ³ 3, then e12(u,p) 
and s12(u,p) could be negative. In this case, products 1 and 2 are called complements.     
81 It can also model linear preferences by letting r tend to plus infinity. 
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where si

0 is the period 0 expenditure share of commodity i as usual. Substitute equations (110) for si
0 into the 

right hand side of (116) and we obtain the following equation: 
 
(117) PLM(p0,p1,q0,q1) º  [åi=1

N si
0 (pi

1/pi
0) 

r]1/r                                                                         letting r = 1 - s 
                                   = [åi=1

N {ai(pi
0)r/ån=1

N an(pn
0) 

r}(pi
1/pi

0) 
r]1/r                                         using (110) 

                                   = [åi=1
N ai(pi

1)r/ån=1
N an(pn

0) 
r]1/r 

                                   = [åi=1
N ai (pi

1)r]1/r/[ån=1
N an(pn

0) 
r]1/r 

                                   = a0[åi=1
N ai (pi

1)r]1/r/a0[ån=1
N an (pn

0) 
r]1/r 

                                   = c(p1)/c(p0)                                                  using definition (108) for p = p0 and p = p1.  
    
Equation (117) shows that the Lloyd Moulton index number formula PLM is exact for CES preferences.  
Lloyd (1975) and Moulton (1996) independently derived this result but it was Moulton who appreciated the 
significance of the formula (117) for statistical agency purposes. Note that in order to evaluate (116) 
numerically, it is necessary to have information on: 
 
• base period expenditure shares si

0 ;  
• the price relatives pi

1/pi
0 between the base period and the current period and  

• an estimate of the elasticity of substitution between the commodities in the aggregate, s.  
  
The first two pieces of information are the standard information sets that statistical agencies use to evaluate 
the Laspeyres price index PL (note that PLM reduces to PL if s = 0 or r = 1).  Hence, if the statistical agency is 
able to estimate the elasticity of substitution s based on past experience82, then the Lloyd Moulton price 
index can be evaluated using essentially the same information set that is used in order to evaluate the 
traditional Laspeyres index. Moreover, the resulting consumer price index may be free of substitution bias 
to a reasonable degree of approximation.83 Of course, the practical problem with implementing this 
methodology is that estimates of the elasticity of substitution parameter s are bound to be somewhat 
uncertain and hence the resulting Lloyd Moulton index may be subject to charges that it is not objective or 
reproducible. The statistical agency will have to balance the benefits of reducing substitution bias with these 
possible costs. 
 
Our second index number formula that is exact for CES preferences does not require an estimate for the 
elasticity of substitution. Suppose that pt >> 0N and qt >> 0N for t = 0,1. The logarithm of the Sato (1976) 
Vartia (1976) price index PSV(p0,p1,q0,q1) is defined by the following  equation:84 
 
(118) lnPSV(p0,p1,q0,q1)  º Sn=1

N wnln(pn
1/pn

0)                                                                             
 

 
82 For the first application of this methodology (in the context of the consumer price index), see Shapiro and Wilcox 
(1997; 121-123). They calculated superlative Törnqvist indexes for the U.S. for the years 1986-1995 and then 
calculated the Lloyd Moulton CES index for the same period using various values of s. They then chose the value of s 
(which was 0.7) that caused the CES index to most closely approximate the Törnqvist index. Essentially the same 
methodology was used by Alterman, Diewert and Feenstra (1999) in their study of U.S. import and export price 
indexes. Alternative methods for estimating s will be considered below. 
83 What is a “reasonable” degree of approximation depends on the context. Assuming that consumers have CES 
preferences may not be a reasonable assumption in the context of forming index numbers over an aggregate that 
contains heterogeneous products where elasticities of demand for the various products are very different. However, if 
the aggregate consists of fairly similar products, then it may be adequate to assume a CES approximation to preferences 
over these relatively homogeneous products, which are presumably highly substitutable with each other.  
84 Sato and Vartia both defined PSV independently. Sato (1976; 225) showed that PSV was exact for CES preferences; 
i.e., Sato provided a (somewhat sketchy) proof of a dual version of Proposition 12. 



 34 

where the weights wn that appear in equations (118) are calculated in two stages. The first stage set of 
weights is defined as wn

* º (sn
1 - sn

0)/(lnsn
1 - lnsn

0) for n = 1,...,N provided that sn
1 ¹ sn

0. If sn
1 = sn

0, then 
define wn

* º sn
1 = sn

0. The second stage weights are defined as wn º wn
*/Si=1

N wi
*  for n = 1,...,N. Note that in 

order for the logarithm of PSV(p0,p1,q0,q1) to be well defined, we require that sn
0 > 0, sn

1 > 0, pn
0 > 0 and pn

1 > 
0 for all n = 1,...,N; i.e., all prices and quantities must be positive for all products in both periods.       
  
Proposition 12: The Sato Vartia price index is exact for CES preferences; i.e., if the consumer faces the 
positive prices p0 >> 0N and p1 >> 0N in periods 0 and 1, has CES preferences dual to the unit cost function 
defined by (108) and maximizes utility in periods 0 and 1 with solution vectors q0 >> 0N and q1>> 0N for 
periods 0 and 1, then we have: 
 
(119) PSV(p0,p1,q0,q1) = c(p1)/c(p0) 
                                   = [ån=1

N an (pn
1)r]1/r/[ån=1

N an (pn
0)r]1/r                                                                   if r ¹ 0 

                                   = Õn=1
N (pn

1) /Õn=1
N (pn

0)                                                                                if r = 0. 
 
For a proof of this proposition, see the Appendix.  
 
We noted above that equations (109) and (110) could be used to estimate the unknown parameters r = 1 - s 
and the an that characterize the CES unit cost function defined by (108). However, if our focus is on 
obtaining an estimate for r (or equivalently for the elasticity of substitution s º 1 - r), then much simpler 
systems of estimating equations can be derived as will be indicated below. 
 
Recall the system of share equations defined by (110) that express cost minimizing expenditure shares as 
functions of prices. Extend this system of equations to period T, take logarithms of both sides of the 
resulting equations and add error terms hi

t.85 The following system of estimating equations is obtained:  
 
(120) lnsn

t = lnan + rln(pn
t) - ln[åi=1

N ai(pi
t) 

r] + hn
t ;                                                     t = 0,1,...,T; n = 1,…,N.  

 
Now difference the logarithms of the sn

t with respect to time; i.e., define Dsn
t as follows: 

 
(121) Dsn

t º ln(sn
t) - ln(sn

t-1) ;                                                                                           n = 1,...,N; t = 1,...,T. 
 
Now pick product N as the numeraire product86 and difference the Dsn

t with respect to product N, giving rise 
to the following double differenced log variable, dsn

t: 
 
(122) dsn

t º Dsn
t - DsN

t ;                                                                                                   n = 1,...,N-1; t = 1,...,T 
                = lnsn

t - lnsn
t-1 - [lnsN

t - lnsN
t-1]. 

 
Define the double differenced log price variables in a similar manner: 
 
(123) dpn

t º Dpn
t - DpN

t ;                                                                                                n = 1,...,N-1; t = 1,...,T. 
                 = lnpn

t - lnpn
t-1 - [lnpN

t - lnpN
t-1]. 

 
Finally, define the double differenced error variables dhn

t as follows: 
 

85 A standard specification for the error terms hnt is that they have 0 means, a constant variance-covariance matrix for 
the error terms belonging to the same period t and zero covariances across time periods. 
86 In practice, the numeraire commodity should be chosen to be a commodity that has a small predicted variance and a 
large expenditure share. However, it is not straightforward to find such a commodity. Below, an alternative method of 
estimation will be suggested that avoids the need to choose a numeraire commodity.  

na na



 35 

 
(124) dhn

t º hn
t - hn

t-1 - hN
t + hN

t-1 º en
t ;                                                                     n = 1,...,N-1; t = 1,...,T. 

  
Using definitions (121)-(124) and equations (120), it can be verified that the double differenced log shares 
dsn

t satisfy the following system of (N-1)T estimating equations under our assumptions: 
 
(125) dsn

t = rdpn
t + en

t ;                                                                                                   n = 1,...,N-1; t = 1,...,T 
 
where the new residuals, en

t, have means 0 and a constant covariance matrix with 0 covariances for 
observations that are separated by two or more time periods. Thus we have a system of linear estimating 
equations with only one unknown parameter across all equations, namely the parameter r. This is almost the 
simplest possible system of estimating equations that one could imagine. This double differencing method 
for estimating the elasticity of substitution when consumers have CES preferences was suggested by 
Feenstra (1994).87 
 
Instead of starting with the share equations (110), one could start with the demand functions defined by 
equations (109). Extend this system of equations to period T, take logarithms of both sides of the resulting 
equations and add error terms hi

t. The following system of estimating equations is obtained:88  
 
(126) lnqn

t = lnet + lnan + (r-1)lnpn
t - ln[åi=1

N ai(pi
t) 

r] + hn
t ;                                      t = 0,1,...,T; n = 1,…,N.  

 
Define Dqn

t as the time difference for the logarithms of quantities as follows: 
 
(127) Dqn

t º lnqn
t - lnqn

t-1 ;                                                                                               n = 1,...,N; t = 1,,...,T. 
 
Again, pick product N as the numeraire product and difference the Dqn

t with respect to product N, giving rise 
to the following double differenced log variable, dqn

t: 
 
(128) dqn

t º Dqn
t - DqN

t ;                                                                                                n = 1,...,N-1; t = 1,...,T 
                 = lnqn

t - lnqn
t-1 - (lnqN

t - lnqN
t-1). 

 
Define the double differenced price and error variables, dpn

t and dhn
t by (123) and (124). Using these 

definitions and (126)-(128), it is straightforward to show that the following equations will hold: 
 
(129) dqn

t = (r-1)dpn
t + dhn

t ;                                                                                          n = 1,...,N-1; t = 1,...,T 
                 = - sdpn

t + en
t  

 
since the elasticity of substitution s is equal to 1 - r. Again, this is an extremely simple system of estimating 
equations.  
 
The double differenced share equation specification given by (125) and the double difference quantity 
demanded specification given by (129) both depend on the choice of the numeraire commodity. This 
dependence could be a problem for statistical agencies in that the estimation procedure is not completely 
reproducible: different statisticians could pick different commodities as the numeraire commodity and get 

 
87 For an empirical application of the method, see Diewert and Feenstra (2019). The variance covariance structure is not 
quite classical due to the correlation of residuals between adjacent time periods. Another problem with the method is 
that the estimates for r will generally depend on the choice of the numeraire commodity.   
88 The error terms in (126) are different from the error terms in (120). For convenience, we did not introduce a new 
notation for the error terms in (126). 
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different estimates for the elasticity of substitution. It is possible to modify the double difference method so 
that it is not dependent on the choice of a numeraire commodity. 
 
For each time period t, define the geometric average of the sn

t and pn
t as s•t and p•t respectively for t = 

0,1,...,T. For each time period t, define the arithmetic average of the hn
t as h•t for t = 0,1,...,T. Finally define 

the geometric average of the an as a• . Recall equations (120). For each time period t, take the arithmetic 
average of both sides of equations (120) for all N observations in period t. The following equations are the 
result of these operations: 
 
(130) lns•t = lna• + rlnp•t - ln[åi=1

N ai(pi
t) 

r] + h•t ;                                                                           t = 0,1,...,T.   
 
Now difference the lnsn

t defined by equations (120) with the lns•t defined by (130); i.e., essentially we are 
choosing the average (over commodities n) log shares in place of the log shares of a numeraire commodity. 
The following equations are obtained: 
 
(131) lnsn

t - lns•t = lnan - lna• + rlnpn
t - rlnp•t + hn

t - h•t ;                                          t = 0,1,...,T; n = 1,…,N. 
 
Now difference the variables lnsn

t - lns•t with respect to time and we obtain the following estimating 
equations:89 
 
(132) lnsn

t - lnsn
t-1 - lns•t + lns•t-1 = r[lnpn

t - lnpn
t-1 - lnp•t + lnp•t-1] + en

t ;                       t = 1,...,T; n = 1,…,N                             
 
where en

t º hn
t - hn

t-1 - h•t + h•t-1. Again, we have a system of estimating equations that is linear in the single 
parameter r. 
 
Instead of starting with the share equations (110), one could start with the demand functions defined by 
equations (109). Extend this system of equations to period T, take logarithms of both sides of the resulting 
equations and add error terms hn

t. The system of estimating equations defined by (126) is obtained. Now 
define the geometric average of the qn

t for period t as q•t for t = 0,1,...,T. Apply the same definitions and 
techniques that led to equations (130)-(132) and we obtain the following system of estimating equations:  
 
(133) lnqn

t - lnqn
t-1 - lnq•t + lnq•t-1 = (r -1)[lnpn

t - lnpn
t-1 - lnp•t + lnp•t-1] + en

t ;             t = 1,...,T; n = 1,…,N  
                                                        = - s[lnpn

t - lnpn
t-1 - lnp•t  + lnp•t-1] + en

t 
  
where en

t º hn
t - hn

t-1 - h•t + h•t-1. Equations (133) are a system of estimating equations that is linear in the 
single parameter s, which is the elasticity of substitution between all pairs of commodities.  
 
It turns out that estimating the consumer’s utility function directly (rather than estimating the dual unit cost 
function) is advantageous when estimates of reservation prices90 for products that are not available are 
required. In the case of CES preferences, this advantage is not immediately apparent since the CES 
reservation prices are automatically set equal to infinity. But it turns out that there may be advantages in 
estimating the CES utility function directly because of econometric considerations as we shall see below. 

 
89 Note that for each t, we have the following equalities: 0 = Sn=1N [lnsnt - lns•t] = Sn=1N [lnan - lna•] = Sn=1N [lnpnt - 
lnp•t] = Sn=1N [hnt - h•t]. Thus for each t, the N equations for lnsnt - lns•t for n = 1,...,N are linearly dependent and hence 
any one of these N equations can be dropped. If the commodity N equations are dropped, then we use equations (132) 
as estimating equations only for t = 1,...,T and n = 1,...,N-1. Under an appropriate stochastic specification, the estimate 
for r will not depend on which equation is dropped.  
90 Reservation prices will be discussed in section 14 below and in Chapter 8. 
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Thus we will conclude this section by deriving the consumer demand functions that are consistent with the 
maximization of a CES utility function. 
 
We now assume that the utility function f(q) is defined directly as the following CES utility function: 
 
(134) f(q1,...,qN) º [Sn=1

N bnqn
s]1/s  

 
where the parameters bn are positive and sum to 1 and s is a parameter that satisfies s £ 1 (so that f(q) will be 
a concave function of q and s ¹ 0 (in which case f(q) is a Cobb Douglas utility function). Thus f(q) is a mean 
of order s. 
 
Suppose s = 1 and let p >> 0N. In this case, the utility function is the linear function f(q) º b×q = Sn=1

N bnqn. 
The cost minimization problem that defines the dual unit cost function for this case is the following linear 
programming problem: 
 
(135) min q {p×q: b×q ³ 1; q ³ 0N} = min n {pn/bn: n = 1,...,N} º c(p). 
 
The unit cost function c(p) defined by the solution to (135) is not differentiable but it is a well defined 
continuous, increasing, linearly homogeneous and concave function of p. If the minimum over n is unique 
and attained for say product 1, then the solution q*

 to (135) is unique and is given by q1
* = 1/b1 with qi

* = 0 
for i = 2,3,...,N. If p happens to equal lb for some l > 0, then the solution set of q vectors that solve (135) is 
the set {q: b×q = 1/l; q ³ 0N}. 
 
We turn our attention to the case where s satisfies s < 1 and s ¹ 0. Suppose p º (p1,...,pN) >> 0N. Ignoring the 
constraints q ³ 0N for the moment, the first order necessary (and sufficient) conditions that can be used to 
solve the unit cost minimization problem defined by (96) when f(q) is defined by (134) are the following 
conditions: 
 
(136) pn = l*bnqn

s-1 ;                                                                                                                            n = 1,...,N; 
(137) 1  = [Sn=1

N bnqn
s]1/s. 

 
Equations (136) are equivalent to the equations qn = [pn/l*bn]1/(s-1) for n = 1,...,N. Substitute these equations 
into equation (137) and obtain the following equations: 1 = Sn=1

N bnqn
s = Sn=1

N bn[pn/l*bn]1/(s-1). This equation 
can be solved for l* = [Sn=1

N bn
1/(1-s)pn

s/(s-1)](s-1)/s.91 The optimal qn
* are defined as qn

* = [pn/l*bn]1/(s-1) for n = 
1,...,N. All of the equations in (136) and (137) will be satisfied by this l*, q* solution.       
 
Evaluate (136) and (137) at the optimal solution. Multiply both sides of equation n in (136) by qn

* and sum 
the resulting N equations. This leads to the following equations: 
 
(138) c(p) º Sn=1

N pnqn
*  

                 = l*Sn=1
N bn(qn

*)s  
                 = l*                                                                                                                                   using (137) 
                 = [Sn=1

N bn
1/(1-s)pn

s/(s-1)](s-1)/s. 
 
It can be seen that the dual unit cost function c(p) that corresponds to the CES utility function defined by 
(134) for s ¹ 0 and s ¹ 1 is proportional to a mean of order r in prices where r = s/(s-1). Thus if f(q) is the 
CES utility function defined by (134), then the corresponding elasticity of substitution is:  

 
91 Note that we require s ¹ 0 and s ¹1 in order for l* to be well defined. 



 38 

 
(139) s = 1 - r = 1 - [s/(s-1)] = - 1/( s-1) = 1/(1-s). 
 
As s approaches 1 from below, s approaches plus infinity. For s = 0, s = 1 and we have Cobb Douglas 
preferences. As s approaches minus infinity, s approaches 0 as a limiting case.92  
 
In order to derive the system of inverse demand functions that correspond to the CES utility function f(q) 
defined by (134), we make use of Wold’s Identity, equations (17) which were pt/pt×qt = Ñf(qt)/f(qt). Upon 
defining the consumer’s period t “income” as et º pt×qt, the CES system of inverse demand functions for 
period t is given by: 
 
(140) pt = etÑf(qt)/f(qt) ;                                                                                                                     t = 0,1,...,T. 
 
The system of inverse demand functions gives the period t price vector pt as the prices that are consistent 
with qt solving the consumer’s period t utility maximization problem given that the consumer has “income” 
et to spend on the N commodities in the aggregate.      
 
If consumers maximize the CES utility function defined by (134) when they face the positive period t price 
vector pt and have et > 0 to spend on the N commodities, the utility maximizing qt will satisfy equations 
(140). If we evaluate equations (140) using the period t price and quantity data for periods t = 0,1,...,T and 
add error terms, we obtain the following system of equations:  
 
(141) pn

t = etbn(qn
t)s-1/Si=1

N bi(qi
t)s ;                                                                                 t = 0,1,...,T; n = 1,...,N. 

 
Equations (141) is the consumer’s system of inverse demand functions. Equations (141) are the counterparts 
to the consumer’s system of (ordinary) demand functions defined earlier by equations (109). It can be seen 
that the expressions bn(qn

t)s/Si=1
N bi(qi

t)s are homogeneous of degree 0 in the parameters b1,...,bN, so a 
normalization of these parameters is required for the identification of the bn parameters. The normalization 
Sn=1

N bn = 1 can be replaced by an equivalent normalization such as bN = 1.93 
 
Equations (141) are perfectly symmetric with equations (109), which gave us estimating equations for the 
system of ordinary consumer demand functions for a utility maximizing consumer with CES preferences, 
except that the role of prices and quantities has been interchanged. Equations (109) gave consumer demands 
qn

t as functions of et and pt, whereas equations (140) give us prices pn
t that are consistent with utility 

maximization for CES preferences that are consistent with total expenditure equal to et and the utility 
maximizing quantity vector qt. If equations (109) fit the given price and quantity data perfectly, then 
equations (141) will also fit the given price and quantity data perfectly as well (and vice versa). However, 
with data that do not fit the CES model exactly, the two methods for fitting a CES utility function will 
usually not agree. We will discuss the problem of deciding which model is “best” later. 
 
Equations (141) can be converted into a system of share equations where the period t expenditure shares sn

t 
are functions of et and qt: multiply both sides of equation n for period t by qn

t/et to obtain the expenditure 
share sn

t on the left hand side of the resulting equation. The following system of share equations is obtained: 
 

 
92 The limiting case is the case of Leontief preferences.  
93 The normalization on the bn determines the units of measurement for utility. Since Sn=1N snt = 1 for t = 0,1,...,T, the 
error terms will satisfy the constraints Sn=1N hnt = 0 t = 0,1,...,T and thus the error terms pertaining to each time period 
cannot be distributed independently and so the estimating equations for one commodity n should be dropped from 
equations (141).     
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(142) sn
t = bn(qn

t)s/Si=1
N bi(qi

t)s ;                                                                                     t = 0,1,...,T; n = 1,...,N.   
 
Equations (141) and (142) can be used as systems of estimating equations. Below, we will consider some 
alternative systems of estimating equations. 
 
Take the logarithm of the sn

t defined by (142) and add the error term hn
t to the right hand side of equation n 

in period t. We obtain the following system of estimating equations: 
 
(143) lnsn

t = lnbn + slnqn
t - ln[Si=1

N bi(qi
t)s] + hn

t ;                                                           t = 0,1,...,T; n = 1,...,N 
 
Equations (142) (which express the logarithm of shares as functions of quantities) are the counterparts to 
equations (120) (which expressed the logarithms of shares as functions of prices instead of quantities).    
 
We can now repeat the differencing methods explained earlier when the task was to find estimates for the 
elasticity of substitution using the CES unit cost function as the starting point. Thus the counterparts to the 
estimating equations defined earlier by (125) and (129) are now the following double differenced systems of  
inverse demand estimating equations:94 
 
(144) dsn

t = sdqn
t + en

t ;                                                                                                   t = 1,...,T; n = 1,...,N-1; 
(145) dpn

t = (s-1)dqn
t + en

t ;                                                                                            t = 1,...,T; n = 1,...,N-1 
                = - s-1dqn

t + en
t                                                                                               using (139). 

 
As was the case with the systems of estimating equations defined by (125) and (129), the systems of 
estimating equations defined by (144) and (145) will depend on the choice of a numeraire commodity. To 
avoid this problem, we can adapt the analysis surrounding equations (130)-(132) to the present situation. 
Thus for each time period t, define the geometric average of the sn

t and qn
t as s•t and q•t respectively for t = 

0,1,...,T. For each time period t, define the arithmetic average of the hn
t in equations (143) as h•t for t = 

0,1,...,T. Finally define the geometric average of the bn as b• For each time period t, take the arithmetic 
average of both sides of equations (143) for all N observations in period t. The following equations are the 
result of these operations: 
 
(146) lns•t = lnb• + slnq•t - ln[åi=1

N bi(qi
t) 

s] + h•t ;                                                                           t = 0,1,...,T.   
 
Difference the lnsn

t defined by equations (143) with the lns•t defined by (146). The following equations are 
obtained: 
 
(147) lnsn

t - lns•t = lnbn - lnb• + slnqn
t - slnq•t + hn

t - h•t ;                                           t = 0,1,...,T; n = 1,…,N. 
 
Now difference the variables lnsn

t - lns•t with respect to time and we obtain the following estimating 
equations:95 
 
(148) lnsn

t - lnsn
t-1 - lns•t + lns•t-1 = s[lnqn

t - lnqn
t-1 - lnq•t + lnq•t-1] + en

t ;                      t = 1,...,T; n = 1,…,N 
 

 
94 We require that s ¹ 0 and s ¹ 1. 
95 Note that for each t, we have the following equalities: 0 = Sn=1N [lnsnt - lns•t] = Sn=1N [lnbn - lnb•] = Sn=1N [lnqnt - 
lnq•t] = Sn=1N [hnt - h•t]. Thus for each t, the N equations for lnsnt - lns•t for n = 1,...,N are linearly dependent and hence 
any one of these N equations can be dropped. If the commodity N equations are dropped, then we use equations (148) 
as estimating equations only for t = 1,...,T and n = 1,...,N-1. Under an appropriate stochastic specification, the estimate 
for s will not depend on which equation is dropped.  
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where en
t º hn

t - hn
t-1 - h•t + h•t-1. Equations (148) are a system of estimating equations that is linear in the 

single parameter s. 
 
Instead of starting with the share equations (142), one could start with the inverse demand functions defined 
by equations (141). Take logarithms of both sides of these equations and add error terms hn

t. The following 
system of estimating equations is obtained: 
 
(149) lnpn

t = lnbn + (s - 1)lnqn
t - ln[Si=1

N bi(qi
t)s] + hn

t ;                                                 t = 0,1,...,T; n = 1,...,N 
 
Define the geometric average of the pn

t for period t as p•t for t = 0,1,...,T. Apply the same definitions and 
techniques that led to equations (146)-(148) and we obtain the following system of estimating equations:  
 
(150) lnpn

t - lnpn
t-1 - lnp•t + lnp•t-1 = (s -1)[lnqn

t - lnqn
t-1 - lnq•t + lnq•t-1] + en

t ;             t = 1,...,T; n = 1,…,N  
                                                        = - s-1[lnqn

t - lnqn
t-1 - lnq•t + lnq•t-1] + en

t               using (139) 
  
where en

t º hn
t - hn

t-1 - h•t + h•t-1. Equations (150) are a system of estimating equations that is linear in the 
single parameter s-1, which is the reciprocal of the elasticity of substitution between all pairs of 
commodities.96  
 
From the above materials, it can be seen that there is a bewildering array of alternative methods for 
estimating CES preferences. We have considered in some detail 12 methods. Equations (109) and (141) 
estimate the consumer’s CES demand system and inverse demand system. In equations (109), quantities qt 
are functions of total expenditure et and prices pt for each period t; in equations (141), prices pt are functions 
of et and qt. The parameters of the CES unit cost function c(p) defined by (108) are estimated using 
equations (109), while the parameters of the CES utility function f(q) defined by (134) are estimated using 
equations (141). Equations (109) and (141) are our preferred specifications. The problem with the 
econometric specifications that involve shares as dependent variables is that shares by their very nature 
combine price and quantity information and so errors in either prices or quantities will show up in shares. 
Thus a model involving shares as dependent variables could fit the data very well but the approximation 
errors or deviations from the CES exact model for either prices or quantities could offset each other in the 
shares. The model fits for (109) and (141) could be much worse than the model fits for any model involving 
shares. Thus the share models will tend to give us an incomplete view of how well the CES model describes 
the actual data. Put another way, the use of shares does not make use of all available information on prices 
and quantities, whereas the models based on using (109) and (141) as estimating equations do use all 
available information and thus these models are the best at showing us how well the CES model 
approximates reality. This observation means that the unit cost estimation models that use shares, (110), 
(125) and (132), are less preferred than (109) and the utility function estimation models that use shares, 
(142), (144) and (148) are less preferred than (141). Similarly, differencing the data throws out information 
on exactly how good the underlying CES model is at approximating the underlying price and quantity data. 
Thus the unit cost function models using differences, (125), (129), (132) and (133) are less preferred than 
(109) and the utility function models using differences, (144), (145), (148) and (150) are less preferred than 
(141). If we reject share models and differenced models, we are left with the models defined by (109) and 
(141). 
 
How can a choice be made between (109) and (141)? The answer to this question depends on the purpose for 
estimating CES preferences. If we want to predict qt given et and pt, then the model defined by equations 
(109) is the best choice. If we want to predict pt given et and qt, then (141) is the best choice. If the goal is to 

 
96 As usual, we need to drop the estimating equations for one of the N commodities since the error terms in (150) are 
not statistically independent because the data for each period satisfies the linear constraint pt×qt = et for t = 0,1,...,T. 
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get a good estimate for the elasticity of substitution to use in the Lloyd Moulton formula, then run both (109) 
and (141) and choose the model with the best fit. As was mentioned earlier, if (109) fits the data perfectly, 
then so will (141) (as well as the other 10 models under consideration). However, in reality, neither (109) 
nor (141) will fit the data perfectly. If the underlying preference function is approximately equal to a linear 
utility function (so that the products are highly substitutable), then the model defined by (141) will fit the 
data better than the model defined by (109). On the other hand, if preferences are close to being of the no 
substitution variable so that the unit cost function is almost linear, then the model defined by (109) will fit 
the data better than the model defined by (141). Choosing between (109) and (141) based on how well the 
two models fit the data seems to be a sensible strategy.97   
 
11. The Allen Quantity Index    
 
Make the same general assumptions on the utility function f(q) that we made at the beginning of section 2 so 
that f(q) is a nonnegative, increasing, continuous and concave function of q defined for q ³ 0N.98 Let 
C(f(q),p) be the consumer’s cost function that is dual to the aggregator function f(q).99  Let pt >> 0N be the 
vector of observed prices that the consumer faces in period t for t = 0,1. Let qt >> 0N  be the vector of 
observed consumer choices for periods t = 0,1. We assume cost minimizing behavior on the part of the 
consumer in periods 0 and 1 so that the following equations are satisfied: 
 
(151)  C(f(qt),pt) º min q {pt×q : f(q) ³ f(qt) ; q³ 0N} = pt×qt ;                                                                    t = 0,1.  
 
The Allen (1949) family of quantity indexes, QA(q0,q1,p), is defined for an arbitrary positive reference price 
vector p >> 0N as follows:  
 
(152) QA(q0,q1,p) º C(f(q1),p)/C(f(q0),p).   
 
The basic idea of the Allen quantity index dates back to Hicks (1941-42), who observed that if the price 
vector p were held fixed and the quantity vector q is free to vary, then C(f(q),p) is a perfectly valid cardinal 
measure of utility.100   
 
As was the case with the true cost of living, the Allen definition simplifies considerably if the utility function 
happens to be linearly homogeneous.  In this case, for any p >> 0N, (152) simplifies to: 
 
(153) QA(q0,q1,p) = f(q1)C(1,p)/f(q0)C(1,p) = f(q1)/f(q0).  
 
However, in the general case where the consumer has nonhomothetic preferences, we do not obtain the nice 
simplification given by (153). 
 
As usual, it is useful to specialize the general definition of the Allen quantity index and let the reference 
price vector equal either the period 0 price vector p0 or the period 1 price vector p1: 
 
(154) QA(q0,q1,p0) º C(f(q1),p0)/C(f(q0),p0) ; 
(155) QA(q0,q1,p1) º C(f(q1),p1)/C(f(q0),p1). 

 
97 A possible disadvantage of using (109) or (141) to estimate s is that nonlinear regression techniques have to be used 
in the estimation procedure. Thus an attractive alternative would be to use either (133) or (150) to estimate s. These 
models are linear in the single unknown parameter. 
98 In this section, we no longer assume that f(q) is linearly homogeneous. The results in this section are due to Diewert 
(2009; 239-241). 
99 Recall definition (1) in section 2. 
100 Samuelson (1974) called this a money metric measure of utility. 
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Index number formulae that are exact for either of the theoretical indexes defined by (154) and (155) do not 
seem to exist, at least for the case of nonhomothetic preferences that can be represented by a flexible 
functional form. However, we can find an index number formula that is exactly equal to the geometric mean 
of the Allen indexes defined by (154) and (155), where the underlying preferences are represented by a 
flexible functional form. Before demonstrating this result, we need the following proposition: 
 
Proposition 13: Let x and y be N and M dimensional vectors respectively and let F0 and F1 be two general 
quadratic functions defined as follows: 
 
(156) F0(x,y) º a0

0 + a0Tx + b0Ty + (½)xTA0x +(½)yTB0y + xTC0y ; A0T = A0; B0T = B0; 
(157) F1(x,y) º a0

1 + a1Tx + b1Ty + (½)xTA1x +(½)yTB1y + xTC1y ; A1T = A1 ; B1T = B1  
 
where the a0

i are scalar parameters, the ai and bi are parameter vectors and the Ai, Bi and Ci are parameter 
matrices for i = 0,1.  Note that the Ai and Bi are symmetric matrices. If A0 = A1, then the following equation 
holds for all x0, x1, y0 and y1:101 
 
(158) F0(x1,y0) - F0(x0,y0) + F1(x1,y1) - F1(x0,y1) = [ÑxF0(x0,y0) + ÑxF1(x1,y1)]×[x1 - x0] . 
 
Straightforward differentiation of the functions defined by (156) and (157) and substitution into (158) proves 
the proposition. The identity (158) is a generalized quadratic identity. This identity will prove to be useful as 
will be seen below.                
 
Suppose that the consumer’s preferences can be represented by the general translog cost function, C(u,p) 
defined by (77), with the restrictions (78)-(81). Shephard’s Lemma implies that the period t expenditure 
shares, sn

t, will satisfy the following equations:102 
 
(159) sn

t = ¶lnC(ut,pt)/¶lnpn = an
t + bn

tlnut + åi=1
N ani

tlnpi
t;                                                                        t = 0,1 

 
where ut º f(qt) for t = 0,1. Note that lnC(u,p) is quadratic in the variables x1 º lnp1,...,xN º lnpN and y1 º lnu. 
Thus we will be able to apply the generalized quadratic identity to lnC(u,p). 
   
Recall that in section 2, the Konüs Laspeyres cost of living index was defined by PK(p0,p1,q0) º 
C[f(q0),p1]/C[f(q0),p0] and the Konüs Paasche cost of living index was defined by PK(p0,p1,q1) º 
C[f(q1),p1]/C[f(q1),p0]. Assuming that C(u,p) is the translog cost function, we can obtain an exact formula for 
the geometric mean of PK(p0,p1,q0) and PK(p0,p1,q1). The logarithm of this geometric mean is: 
 
(160) ln{[PK(p0,p1,q0)PK(p0,p1,q1)]1/2} = (½)lnPK(p0,p1,q0) + (½)lnPK(p0,p1,q1)  
               = (½)ln[C(f(q0),p1)/C(f(q0),p0)]  + (½)ln[C(f(q1),p1)/C(f(q1),p0)]             using definitions (3) and (4) 
               = (½)ln[C(u0,p1)/C(u0,p0)]  + (½)ln[C(u1,p1)/C(u1,p0)] 
               = (½){lnC(u0,p1) - lnC(u0,p0) + lnC(u1,p1) - lnC(u1,p0)} 
               = (½)Sn=1

N {[¶lnC(u0,p0)/¶lnpn] + [¶lnC(u1,p1)/¶lnpn]}[lnpn
1 - lnpn

0] 
                                      using (158) with F0(x,y) = F1(x,y) º lnC(y,x) with y º lnu and xn º lnpn for n = 1,...,N  
               = (½)Sn=1

N [sn
0 + sn

1][lnpn
1 - lnpn

0]                                                                                     using (159) 
               = lnPT(p0,p1,q0,q1) 
 

 
101 Balk (1998; 225-226) established this result using the Translog Lemma in Caves, Christensen and Diewert (1982; 
1412) which is simply a logarithmic version of (158). 
102 We need to assume that the points (u0,p0) and (u1,p1) are in the regularity region where the translog cost function 
C(u,p) is well behaved. 
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where PT(p0,p1,q0,q1) is the Törnqvist Theil index number formula PT defined in Chapter 4. The exact index 
number formula given by (160) is different from our earlier exact index number formula for PT which was 
given by (88). The earlier result was C(u*,p1)/C(u*,p0) = PT(p0,p1,q0,q1) where u* was the geometric mean of 
u0 and u1. Our new result is:  
 
(161) PT(p0,p1,q0,q1) = [C(f(q0),p1)/C(f(q0),p0)]1/2[C(f(q1),p1)/C(f(q1),p0)]1/2 .    
 
Thus PT is also equal to the geometric mean of C(f(q0),p1)/C(f(q0),p0) and C(f(q1),p1)/C(f(q1),p0). 
 
The implicit quantity index, QT*(p0,p1,q0,q1) that corresponds to the Törnqvist Theil price index PT is defined 
as the value ratio, p1×q1/p0×q0, divided by PT.  Thus we have: 
 
(162) QT*(p0,p1,q0,q1) º [p1×q1/p0×q0]/PT(p0,p1,q0,q1) 
                                   = [C(f(q1),p1)/C(f(q0),p0)]/PT(p0,p1,q0,q1)                                                        using (151) 
                                   = [C(f(q1),p1)/C(f(q0),p0)]/[{C(f(q0),p1)/C(f(q0),p0)}{C(f(q1),p1)/C(f(q1),p0)}]1/2 
                                                                                                                                                            using (161) 
                                   = [{C(f(q1),p0)/C(f(q0),p0)}{C(f(q1),p1)/C(f(q0),p1)}]1/2 
                                   = [QA(q0,q1,p0)QA(q0,q1,p1)]1/2                                                     
 
where the last equality follows using definitions (154) and (155). Thus the observable implicit Törnqvist 
Theil quantity index, QT*(p0,p1,q0,q1), is exactly equal to the geometric mean of the two Allen quantity 
indexes defined by (154) and (155).   
 
Note that in general, the geometric mean of the two “natural” Allen quantity indexes defined by (154) and 
(155) matches up with the geometric mean of the two “natural” Konüs price indexes defined by (3) and (4); 
i.e., using these definitions, we have: 
 
(163) [PK(p0,p1,q0)PK(p0,p1,q1)]1/2[QA(q0,q1,p0)QA(q0,q1,p1)]1/2 = C(f(q1),p1)/C(f(q0),p0) 
                                                                                                  = p1×q1/p0×q0.   
 
Thus in general, these two “natural” geometric mean price and quantity indexes satisfy the product test.   
Under our translog assumptions, we have a special case of (163) where QT*(p0,p1,q0,q1) is equal to 
[QA(q0,q1,p0)QA(q0,q1,p1)]1/2 and PT(p0,p1,q0,q1) is equal to [PK(p0,p1,q0)PK(p0,p1,q1)]1/2.103 This result justifies 
the use of PT and QT* even if the consumer does not have homothetic preferences. Hence, it indirectly 
justifies the use of the Fisher and Walsh price indexes if consumers do not have homothetic preferences 
since these indexes will approximate PT(p0,p1,q0,q1) to the second order around an equal price and quantity 
point. 
 
12. Modeling Changes in Tastes 
 
Suppose that the consumer’s preference function changes going from period 0 to period 1. What is an 
appropriate theoretical concept for a price index under these conditions? 
 
Suppose that the consumer’s utility function is f0(q) in period 0 and f1(q) in period 1. Let C0(u,p) and C1(u,p) 
be the cost functions that correspond to these preferences for periods 0 and 1, respectively. A reasonable 
strategy under these circumstances is the following one: 
 

• Calculate the Laspeyres Konüs cost of living index using the preferences of period 0. This is the 
index PK(p0,p1,q0) º C0(u0,p1)/C0(u0,p0) where u0 = f(q0) and q0 satisfies p0×q0 = C0(u0,p0). 

 
103 See Diewert (2009; 239-241). 



 44 

• Calculate the Paasche Konüs cost of living index using the preferences of period 1. This is the index 
PK(p0,p1,q1) º C1(u1,p1)/C1(u1,p0) where u1 = f(q1) and q1 satisfies p1×q1 = C1(u1,p1). 

• Take the geometric mean of PK(p0,p1,q0) and PK(p0,p1,q1) as the final measure of price change over 
the two periods under consideration. 

 
Make the additional assumption that the consumer’s preferences can be modeled by translog cost functions 
in a region of regularity that includes u0 > 0, p0 >> 0N and u1 > 0, p1 >> 0N. In this regularity region, the 
logarithms of the period t cost functions Ct(u,p) are defined as follows: 
 
(164) lnC0(u,p) º F0(x,y1) º a0

0 + Sn=1
N an

0xn + b1
0y1 + (½)xTAx + (½)b11

0(y1)2 + Sn=1
N cn

0xny1;             
(165) lnC1(u,p) º F1(x,y1) º a0

1 + Sn=1
N an

1xn + b1
1y1 + (½)xTAx + (½)b11

1(y1)2 + Sn=1
N cn

1xny1 
 
where A = AT, xT º [x1,...,xN] º [lnp1,...,lnpN] and y1 º lnu. Note that the parameters in (164) can be quite 
different from the parameters in (165) except that we assume that the N(N+1)/2 aik parameters in the A 
matrix are the same in (164) and (165). It can be seen that the quadratic functions F0(x,y1) and F1(x,y1) are 
special cases of the functions F0(x,y) and F1(x,y) defined by (156) and (157) in the previous section. In order 
for Ct(u,p) to be linearly homogeneous in p, we need to impose the restrictions Sn=1

N an
t = 1, A1N = 0N and 

Sn=1
N cn

t = 0 on the parameters for t = 0,1, where 1N is a vector of ones of dimension N.  
 
Shephard’s Lemma implies that the period t expenditure shares, sn

t, will satisfy the following equations: 
 
(166) sn

t = ¶lnC(ut,pt)/¶lnpn = an
t + cn

tlnut + åk=1
N anklnpk

t;                                                                        t = 0,1 
 
The logarithm of the geometric mean of PK(p0,p1,q0) and PK(p0,p1,q1) is equal to the following expression: 
 
(167) ln{[PK(p0,p1,q0)PK(p0,p1,q1)]1/2} = (½)lnPK(p0,p1,q0) + (½)lnPK(p0,p1,q1)  
               = (½)ln[C0(u0,p1)/C0(u0,p0)]  + (½)ln[C1(u1,p1)/C1(u1,p0)] 
               = (½){lnC0(u0,p1) - lnC0(u0,p0) + lnC1(u1,p1) - lnC1(u1,p0)} 
               = (½)Sn=1

N {[¶lnC0(u0,p0)/¶lnpn] + [¶lnC1(u1,p1)/¶lnpn]}[lnpn
1 - lnpn

0]                             using (158) 
               = (½)Sn=1

N [sn
0 + sn

1][lnpn
1 - lnpn

0]                                                                                     using (166) 
               = lnPT(p0,p1,q0,q1) 
 
where PT(p0,p1,q0,q1) is the Törnqvist Theil index number formula PT defined in Chapter 4 and ut º ft(qt) for t 
= 0,1. Note that (167) implies the following equalities: 
 
(168) PT(p0,p1,q0,q1) = [PK(p0,p1,q0)PK(p0,p1,q1)]1/2 = {[C0(u0,p1)/C0(u0,p0)][C1(u1,p1)/C1(u1,p0)]}1/2 
 
where ut º ft(qt) for t = 0,1. Thus at least some forms of taste change can be accomodated by the use of the 
Törnqvist Theil price index.  
 
13. Conditional Cost of Living Indexes 
 
The models of consumer behavior considered in previous sections all assumed that the consumer maximized 
a utility function, f(q), subject to a budget constraint of the form p×q = e, where e > 0 is the total amount of 
“income”  or expenditure that the consumer allocates to the purchase of the N goods and services under 
consideration. However, the utility of the consumer may be affected by other variables in addition to 
purchases of market goods and services that are represented by q º [q1,...,qN]. Thus we now assume that 
utility is affected by an M dimensional vector of nonmarket environmental104 or demographic105 variables or 

 
104 This is the terminology used by Pollak (1989; 181) in his model of the conditional cost of living concept. 
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public goods, z º (z1,z2,…,zM). We suppose that the preferences of the household over different 
combinations of market commodities q and nonmarket variables z can be represented by the continuous 
utility function f(q,z).106  For periods t = 0,1, it is assumed that the observed household consumption vector 
qt º (q1

t,…,qN
t) > 0N is a solution to the following household expenditure minimization problem: 

 
(169)  min q {pt×q: f(q,zt) ³ ut; q ³ 0N} º C(pt,ut,zt) = pt×qt ;                                                                       t = 0,1 
 
where zt is the environmental vector facing household h in period t, ut º f(qt,zt) is the utility level achieved 
by household h during period t and C is the conditional cost or expenditure function that is dual to the utility 
function f.107 Basically, these assumptions mean that the household has stable preferences over the same list 
of market commodities during the two periods under consideration and the household chooses its market 
consumption vector in the most cost efficient way during each period, conditional on the environmental 
vector zt that it faces during each period t. 
   
With the above assumptions in mind, the family of Pollak (1975; 142) conditional cost of living index 
between periods 0 and 1, conditional on the utility level u and the nonmarket vector z, is defined as 
follows:108 
 
(170) PPo(p0,p1,u,z) º C(p1,u,z)/C(p0,u,z).    
 
In the above definition, the household utility level u and the vector of nonmarket or environmental variables 
z are held constant in the numerator and denominator of the right hand side of (170). Thus only the price 
variables are different, which is precisely what we want in a theoretical definition of a consumer price index. 
Note that if z does not enter the consumer’s utility function so that f(q,z) is just f(q), then C(u,p,z) becomes 
C(u,p) and the Pollak conditional cost of living indexes collapses down to the Konüs family of true cost of 
living indexes, PK(p0,p1,q) where u = f(q).  
 
The Laspeyres Pollak conditional cost of living index is defined by (169) when (u,z) = (u0,z0). Using (169) 
for t = 0, a feasibility argument establishes the following upper bound to PPo(p0,p1,u0,z0); i.e., we have 
 
(171) PPo(p0,p1,u0,z0) £ p1×q0/p0×q0 = PL(p0,p1,q0,q1) 
 
where PL(p0,p1,q0,q1) is the ordinary Laspeyres price index for market commodities. The Paasche Pollak 
conditional cost of living index is defined by (169) when (u,z) = (u1,z1). Using (169) for t = 1, a feasibility 
argument establishes the following lower bound to PPo(p0,p1,u1,z1); i.e., we have 
 
(172) PPo(p0,p1,u1,z1) ³ p1×q1/p0×q1 = PP(p0,p1,q0,q1) 
 
where PP(p0,p1,q0,q1) is the ordinary Paasche price index for market commodities.109           
 
It is possible to obtain two sided bounds to a Pollak conditional cost of living index; i.e., we have the 
following generalization of Proposition 1 above: 

 
105 Caves, Christensen and Diewert (1982; 1409) used the terms demographic variables or public goods to describe the 
vector of conditioning variables z in their generalized model of the Konüs price index or cost of living index. Weather 
variables could also be included in the z vector.  
106 We initially assume that f(q,z) is jointly continuous in (q,z), increasing in the components of q and concave in the 
components of q.    
107 Conditional cost functions were first defined by Pollak (1975; 142). 
108 See also Caves, Christensen and Diewert (1982; 1409). 
109 The bounds (171) and (172) can be found in Caves, Christensen and Diewert (1982; 1409-1410). 
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Proposition 14:  There exists a number l* between 0 and 1 such that  
 
(173)  PL £ PPo[p0,p1,l*(q0,z0) + (1-l*)(q1,z1)] £ PP   or   PP £ PP[p0,p1,l*(q0,z0) + (1-l*)(q1,z1)] £ PL. 
 
The proof of Proposition 14 is similar to the proof of Proposition 1; see Diewert (2001) for the details. 
 
There is one additional result on conditional cost of living indexes that is very useful and it involves the use 
of the generalized quadratic identity (158) and a generalized translog functional form for the conditional cost 
function C(u,p,z). Suppose that the logarithm of the consumer’s conditional cost function is defined as 
follows: 
 
(174) lnC(p,u,z) º F(x,y)  º a0 + aTx + bTy + (½)xTAx +(½)yTBy + xTCy ;                              AT = A; BT = B 
 
where xT º [lnp1,...,lnpN], yT º [lnu,z1,...,zM], a0 is a scalar parameter, a and b are parameter vectors, A is an 
N by N symmetric matrix of parameters, B is an M+1 by M+1 symmetric matrix of parameters and C is an 
N by M+1 matrix of parameters. In order to impose linear homogeneity in prices on C(p,u,z), we require that 
the following restrictions on the parameters hold: 
 
(175) aT1N = 1; A1N = 0N and CT1N = 0M+1. 
 
Note that the demographic variables enter the right hand side of (174) in a linear and quadratic fashion; this 
allows for the zm variables to be discrete variables that can take on the value 0.110 We assume that the period 
0 and 1 price vectors, p0 and p1, are strictly positive and we assume that qt > > 0N solves the period t 
conditional cost minimization problem defined by (169) for t = 0,1. Thus we have the following equations: 
 
(176) pt×qt = C(pt,ut,zt);                                                                                                                              t = 0,1. 
 
Shephard’s Lemma can be applied to these cost minimization problems, since the translog conditional cost 
function C(p,u,z) defined by (174) is differentiable with respect to the components of p. Thus we have the 
following equations:111 
 
(177) qn

t = ¶C(pt,ut,zt)/¶pn ;                                                                                                    n = 1,…,N ; t = 0,1                                                 
               = [C(pt,ut,zt)/pn

t]¶lnC(pt,ut,zt)/¶lnpn.   
 
Using definition (174), the above equations (177) can be rearranged to read as follows: 
 
(178) sn

t = ¶lnC(pt,ut,zt)/¶lnpn = an + Sk=1
N anklnpk

t + Sm=1
M cnmzm

t ;                                     n = 1,…,N ; t = 0,1. 
 
Now take the logarithm of the geometric mean of the the two conditional indexes PPo(p0,p1,u0,z0) and 
PPo(p0,p1,u1,z1). We find that: 
 
(179) ln{[PPo(p0,p1,u0,z0)PPo(p0,p1,u1,z1)]1/2}  
               = (½)[lnC(p1,u0,z0) - lnC(p0,u0,z0) + lnC(p1,u1,z1) - lnC(p0,u1,z1)] 
               = (½)Sn=1

N [(¶lnC(p0,u0,z0)/¶lnpn) + (¶lnC(p1,u1,z1)/¶lnpn)][lnpn
1 - lnpn

0] 
 

110Thus the number of children in a household is a discrete variable that can take on the value 0. If we entered the 
corresponding variable as z1 on the right hand side of (174) as the logarithm of the number of children, the definition of 
C(p,u,z) would break down.  
111 See equations (83) in section 7 above. We require that (pt,ut,zt) be in the regularity set where C(p,u,z) is positive and 
increasing in the components of p and u and concave in p holding u and z fixed.  
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                                                                    using definition (174) and the generalized quadratic identity (158) 
               = (½)Sn=1

N [sn
1 + sn

0][lnpn
1 - lnpn

0]                                                                                      using 
(178) 
               = lnPT(p0,p1,q0,q1) 
 
where PT(p0,p1,q0,q1) is the Törnqvist Theil index number formula PT defined in Chapter 4. Note that (179) 
implies the following equalities:112 
 
(180) PT(p0,p1,q0,q1) = [PPo(p0,p1,u0,z0)PPo(p0,p1,u1,z1)]1/2  
                                 = {[C(p1,u0,z0)/C(p0,u0,z0)][C(p1,u1,z1)/C(p0,u1,z1)]}1/2. 
 
Thus the Törnqvist Theil price index has many useful interpretations.  
 
14. Reservation Prices and New and Disappearing Products 
 
New products appear and old products disappear at substantial annual rates in most economies in the world 
today. This creates substantial problems for national statistical offices that are responsible for producing 
consumer price indexes, since traditional index number theory is based on matching prices for identical 
products over time. Thus up to now, our treatment of the different approaches to index number theory has 
assumed that the number of consumer goods and services available to the public has remained constant over 
the two periods being compared. This implicit assumption is not an accurate reflection of reality: in practice, 
perhaps one to two percent of all consumer products appear or disappear each month. The economic 
approach to index number theory can be helpful in providing a framework for treating this lack of matching 
problem.  
 
The basic idea for the treatment of new products in a cost of living type price index is as follows. Assume 
that the consumer has the same preferences over continuing and new and disappearing products over periods 
0 and 1. For a product that is not available in one of the two periods under consideration, the quantity 
consumed is obviously equal to zero units. The corresponding prices for these products that are present in 
only one of the two periods are missing. It turns out that if we can somehow estimate reservation prices for 
these missing products in the two periods under consideration, then normal index number theory using the 
economic approach to index number theory can be applied. The reservation price for a missing product is the 
price that is just high enough to induce purchasers of the product to demand zero units of it. This reservation 
price approach for the treatment of new goods is due to Hicks (1940; 114). Hofsten (1952; 95-97) extended 
the approach of Hicks to cover the case of disappearing goods as well. 
 
In Chapter 8, we will consider several alternative methods that have been suggested in the literature to 
estimate reservation prices.113 In the present section, we will use maximum overlap price indexes to form 
approximations to reservation prices and we will derive some theoretical bias estimates for these 
approximate reservation prices. A maximum overlap index114 is one that constructs a price index using just 
the products that are present in the two periods under consideration. Typically, the maximum overlap price 
index will be biased compared to the “true” cost of living index, which uses reservation prices. This bias in 

 
112 This result is a special case of a more general result established by Caves, Christensen and Diewert (1982; 1410). 
Their result also allows for taste change between the periods.  
113 These methods include Feenstra’s (1994) CES methodology, the Diewert and Feenstra (2019) methodology that 
involves the estimation of the preference function that is exact for the Fisher ideal index and methodologies based on 
experimental economics. See Brynjolfsson, Collis, Diewert, Eggers and Fox (2018) (2020) and Diewert, Fox and 
Schreyer (2019) on the experimental approach.  
114 This type of index dates back to Marshall (1887). Keynes (1930; 94) called it the highest common factor method 
while Triplett (2004; 18) called it the overlapping link method. See Diewert (1993c; 52-56) for additional material on 
the early history of the new goods problem.  
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the deflator translates into a corresponding bias in the real output aggregate. We will evaluate this bias in the 
context of a statistical agency that uses a maximum overlap Törnqvist Theil price index.115  
 
Consider two periods, 0 and 1. There are three classes of commodities. Class 1 products are present in both 
periods with positive prices and quantities for all N products in this group. Denote the period t price and 
quantity vectors for this group of products as p1

t º [p11
t,...,p1N

t] >> 0N and q1
t º [q11

t,...,q1N
t] >> 0N for t = 0,1. 

 
Class 2 products are the new goods and services that are not available in period 0 but are available in period 
1. Denote the period 0 price and quantity vectors for this group of K products as p2

0* º [p21
0*,...,p2K

0*] >> 0N 
and q2

0 º [q11
0,...,q1K

0] = 0N. The prices in the vector p2
0* are the positive reservation prices that make the 

demand for these products in period 0 equal to zero. These reservation prices have to be estimated somehow. 
The period 1 price and quantity vectors for these K products are p2

1 º [p21
1,...,p2K

1] >> 0N and q2
1 º 

[q21
1,...,q2K

1] >> 0N and these vectors are observable.  
 
Class 3 products are the disappearing goods and services that were available in period 0 but are not 
available in period 1.  Denote the period 0 price and quantity vectors for this group of M products as p3

0 º 
[p31

0,...,p3M
0] >> 0N and q3

0 º [q31
0,...,q3M

0] >> 0N. The period 1 price and quantity vectors for these M 
products are p3

1* º [p31
1*,...,p3M

1*] >> 0N and q3
1 º [q31

1,...,q3M
1] = 0N. The prices in the vector p3

1* are the 
positive reservation prices that make the demand for these products in period 1 equal to zero. Again, these 
reservation prices have to be estimated somehow.  
 
Define the true expenditure shares for product n in Group 1 for periods 0 and 1, s1n

0 and s1n
1, as the 

following fractions of total expenditure in period 0 or 1: 
 
(181) s1n

0 º p1n
0q1n

0/[p1
0×q1

0 + p2
0*×q2

0 + p3
0×q3

0] ;                                                                          n = 1,...,N; 
                = p1n

0q1n
0/[p1

0×q1
0 + p3

0×q3
0]                                                                                            since q2

0 = 0N; 
(182) s1n

1 º p1n
1q1n

1/[p1
1×q1

1 + p2
1×q2

1 + p3
1*×q3

1] ;                                                                          n = 1,...,N; 
                = p1n

1q1n
1/[p1

1×q1
1 + p2

1×q2
1]                                                                                            since q3

1 = 0N. 
 
Note that these shares can be calculated using observable data; i.e., these shares do not depend on the 
imputed prices p2

0* and p3
1*. 

 
Define the true expenditure shares for product k in Group 2 for periods 0 and 1, s2k

0 and s2k
1, as follows: 

 
(183) s2k

0 º p2k
0q2k

0/[p1
0×q1

0 + p2
0*×q2

0 + p3
0×q3

0] ;                                                                          k = 1,...,K; 
                = p2k

0q2k
0/[p1

0×q1
0 + p3

0×q3
0]                                                                                           since q2

0 = 0N; 
                = 0 ;                                                                                                                               since q2k

0 = 0; 
(184) s2k

1 º p2k
1q2k

1/[p1
1×q1

1 + p2
1×q2

1 + p3
1*×q3

1] ;                                                                          k = 1,...,K; 
            = p2k

1q2k
1/[p1

1×q1
1 + p2

1×q2
1]                                                                                                since q3

1 = 0N. 
 
Note that these shares can also be calculated using observable data.   
    
Define the true expenditure shares for product m in Group 3 for periods 0 and 1, s3m

0 and s3m
1, as follows: 

 
(185) s3m

0 º p3m
0q3m

0/[p1
0×q1

0 + p2
0*×q2

0 + p3
0×q3

0] ;                                                                        m = 1,...,M; 
             = p3m

0q3m
0/[p1

0×q1
0 + p3

0×q3
0]                                                                                             since q2

0 = 0N; 
 

115 The material in this section is mostly due to de Haan and Krsinich (2012) (2014). Diewert, Fox and Schreyer 
(2017b) extended the de Haan and Krisinich analysis to bias estimates if the Laspeyres, Paasche or Fisher maximum 
overlap indexes are used in place of the Törnqvist Theil price index.  
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(186) s3m
1 º p3m

1q3m
1/[p1

1×q1
1 + p2

1×q2
1 + p3

1*×q3
1] ;                                                                        m = 1,...,M; 

             = p3m
1q3m

1/[p1
1×q1

1 + p2
1×q2

1]                                                                                             since q3
1 = 0N; 

             = 0                                                                                                                                     since q3m
1 = 0. 

 
Note that these shares can also be calculated using observable data.  
 
Now define the expenditure shares for product Group 1 using just the products that are in Group 1. These are 
the shares that are relevant for the maximum overlap indexes which will be defined shortly. The maximum 
overlap share for product n in period t, s1nO

t, is defined as follows: 
 
(187) s1nO

t º p1n
tq1n

t/p1
t×q1

t ;                                                                                                     t = 0,1; n = 1,...,N. 
 
These maximum overlap shares are also observable. It can be seen that the following relationships hold 
between the true Group 1 shares and the maximum overlap Group 1 shares:116 
 
(188) s1n

0 = s1nO
0p1

0×q1
0/[p1

0×q1
0 + p3

0×q3
0] ;                                                                                          n = 1,...,N; 

                = s1nO
0[1 - Sm=1

M s3m
0] ; 

(189) s1n
1 = s1nO

1p1
1×q1

1/[p1
1×q1

1 + p2
1×q2

1] ;                                                                                          n = 1,...,N; 
                = s1nO

1[1 - Sk=1
K s2k

1] . 
 
Let PTO

 denote the Törnqvist maximum overlap index. The logarithm of this index is defined as follows: 
 
(190) lnPTO º Sn=1

N (1/2)(s1nO
0 + s1nO

1)ln(p1n
1/p1n

0). 
 
The logarithm of the true Törnqvist index, PT, is defined as follows: 
 
(191) lnPT º Sn=1

N ½(s1n
0 + s1n

1)ln(p1n
1/p1n

0) + Sk=1
K ½(s2k

0 + s2k
1)ln(p2k

1/p2k
0*)  

                     + Sm=1
M ½(s3m

0 + s3m
1)ln(p3m

1*/p3m
0)  

                 = Sn=1
N ½(s1n

0 + s1n
1)ln(p1n

1/p1n
0) + Sk=1

K ½(0 + s2k
1)ln(p2k

1/p2k
0*)  

                     + Sm=1
M ½(s3m

0 + 0)ln(p3m
1*/p3m

0)                                                                  using (183) and (186) 
                 = Sn=1

N ½{s1nO
0[1-Sm=1

M s3m
0]+s1nO

1[1 - Sk=1
K s2k

1]}ln(p1n
1/p1n

0)  
                     + Sk=1

K ½(s2k
1)ln(p2k

1/p2k
0*)  + Sm=1

M ½(s3m
0)ln(p3m

1*/p3m
0)                           using (188) and (189) 

                 = lnPTO + ½Sk=1
K s2k

1[ln(p2k
1/p2k

0*) - Sn=1
N s1nO

1 ln(p1n
1/p1n

0)]  
                     + ½Sm=1

M s3m
0[ln(p3m

1*/p3m
0) - Sn=1

N s1nO
0 ln(p1n

1/p1n
0)]                                 using (190) 

                 = lnPTO + lnk + lnµ 
 
where the logarithms of the terms k and µ are defined as: 
 
(192) lnk º (1/2)Sk=1

K s2k
1[ln(p2k

1/p2k
0*) - Sn=1

N s1nO
1 ln(p1n

1/p1n
0)]  

                = (1/2)Sk=1
K s2k

1[ln(p2k
1/p2k

0*) - lnPJO
1]; 

(193) lnµ º (1/2)Sm=1
M s3m

0[ln(p3m
1*/p3m

0) - Sn=1
N s1nO

0 ln(p1n
1/p1n

0)] 
                = (1/2)Sm=1

M s3m
0[ln(p3m

1*/p3m
0) - lnPJO

0] 
 
where the (weighted) Jevons index using the maximum overlap share weights of period 1 is PJO

1 and the 
(weighted) Jevons index using the maximum overlap share weights of period 0 is PJO

0; i.e., the logarithm of 
these two indexes are defined as follows:117 

 
116 These relationships are due to de Haan and Krsinich (2012; 31-32). 
117 These indexes could also be described as Cobb Douglas indexes. The indexes defined by (194) have also been 
described as geometric Paasche and geometric Laspeyres indexes, respectively.   
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(194) lnPJO

1 º Sn=1
N s1nO

1 ln(p1n
1/p1n

0);  lnPJO
0 º Sn=1

N s1nO
0 ln(p1n

1/p1n
0). 

 
Exponentiating both sides of (191) leads to the following relationship between the “true” cost of living index 
PT and the price index PTO that is defined over products that are available in both periods:118 
 
(195) PT = PTO ´ k ´ µ. 
     
The term k defined by (192) can be regarded as a measure of the reduction in the true cost of living due to 
the introduction of new products. The period 0 imputed price for new product k, p2k

0*, is likely to be higher 
than the actual price for new product k in period 1 adjusted for general inflation, p2k

1/PJO
1, and thus k is 

likely to be less than 1. The bigger is the share of new products in period 1, Sk=1
K s2k

1, the more k will be less 
than 1. Note that the logarithmic contribution of each new product to the reduction in the true cost of living 
can be measured using the additive decomposition that definition (192) provides.   
 
The inflation adjustment term µ defined by (193) can be regarded as a measure of the increase in the true 
cost of living due to the disappearance of existing products. The period 1 imputed price for disappearing 
product m, p3m

1*, is likely to be higher than the actual price for product m in period 0 adjusted for general 
inflation, p3m

0PJO
0, and thus µ is likely to be greater than 1. The bigger is the share of disappearing products 

in period 0, Sm=1
M s3m

0, the more µ will be greater than 1. 
 
The decomposition defined by (191) is also useful in the context of defining imputed carry backward or 
carry forward prices for products that may be new or unavailable. Recall that the imputed reservation prices 
in period 0 are the prices p2k

0* and the imputed reservation prices in period 1 are the prices p3m
1*. Rough 

estimates or more precise econometric estimates have to be made for these reservation prices. However, it is 
possible to use available information on prices and quantities for periods 0 and 1 in order to define the 
following carry backward prices p2kb

0 for the missing products in period 0 and the following carry forward 
prices p3mf

1 for the missing products in period 1:   
 
(196) p2kb

0 º p2k
1/PJO

1 for k = 1,...,K and p3mf
1 º p3m

0PJO
0  for m = 1,...,M. 

 
Thus the inflation adjusted carry forward price defined by (196) for the missing product m in period 1 takes 
the observed price for product m in period 0, p3m

0 and adjusts it for general inflation for the group of 
products that are present in both periods 0 and 1 using the weighted maximum overlap Jevons index PJO

0. 
Similarly, the inflation adjusted carry backward price defined by (195) for the missing product k in period 0 
takes the observed price for product k in period 1, p2k

1 and deflates it by the weighted Jevons maximum 
overlap price index, PJO

1. The above inflation adjusted imputed prices are more reasonable than the constant 
carry forward prices, p3m

0, or constant carry backward prices, p2k
1, which are frequently used to fill in the 

missing prices. From (190), (191) and (189), it can be seen that if the reservation prices are equal to their 
inflation adjusted carry forward prices (so that p3m

1* = p3mf
1 for m = 1,...,M) and inflation adjusted carry 

backward prices (so that p2k
0* = p2kb

0 for k = 1,...,K), then the true Törnqvist index PT will equal its 
maximum overlap counterpart, PTO.  
 
However, in general, economic theory suggests that the reservation prices will be greater than their inflation 
adjusted carry forward or backward prices. Thus we define the following margin terms, kk and µm, which 
express how much higher each reservation price is from its inflation adjusted carry forward or backward 
price counterpart: 

 
118 This formula was first derived by de Haan and Krsinich (2012; 31-32) (2014; 344). They obtained imputed prices 
for the missing products by using hedonic regressions, which will be studied in some detail in Chapter 8.    
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(197) 1 + kk º p2k

0*/p2kb
0 ;                                                                                                                  k = 1,...,K;  

(198) 1 + µm º p3m
1*/p3mf

1 ;                                                                                                                m = 1,...,M. 
   
Now substitute definitions (195)-(198) into (191) and we obtain the following exact relationship between 
the true Törnqvist index PT and its maximum overlap counterpart PTO: 
 
(199) ln(PT/PTO) =  - Sk=1

K (1/2)s2k
1 ln(1 + kk) + Sm=1

M (1/2)s3m
0 ln(1 + µm). 

 
Exponentiate both sides of (199) and subtract 1 from both sides of the resulting expression. Define the right 
hand side of the resulting expression as the function g(k1,...,kK, µ1,...,µM) and approximate g by taking the 
first order Taylor series approximation to g evaluated at 0 = k1 = ... = kK = µ1 =... = µM. The resulting 
approximation to (PT/PTO) - 1 is the following one:119 
 
(200) (PT/PTO) - 1 » Sm=1

M (1/2)s3m
0 µm - Sk=1

K (1/2)s2k
1kk. 

 
The period 0 and 1 value aggregates for the goods and services in the group of N + K + M commodities 
under consideration, V0 and V1, are defined as follows: 
 
(201) V0 º p1

0×q1
0 + p3

0×q3
0; V1 º p1

1×q1
1 + p2

1×q2
1. 

 
The “true” implicit Törnqvist quantity index QT is defined as the value ratio, V1/V0, deflated by the “true” 
Törnqvist price index, PT ; i.e., we have: 
 
(202) QT º [V1/V0]/PT. 
 
Statistical agencies can use maximum overlap Törnqvist Theil price indexes to deflate final demand 
aggregates in order to construct aggregate quantity or volume indexes.120 Thus in our context, the maximum 
overlap Törnqvist Theil quantity index, QTO, is defined as follows:  
 
(203) QTO º [V1/V0]/PTO.     
 
The reciprocal of the bias in QTO relative to its true counterpart QT can be measured by the ratio QT/QTO: 
 
(204) QT/QTO = PTO/PT 
 
where we have used definitions (202) and (203) to derive (204). An exact expression for the logarithm of 
PTO/PT can be obtained from (199): 
 
(205) ln(PTO/PT) =  Sk=1

K (1/2)s2k
1 ln(1 + kk) - Sm=1

M (1/2)s3m
0 ln(1 + µm). 

 
Exponentiate both sides of (205) and subtract 1 from both sides of the resulting expression. Define the right 
hand side of the resulting expression as the function h(k1,...,kK,µ1,...,µM) and approximate h by taking the 

 
119 This formula is similar in spirit to the highly simplified approximate new goods bias formulae obtained by Diewert 
(1987; 779) (1998; 51-54). 
120 The US Bureau of Labor Statistics uses the Törnqvist price index as its target index for its chained CPI. Typically, 
there are no adjustments for new and disappearing products so these Törnqvist price indexes are essentially maximum 
overlap price indexes.   
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first order Taylor series approximation to h evaluated at 0 = k1 = ... = kK = µ1 =... = µM. The resulting 
approximation to (QT/QTO) - 1 is the following one: 
 
(206) (QT/QTO) - 1 » Sk=1

K (1/2)s2k
1kk - Sm=1

M (1/2)s3m
0 µm. 

 
Thus if there are no disappearing goods, the right hand side of (206) becomes Sk=1

K (1/2)s2k
1kk and this 

number is a measure of the downward bias in the maximum overlap Törnqvist quantity index for the value 
aggregate in percentage points. That is, (206) gives the downward bias in welfare from ignoring new goods 
and services. 
 
For analogous bias formulae for price and quantity aggregates that are constructed using maximum overlap 
Laspeyres, Paasche or Fisher indexes, see Diewert, Fox and Schreyer (2017b).    
 
15. Becker’s Theory of the Allocation of Time 
 
Peter Hill (1999), in discussing the classic study by Nordhaus (1997) on the price of light, raised the issue as 
to how should a cost of living index treat household production where consumers combine purchased market 
goods or “inputs” to produce finally demanded “commodities” that yield utility:121 
 
“There is another area in which the definition of a COL requires further clarification and precision. From what is utility 
derived? Households do not consume many of the goods and services they purchase directly but use them to produce 
other goods or services from which they derive utility. In a recent stimulating and important paper, Nordhaus has used 
light as a case study. Households purchase items such as lamps, electric fixtures and fittings, light bulbs and electricity 
to produce light, which is the product they consume directly. … The light example is striking because Nordhaus 
provides a plausible case for arguing that the price of light, measured in lumens, has fallen absolutely (at least in US 
dollars) and dramatically over the last two centuries as a result of major inventions, discoveries and ‘tectonic’ 
improvements in the technology of producing light. 
     The question that arises is whether goods and services that are essentially inputs into the production of other goods 
and services should be treated in a COL as if they provided utility directly. In principle, a COL should include the 
shadow, or imputed, prices, of the outputs from these processes of production and not the prices of the inputs. … There 
is a need to clarify exactly how this issue is to be dealt with in a COL index.”  Peter Hill (1999; 5).   
 
In this section, we address the issues raised by Hill by using the model of household production of final 
demand commodities that was postulated by Becker (1965) many years ago. Becker’s model illustrates not 
only how household production of the type mentioned by Hill can be integrated into a cost of living 
framework, but it also indicates the important role that the allocation of household time plays in a more 
realistic model of household behavior. In order to measure welfare change more accurately, it is necessary to 
model how a household manages its allocation of time during the two periods under consideration. 
 
In Becker’s model of consumer behavior, a household (consisting of a single individual for simplicity) 
purchases qn units of market commodity n and combines it with a household input of time, tn, to produce Qn 
= fn(qn,tn) units of a finally demanded commodity for n = 1,2,…,N say, where fn is the household production 
function for the nth finally demanded commodity122. Thus using Becker’s theory, the purchase of market 
goods and services alone does not provide utility for the household; these market purchases must be 

 
121 See also Hill (2009).   
122 More complicated household production functions could be introduced but the present assumptions will suffice to 
show how household production can be modeled in a COLI framework using exact index number formulae. For 
additional work on Becker’s theory of the allocation of time and household production, see Pollak and Wachter (1975) 
(1977), Diewert (2001), Abraham and Mackie (2005), Hill (2009), Landefeld, Fraumeni and Vojtech (2009), Schreyer 
and Diewert (2014) and Diewert, Fox and Schreyer (2017a). 
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combined with household time in order to provide utility. Some examples of Becker’s finally demanded 
commodities (or basic commodities to use his terminology) are: 
 

• Making a meal; the inputs are the ingredients used, the use of utensils and possibly a stove and time 
required to make the meal and the output is the prepared meal. 

• Eating a meal; the inputs are the prepared meal and time spent eating and the output is a consumed 
meal. 

• Cleaning a house; the inputs are cleaning utensils, soapy water, polish and time and the output is a 
clean house. 

• Gardening services; the inputs are tools used in the yard, fuel (if power tools are used) and time and 
the output is a beautiful yard. 

• Reading a book; the inputs are computer services or a physical book and time and the output is a 
book which has been read.  

 
Activities 1, 3 and 4 listed above are examples of basic commodities, which could be purchased by the 
household; i.e., a cook could be hired to prepare a meal, a house cleaning service could be hired to clean the 
house and a gardening service could be hired to maintain the yard in good condition. These activities could 
be called examples of household work activities. Activities 2 and 5 are examples of leisure activities where 
the utility generated by the activity cannot be outsourced. We will see below why this distinction between 
the two types of household production can be important. 
 
We follow Becker’s example and assume that the household production functions, fn(qn,tn), are linearly 
homogeneous.123 If pn > 0 is the price for a unit of qn and w > 0 is the price of household time, then the unit 
cost functions cn(pn,w) that correspond to the fn(qn,tn) can be defined as follows: 
 
(207) cn(pn,w) º min {pnqn + wtn : fn(qn,tn) ³ 1; qn ³ 0; tn ³ 0} ;                                                  n = 1,...,N. 
 
Assume that the household faces the prices pt º [p1

t,..., pN
t] >> 0N and wt > 0 for periods t = 0,1. Further 

assume that the period t observed purchases of commodity n, qn
t, and time allocated to its consumption in 

period t, tn
t, solve the cost minimization problems, min {pn

tqn + wttn : fn(qn,tn) ³ fn(qn
t,tn

t); qn ³ 0; tn ³ 0} 
for n = 1,...,N and t = 0,1. In view of the linear homogeneity of the household production functions, fn, we 
obtain the following equalities: 
 
(208) pn

tqn
t + wttn

t = cn(pn
t,wt)fn(qn

t,tn
t) = Pn

tQn
t ;                                                               t = 0,1; n = 1,...,N 

 
where the period t basic prices and quantities for the nth household activity are defined as follows:124 
 
(209) Pn

tº cn(pn
t,wt) ; Qn

t º fn(qn
t,tn

t) ;                                                                                 t = 0,1; n = 1,...,N.                  
 
At this point, the theory of exact index numbers can be used in order to obtain empirical estimates for the 
unobserved Pn

t and Qn
t. Pick an index number formula that is exact for a certain functional form for either 

cn(pn,w) or fn(qn,tn). For example, pick the Fisher price index, PF(pn
0,w0;pn

1,w1;qn
0,tn

0;qn
1,tn

1), which is exact 
for certain flexible functional forms125 for either the nth unit cost function cn(pn,w) or the nth household 

 
123 In addition, following Schreyer and Diewert (2014), we assume that the household production functions are 
nonnegative, once differentiable, concave and increasing in qn and tn. Becker (1965; 496) assumed that the household 
production functions fn were of the Leontief, no substitution type.   
124 Becker (1965; 497) called Pn the full price for consuming a unit of the nth final commodity; i.e., it is the sum of the 
prices of the goods and time used to produce a unit of the finally demanded commodity Qn. 
125 See section 5 above. 
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nn tq ,



 54 

production function fn(qn,tn) for n = 1,...,N. The basic prices and quantities for period 0 are defined as 
follows:126 
 
(210) Pn

0 º 1 ; Qn
0 º pn

0qn
0 + w0tn

0 ;                                                                                                    n = 1,...,N. 
 
The basic prices and quantities for period 1 are defined as follows: 
 
(211) Pn

1 º PF(pn
0,w0;pn

1,w1;qn
0,tn

0;qn
1,tn

1) ; Qn
1 º [pn

1qn
1 + w1tn

1]/Pn
1 ;                                              n = 1,...,N. 

 
The Pn

t and Qn
t defined by (210) and (211) will be consistent with equations (208) provided that the cn or fn 

have the functional forms that are exact for the Fisher index. For future reference, note that the following 
equations will hold: 
 
(212) Pt×Qt º Sn=1

N Pn
tQn

t = Sn=1
N [pn

tqn
t + wttn

t] = pt×qt + wt[Sn=1
N tn

t] ;                                                t = 0,1 
 
where Pt º [P1

t,...,PN
t], Qt º [Q1

t,...,QN
t], pt º [p1

t,...,pN
t] and qt º [q1

t,...,qN
t] for t = 0,1.    

          
We return to Becker’s model of the allocation of time. In addition to spending time on the N household 
production activities, Becker assumed that the household provides tL > 0 hours of labour market services at 
the after tax wage rate of wL > 0. Becker also assumed that the household spends the amount of Y of 
nonlabour income on the purchase of market goods and services.127 Finally, Becker assumed that the 
consumer-worker has preferences over different combinations of the finally demanded commodities, 
Q1,…,QN, that are summarized by the (macro) utility function, U(Q1,…,QN) º U[f1(q1,t1),...,fN(qN,tN)]. 128  In 
addition to the household budget constraint, Sn=1

N pnqn £ Y + wLtL, the household has to satisfy the time 
constraint, ån=1

N tn + tL = H, where H is the number of hours available in the period under consideration.   
 
Let  pt º [p1

t,...,pN
t] >> 0N and wL

t > 0 be the observed prices for purchases of market goods and services for 
period t, let tt º [t1

t,...,tN
t] >> 0N be the household’s period t vector of time inputs into the household 

production functions and let  tL
t > 0 be the observed household labor supply for periods t = 0,1. We assume 

that qt, tt and tL
t solve the following period t household constrained utility maximization problem for t = 

0,1:129 
 
(213) max {U[f1(q1,t1),...,fN(qN,tN)] : Yt + wL

ttL - Sn=1
N pn

tqn ³ 0; H - Sn=1
N tn - tL ³ 0}. 

 
We assume that the inequality constraints in (213) are satisfied as equalities when evaluated at the qt, tt and 
tL
t solutions to (213). This means that the following equations hold: 

 
(214)    Sn=1

N pn
tqn

t = Yt + wL
ttL

t ;                                                                                                           t = 0,1;  
(215) wL

t[Sn=1
N tn

t] = wL
t[H - tL

t] ;                                                                                                          t = 0,1. 
 

 
126 Definitions (210) and (211) make specific cardinalizations for measuring the unobserved outputs of the N household 
production functions.  
127 If wLtL (equal to after tax labour earnings) is large enough, it could be the case that Y is negative; i.e., some of the 
household labour earnings are saved. This does not affect Becker’s theory. 
128 The utility function U is assumed to be once differentiable, linearly homogeneous, concave and increasing in the 
Q1,...,QN. 
129 We have omitted the nonnegativity constraints tn ³ 0, tL ³ 0 and qn ³ 0 for n = 1,...,N from (212) to save space. Since 
we have assumed a strictly positive solution to (212) for each time period t, these nonnegativity constraints will not be 
binding and hence can be ignored in what follows.  

LNN tttqq ,,...,,,..., 11
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Equations (212) will also hold with wt = wL
t for t = 0,1 as will be seen below. These equations along with 

(214) and (215) imply that the following equations will hold: 
   
(216) Pt×Qt = Sn=1

N [pn
tqn

t + wL
ttn

t] = Yt + wL
ttL

t + wL
t[H - tL

t] = Yt + wL
tH º Ft ;                               t = 0,1 

 
where Ft is Becker’s full income.130 To see why the consumer’s regular budget constraint and time constraint 
can be combined into a single constraint, form the Lagrangian Lt(q,t,tL,l,w) for the constrained 
maximization problem defined by (213) for t = 0 or 1: 
 
(217) Lt(q,t,tL,l,w) º U[f1(q1,t1),...,fN(qN,tN)] + l[Yt + wL

ttL - Sn=1
N pn

tqn] + w[H - Sn=1
N tn - tL] ;      t = 0,1. 

 
Under our regularity conditions on the functions U and f1,...,fN, there will exist positive Lagrange 
multipliers, lt > 0 and wt > 0 such that the observed period t solution to the period t constrained 
maximization problem defined by (213), qt, tt and tL

t, will satisfy the following first order conditions: 
 
(218) [¶U(Q1

t,...,QN
t)/¶Qn][¶fn(qn

t,tn
t)/¶qn] = ltpn

t ;                                                            n = 1,...,N; t = 0,1; 
(219) [¶U(Q1

t,...,QN
t)/¶Qn][¶fn(qn

t,tn
t)/¶tn]  = wt ;                                                                n = 1,...,N; t = 0,1;      

(220)                                                          0 = ltwL
t - wt ;                                                                     t = 0,1. 

 
Equations (220) show that wt = ltwL

t for t = 0,1. These equations justify Becker’s statement that the 
household budget constraint and the corresponding time constraint can be combined into a single constraint. 
Using (220), equations (219) become the following equations: 
 
(221) [¶U(Q1

t,...,QN
t)/¶Qn][¶fn(qn

t,tn
t)/¶tn]  = ltwL

t ;                                                            n = 1,...,N; t = 0,1.          
 
For each t, take equation n in (218), multiply both sides by qn

t. Take equation n in (221) and multiply both 
sides by tn

t. For each t and n, add these equations. Using the linear homogeneity of ¶fn(qn,tn)/¶tn and using 
definitions (209) with wt º wL

t which imply that Qn
t º fn(qn

t,tn
t) for each n, we obtain the following 

equations: 
 
(222) [¶U(Q1

t,...,QN
t)/¶Qn]Qn

t  = lt[pn
tqn

t + wL
ttn

t] ;                                                n = 1,...,N; t = 0,1; 
                                                   = lt[Pn

tQn
t]                                                              using (208) with wt º wL

t.     
 
For each t, sum the N equations in (222). Using the linear homogeneity of U(Q1,...,QN) and equations (216), 
we obtain the following equations: 
 
(223) U(Q1

t,...,QN
t) = ltPt×Qt ;                                                                                       t = 0,1 

                                = ltFt                                                                                              using definitions (216). 
 
Equations (223) can be solved for the Lagrange multipliers lt. The solutions are lt = U(Q1

t,...,QN
t)/Pt×Qt for 

t = 0,1. Substitute these values for lt  back into equations (222). After some rearrangement, we obtain the 
following equations, which are Wold’s Identity equations applied to the macro utility function U(Q1,...,QN): 
 
(224) Pt/Pt×Qt = ÑQU(Qt)/U(Qt) ;                                                                                                            t = 0,1.  
 

 
130 “This suggests dropping the approach based on explicitly considering separate goods and time constraints and 
substituting one in which the total resource constraint necessarily equalled the maximum money income achievable, 
which will be simply called ‘full income’.” Gary Becker (1965; 497). 
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Recall that the Pt and Qt are well defined by equations (210) and (211) with w0 º wL
0 and w1 º wL

1. At this 
stage, we can assume a functional form for the macro utility function U(Q1,...,QN) = U(Q), which has an 
exact index number formula associated with it. Thus assume that U(Q) can be approximated by the 
homogeneous quadratic utility function, U(Q) º [QTAQ]1/2, where the symmetric matrix A has one positive 
eigenvalue with a strictly positive eigenvector and the other eigenvalues of A are equal to zero or are 
negative. Then the Fisher index is exact for this functional form. The nominal growth of full consumption 
going from period 0 to 1 is equal to the nominal growth of full income, F1/F0 = P1×Q1/P0×Q0, and the real 
growth of household full consumption is equal to the Fisher ideal quantity index, QF(P0,P1,Q0,Q1).131 The 
appropriate consumer price index under these conditions is the Fisher ideal price index, PF(P0,P1,Q0,Q1).  
 
In the above model of consumer behavior, the household price of time for period t turns out to be the after 
tax wage rate, wL

t. But there are many households that do not offer market labour services; i.e., individuals 
who are retired or who are simply not in the labour force. How can we value household time in this 
situation? It is possible to modify Becker’s model of the consumer-worker household to deal with non 
worker households. Make the same assumptions as in the model explained above with one exception: we 
assume that the Nth household production activity is one where the household time input, tN, can be replaced 
by hiring market services, sN, at the price wN > 0. Thus if the Nth activity is yard maintenance, time spent 
maintaining the yard can be replaced by hiring a service that will undertake the necessary work. Thus the 
production function for the Nth activity is QN = fN(qN,tN + sN).132 
 
Let  pt º [p1

t,...,pN
t] >> 0N and wS

t > 0 be the observed prices for purchases of market goods and services for 
period t and let tt º [t1

t,...,tN
t] >> 0N be the household’s period t vector of time inputs into the household 

production functions and for periods t = 0,1. Let qS
t > 0 be the household’s purchases of market labour 

services for activity N for t = 0,1. We assume that qt, tt and qS
t solve the following period t household 

constrained utility maximization problem:133 
 
(225) max {U[f1(q1,t1),...,fN-1(qN-1,tN-1),fN(qN,tN+qS)] :  
                                               Yt - wS

tqS - Sn=1
N pn

tqn ³ 0; H - Sn=1
N tn ³ 0};                                         t = 0,1. 

 
We assume that the functions U, f1,...,fN satisfy the same regularity conditions as in the Becker model above. 
Thus the two constraints in (225) will hold as equalities. Hence we will have Yt = Sn=1

N pn
tqn

t + wS
tqS

t, wS
tH 

= wS
tSn=1

N tn
t for t = 0,1 as well as the following equations: 

 
(226) Sn=1

N pn
tqn

t + wS
tqS

t + Sn=1
N wS

ttn
t = Yt + wS

tH º Ft ;                                                                     t = 0,1 
 
where the new period t full income Ft is equal to period t nonlabour income Yt plus the value of period t 
household time H valued at the period t market service wage for the Nth activity, wS

t.   
 
Form the Lagrangians Lt(q,qS,t,l,w) for the constrained maximization problems defined by (225) for t = 0,1:  
 
(227) Lt(q,qS,t,l,w) º U[f1(q1,t1),...,fN(qN,tN+qS)] + l[Yt - Sn=1

N pn
tqn - wS

tqS] + w[H - Sn=1
N tn - tL] ; t = 0,1. 

 

 
131 The period 0 and 1 levels of household real consumption are set equal to U0 º P0×Q0 = p0×q0 + wL0[Sn=1N tn0] and U1 º 
U0´QF(P0,P1,Q0,Q1) = U0´[P0×Q1P1×Q1/P0×Q0P1×Q0]1/2 respectively.  
132 Thus we are assuming that personal yard work and hired yard work are perfect substitutes. 
133 We have omitted the nonnegativity constraints qS ³ 0, tn ³ 0 and qn ³ 0 for n = 1,...,N from (225) to save space. 
Since we have assumed a strictly positive solution to (225) for each time period t, these nonnegativity constraints will 
not be binding and hence can be ignored in what follows.  

SNN qttqq ,,...,,,..., 11
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Under our regularity conditions on the functions U and f1,...,fN, there will exist positive Lagrange 
multipliers, lt > 0 and wt > 0 such that the observed period t solution, qt, qS

t and tt, to the period t 
constrained maximization problem defined by (225) will satisfy the following first order conditions: 
 
(228) [¶U(Q1

t,...,QN
t)/¶Qn][¶fn(qn

t,tn
t)/¶qn]           = ltpn

t ;                                              n = 1,...,N-1; t = 0,1; 
(229) [¶U(Q1

t,...,QN
t)/¶QN][¶fN(qN

t,tN
t+qS

t)/¶qN] = ltpN
t ;                                                                     t = 0,1; 

(230) [¶U(Q1
t,...,QN

t)/¶Qn][¶fn(qn
t,tn

t)/¶tn]            = wt ;                                                  n = 1,...,N-1; t = 0,1;  
(231) [¶U(Q1

t,...,QN
t)/¶QN][¶fN(qN

t,tN
t+qS

t)/¶tN]   = wt ;                                                                        t = 0,1;       
(232) [¶U(Q1

t,...,QN
t)/¶QN][¶fN(qN

t,tN
t+qS

t)/¶qS]  = ltwS
t ;                                                                    t = 0,1. 

 
For t = 0 or 1, it can be seen that the derivatives on the left hand sides of (231) and (232) are identical. 
Hence the right hand sides are equal and we obtain the equations wt = ltwS

t for t = 0,1. Substitute these 
solutions for the wt into equations (230) and (231) and we obtain the following equations: 
 
(233) [¶U(Qt)/¶Qn][¶fn(qn

t,tn
t)/¶tn]           = ltwS

t ;                                                          n = 1,...,N-1; t = 0,1;  
(234) [¶U(Qt)/¶QN][¶fN(qN

t,tN
t+qS

t)/¶tN] = ltwS
t  ;                                                          t = 0,1. 

 
For t = 0,1 and n = 1,...,N-1, multiply both sides of equation n in (228) by qn

t and both sides of equation n 
in (233) by tn

t and add the resulting two equations. Using the linear homogeneity of fn(qn,tn), we have 
qn

t[¶fn(qn
t,tn

t)/¶qn] + tn
t[¶fn(qn

t,tn
t)/¶tn] = fn(qn

t,tn
t). Thus we obtain the following equations: 

 
(235) [¶U(Qt)/¶Qn]fn(qn

t,tn
t) = lt[pn

tqn
t + wS

ttn
t] ;                                                           n = 1,...,N-1; t = 0,1. 

 
For each t = 0,1 and n = 1,...,N-1, equation n in equations (235) can be solved for lt and this value for lt 
can be substituted back into equations n in (228) and (223). After a bit of rearrangement, the following 
equations are obtained: 
 
(236) [¶fn(qn

t,tn
t)/¶qn]/fn(qn

t,tn
t) = pn

t/[pn
tqn

t + wS
ttn

t] ;                                                     n = 1,...,N-1; t = 0,1; 
(237) [¶fn(qn

t,tn
t)/¶tn]/fn(qn

t,tn
t)  = wS

t/[pn
tqn

t + wS
ttn

t] ;                                                    n = 1,...,N-1; t = 0,1. 
 
For each n = 1,...,N-1 and for t =0,1, equations (236) and (237) are the Wold Identity equations (14) for the 
household production function fn(qn,tn). Thus we can approximate fn by a homogeneous quadratic utility 
function and use the Fisher price and quantity indexes to estimate Qn

0 º fn(qn
0,tn

0) and Qn
1 º fn(qn

1,tn
1) for n = 

1,...,N-1; i.e., define Qn
t and the companion prices Pn

t º ch(pn
t,wS

t) as follows:                                                                                    
     
(238) Pn

0 º 1 º cn(pn
0,wS

0) ; Qn
0 º pn

0qn
0 + wS

0tn
0 º fn(qn

0,tn
0) ;                                                       n = 1,...,N-1; 

(239) Pn
1 º PF(pn

0,w0;pn
1,w1;qn

0,tn
0;qn

1,tn
1) º cn(pn

1,wS
1) ; Qn

1 º [pn
1qn

1 + w1tn
1]/Pn

1 º fn(qn
1,tn

1);   n = 1,...,N-1. 
 
Now use equations (229), (231) and (232) and repeat the above operations for fN(qN,tN+qS) and obtain the 
following counterparts to (236)-(239): 
 
(240) [¶fN(qN

t,tN
t + qS

t)/¶qN]/fN(qN
t,tN

t + qS
t) = pN

t/[pN
tqN

t + wS
t(tN

t + qS
t)] ;                                         t = 0,1; 

(241) [¶fN(qN
t,tN

t)/¶tN]/fN(qN
t,tN

t)  = wS
t(tN

t + qS
t)/[pN

tqN
t + wS

t(tN
t + qS

t)] ;                                          t = 0,1. 
(242) PN

0 º 1 º cN(pN
0,wS

0); QN
0 º pN

0qN
0 + wS

0(tN
0 + qS

0) º fN(qN
0,tN

0  + qS
0) ;                                                                            

(243) PN
1 º PF(pN

0,wS
0;pN

1,wS
1;qN

0,tN
0 + qS

0;qN
1,tN

1 + qS
1) º cN(pN

1,wS
1); 

         QN
1 º pN

1qN
1+wS

1(tN
1+qS

1)]/PN
1º fN(qN

1,tN
1  + qS

1). 
 
Definitions (240)-(243) can be substituted back into equations (228)-(235) in order to derive the following 
equations:                      
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(244) [¶U(Q1

t,...,QN
t)/¶Qn]Qn

t   = lt[pn
tqn

t + wS
ttn

t]           = lt[Pn
tQn

t] ;                       n = 1,...,N-1; t = 0,1; 
(245) [¶U(Q1

t,...,QN
t)/¶QN]QN

t  = lt[pN
tqN

t + wS
t(tn

t+qS
t)] = lt[PN

tQN
t]                        t = 0,1. 

                                                    
For each t, sum the N equations in (244) and (245). Using the linear homogeneity of U(Q1,...,QN) and the 
definition (226) for period t full income Ft, we obtain the following equations: 
 
(246) U(Q1

t,...,QN
t) = ltPt×Qt = ltFt ;                                                                                                      t = 0,1. 

 
Equations (246) can be solved for the Lagrange multipliers, lt for t = 0,1. We obtain lt = 
U(Q1

t,...,QN
t)/Pt×Qt for t = 0,1. Substitute these values for lt  back into equations (244) and (245). After 

some rearrangement, we obtain the following equations which are Wold’s Identity equations applied to the 
macro utility function U(Q1,...,QN): 
 
(247) Pt/Pt×Qt = ÑQU(Qt)/U(Qt) ;                                                                                                            t = 0,1.  
 
Recall that the Pt and Qt are well defined by equations (238), (239), (242) and (243). Now assume a 
functional form for the macro utility function U(Q1,...,QN) = U(Q) which has an exact index number formula 
associated with it. Thus assume that U(Q) can be approximated by the homogeneous quadratic utility 
function, U(Q) º [QTAQ]1/2, where the symmetric matrix A has one positive eigenvalue with a strictly 
positive eigenvector and the other eigenvalues of A are either equal to zero or are negative. Then the Fisher 
price and quantity indexes are exact for this functional form. The nominal growth of full consumption going 
from period 0 to 1 is equal to the nominal growth of full income, F1/F0 = P1×Q1/P0×Q0 where the Ft are 
defined by (226) and the real growth of household full consumption is equal to the Fisher ideal quantity 
index, QF(P0,P1,Q0,Q1).134 The appropriate consumer price index under these conditions is the Fisher ideal 
price index, PF(P0,P1,Q0,Q1).  
 
Here are the important points that emerge from our analysis of the above two models for the household’s 
allocation of time:135 
 

• Depending on the type of household, the valuation of household time is either the after tax wage 
rate for the household or the price of market services that can substitute for household work.  

• It is possible to use “normal” index number theory to provide price and volume indexes for utility 
maximizing households that face both a budget constraint and a time constraint.    

 
However, there are many problems with the two models of household behavior that were considered above: 
 

• The first model did not take into account the possible disutility of providing market labour supply 
while neither model did not take into account the possible disutility of providing household work.136 
Taking possible disutility into account greatly complicates the analysis. In particular, the scaling of 
the utility functions, F and f1,...,fN is no longer straightforward. 

 
134 The period 0 and 1 levels of household real full consumption are set equal to U0 º F0 = P0×Q0 = p0×q0 + wS

0qS
0 +  

wS0[Sn=1N tn0] and U1 º U0´QF(P0,P1,Q0,Q1) = U0´[P0×Q1P1×Q1/P0×Q0P1×Q0]1/2 respectively.  
135 These two models are considered in more detail by Schreyer and Diewert (2014). 
136 The utility function U[f1(q1,t1),...,fN(qN,tN)] should be replaced by U[f1(q1,t1),...,fN(qN,tN),tL] for the Becker model 
where U[f1(q1,t1),...,fN(qN,tN),tL] is decreasing as labour supply tL increases. For the second model, the utility function 
U[f1(q1,t1),...,fN-1(qN-1,tN-1),fN(qN,tN+qS)] should be replaced by U[f1(q1,t1),...,fN-1(qN-1,tN-1),fN(qN,tN+qS),tN] where this 
function could be decreasing in the household’s supply of time spent tN on final demand activity N.    
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• In more realistic models of household behavior, corner solutions to the household utility 
maximization problems emerge as realistic possibilities.137 

• In more realistic models of household behavior, it is possible to identify the “correct” prices of time 
to value household labour supply, household time in leisure activities and household time in work 
activities but econometric estimation is required.138 This means that it will be difficult for statistical 
agencies to deal with these difficulties in practical settings. 

• There are also problems in forming household utility functions when there are multiple persons in 
the household.139 

• Finally, the household production functions for work and leisure type activities could be subject to 
technological change. In this case, it will be necessary to measure the constant quality outputs 
produced by the household production functions directly instead of using the indirect methods that 
rely on inputs that were used in the above models.  

 
In spite of the above difficulties, there is no doubt that the allocation of time plays an important role in 
determining household welfare. Hopefully, future research will address some of the above problems.  
 
16. Aggregate Cost of Living Indexes 

 
In previous sections, we have considered the theory of the cost of living index for only a single consumer or 
household. In this section, we consider some of the problems involved in the construction of a cost of living  
index when there are many households or regions in the economy and the goal is the production of a national 
index. Below, we allow for an arbitrary number of households, H, so in principle, each household in the 
economy under consideration could have its own consumer price index. However, in practice, it will be 
necessary to group households into various classes and within each class, it will be necessary to assume that 
the group of households in the class behaves as if it were a single household in order to apply the economic 
approach to index number theory.140 Our partition of the economy into H household classes can also be 
given a regional interpretation: each household class can be interpreted as a group of households within a 
region of the country under consideration. 
 
In this section, we will consider an economic approach to the CPI that was initiated by Pollak (1980) (1981), 
who called his index concept a social cost of living index. It is a straightforward extension of the Konüs Cost 
of Living Index (COLI) for an individual household to a group of households.  
 
Suppose that there are H households (or regions) in the economy and suppose further that there are N 
commodities in the economy in periods 0 and 1 that households consume in the two periods. Denote an N 
dimensional vector of commodity consumption in a given period by q º (q1,q2,…, qN) as usual.  Denote the 
vector of period t market prices faced by household h by ph

t º (ph1
t,ph2

t,…,phN
t) for t = 0,1. Denote the 

corresponding observed consumption vector for household h in period t by qh
t º (qh1

t,qh2
t,…,qhN

t) for t = 0,1.   
Note that we are not assuming that each household faces the same vector of commodity prices. The 
preferences of household h over different combinations of market commodities q is represented by the 

 
137 A corner solution to a household utility maximization problem is one where the nonnegativity constraints in the 
consumer’s constrained utility maximization problem is binding (i.e, some qn or tn are equal to 0) and hence cannot be 
ignored. See Diewert, Fox and Schreyer (2017a) for the analysis of corner solutions.  
138 See Diewert, Fox and Schreyer (2017a) for approaches to the econometric estimation problems. The econometrics 
of consumer demand models where there are two constraints instead of a single budget constraint is not a well 
developed area.  
139 There are also complications due to changes in the composition of households over time resulting from demographic 
changes. 
140 The problems associated with grouping households will be discussed in section 18 below. 
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continuous utility function fh(q) for h = 1,2,…,H.141 For periods t = 0,1 and for households h = 1,2,…,H, it is 
assumed that the observed household h consumption vector qh

t º (qh1
t,…,qhN

t) is a solution to the following 
household h expenditure minimization problem: 
 
(248)  min q {ph

t×q : fh(q) ³ uh
t} º Ch(uh

t,ph
t) = ph

t×qh
t ;                                                        t = 0,1;  h = 1,2,…H 

 
where uh

t º fh(qh
t) is the utility level achieved by household h during period t and Ch is the cost or 

expenditure function that is dual to the utility function fh. Basically, these assumptions mean that each 
household has stable preferences over the same list of commodities during the two periods under 
consideration, the same households appear in each period and each household chooses its consumption 
bundle in the most cost efficient way during each period. Let pt be defined as the period t price vector of 
dimension HN that combines all of the household specific period t observed price vectors p1

t,...,pH
t into one 

big price vector and let qt be the companion economy wide quantity vector that combines all of the observed 
period t quantity vectors q1

t,...,qH
t into a single vector of dimension HN. Let q be a reference quantity vector 

of dimension HN; i.e., q º [q11,...,q1N;q21,...,q2N;...;qH1,...,qHN].   
 
With the above definitions in mind, the family of social cost of living indexes or aggregate Konüs cost of 
living indexes for the group of households under consideration is defined as follows:142 
 
(249) PK(p0,p1,q) º Sh=1

H Ch(fh(qh),ph
1)/Sh=1

H Ch(fh(qh),ph
0). 

 
The numerator on the right hand side of (249) is the sum over households of the minimum cost, Ch(uh,ph

1), 
for household h to achieve the reference utility level uh º fh(qh) given that the household h faces the period 1 
vector of prices ph

1. The denominator on the right hand side of (249) is the sum over households of the 
minimum cost, Ch(uh,ph

0), for household h to achieve the same reference utility level uh, given that the 
household faces the period 0 vector of prices ph

0. Thus in the numerator and denominator of (249), only the 
price variables are different, which is precisely what we want in a theoretical definition of a consumer price 
index. 
 
We now specialize the general definition (249) by replacing the general utility vector u by either the period 0 
vector of household utilities u0 º (u1

0,u2
0,…uH

0) or the period 1 vector of household utilities u1 º 
(u1

1,u2
1,…uH

1). The choice of the base period vector of utility levels leads to the Laspeyres Konüs cost of 
living index, PK(p0,p1,q0), while the choice of the period 1 vector of utility levels leads to the Paasche Konüs 
cost of living index, PK(p0,p1,q1). It turns out that these two indexes satisfy some inequalities, which are 
counterparts to the inequalities (3) and (4) in section 2 above.  
 
(250) PK(p0,p1,q0) º åh=1

H Ch(uh
0,ph

1)/åh=1
H Ch(uh

0,ph
0)                                    where uh

0 º fh(qh
0) for h = 1,...,H 

                             = åh=1
H Ch(uh

0,ph
1)/åh=1

H ph
0×qh

0                                           using (248) for t = 0 143 
                             £ åh=1

H ph
1×qh

0/åh=1
H ph

0×qh
0 

                                           since qh
0 is feasible for the cost minimization problem Ch(uh

0,ph
1) for h = 1,2,…,H 

                             º PL(p0,p1,q0,q1) 
 

 
141 As usual, we assume that each fh(q) is continuous, concave and increasing in the components of q.     
142 See Pollak (1980; 276) (1981; 328) (1989; 182) and Diewert (1983; 190-192) (2001; 170) for additional materials 
on social cost of living indexes. 
143 It can be seen that PK(p0,p1,q0) is also equal to a weighted average of the individual Laspeyres Konüs cost of living 
indexes; i.e., PK(p0,p1,q0) = Sh=1H Sh0Ch(uh0,ph1)/Ch(uh0,ph0) where Sh0 º ph

0×qh
0/Si=1

H pi
0×qi

0 for h = 1,...,H. Since the 
weights for the individual household cost of living indexes are equal to the household’s share of total nominal 
consumption in period 0, PK(p0,p1,q0) is a plutocratic aggregate cost of living index to use the terminology of Prais 
(1959). Prais (1959) defined a democratic COLI as Sh=1H (1/H)Ch(uh0,ph1)/Ch(uh0,ph0).   
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where PL(p0,p1,q0,q1) is defined to be the economy wide observable (in principle) Laspeyres price index, 
åh=1

H ph
1×qh

0/åh=1
H ph

0×qh
0 = p1×q0/p0×q0 which treats each household consumption vector as a separate 

commodity so that p0, p1 and q0 are HN dimensional vectors.   
 
The inequality (250) says that the theoretical Laspeyres Konüs cost of living index, PK(p0,p1,q0), is bounded 
from above by the observable Laspeyres price index PL. In a similar manner, specializing definition (249), 
the Paasche Konüs cost of living index, PK(p0,p1,q1), satisfies the following inequality: 
 
(251) PK(p0,p1,q1) º åh=1

H Ch(uh
1,ph

1)/åh=1
H Ch(uh

1,ph
0)                              where uh

1 º fh(qh
1,eh

1) for h = 1,...,H 
                             = åh=1

H ph
1×qh

1 /åh=1
H Ch(uh

1,ph
0)                                    using (248) for t = 1 144 

                              ³  åh=1
H  ph

1×qh
1/åh=1

H ph
0×qh

1                                         using feasibility arguments 
                              º PP(p0,p1,q0,q1) 
 
where PP(p0,p1,q0,q1) is defined to be the observable (in principle) Paasche price index, åh=1

H ph
1×qh

1/åh=1
H 

ph
0×qh

1 = p1×q1/p0×q1. The inequality (251) says that the theoretical Paasche Konüs cost of living index, 
PK(p0,p1,q1), is bounded from below by the observable Paasche price index PP. 
 
It is possible to find two sided bounds for a Konüs cost of living index; i.e., we have the following 
proposition: 
 
Proposition 15: Under suitable continuity assumptions on preferences, there exists a number l* between 0 
and 1 such that  
 
(252)  PL £ PK(p0,p1,l*q0+(1-l*)q1) £ PP  or  PP £ PK(p0,p1,l*q0+(1-l*)q1) £ PL 
 
where PL º p1×q0/p0×q0 and PP º p1×q1/p0×q1. The proof of Proposition 15 is similar to the proof of Proposition 
1; see Diewert (2001; 173) for the details. 
 
The above result tells us that the theoretical aggregate Konüs cost of living index consumer price index 
PK(p0,p1,q*) lies between the observable Laspeyres index PL and the Paasche index PP, where q* º 
l*q0+(1-l*)q1 is an intermediate quantity vector that lies between q0 and q1. Hence if PL and PP are not too 
different, a good approximation to a theoretical aggregate cost of living index will be the Fisher index 
PF(p0,p1,q0,q1) defined as PF(p0,p1,q0,q1) º [PL(p0,p1,q0,q1)PP(p0,p1,q0,q1)]1/2. This Fisher price index is 
computed just like the usual Fisher price index, except that each commodity in each region (or for each 
household) is regarded as a separate commodity. 
 
It is possible to obtain an alternative estimator for an aggregate cost of living index if stronger assumptions 
on household preferences are made. Thus assume that the preferences of household h are represented by the 
linearly homogeneous utility function fh(qh) º [qh

TAhqh]1/2 where Ah is a symmetric matrix which satisfies the 
regularity conditions discussed in section 5 above for h = 1,...,H. Under these assumptions, the Fisher price 
and quantity indexes will be exact for these preferences; see section 5 above. Let ch(ph) = ch(ph1,...,phN) be the 
unit cost function that corresponds to fh(qh) for h = 1,...,H. Assuming utility maximizing behavior on the part 
of each household, the following equations will be satisfied: 
 
(253) ph

t×qh
t = fh(qh

t)ch(ph
t) ;                                                                                                    h = 1,...,H; t = 0,1. 

 
 

144 It can be verified that PK(p0,p1,q1) is equal to the following weighted harmonic average of the individual Paasche 
Konüs cost of living indexes: PK(p0,p1,q1) = {Sh=1H Sh1[Ch(uh1,ph1)/Ch(uh1,ph0)]-1}-1 where Sh1 º ph

1×qh
1/Si=1

H pi
1×qi

1 for 
h = 1,...,H.   
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Now use Fisher price and quantity indexes to estimate household quantity and price levels, Qh
t º fn(qh

t) and 
Ph

t º ch(ph
t), for t = 0,1 and h = 1,...,H as follows:                                                                                    

      
(254) Ph

0 º 1 º ch(ph
0) ; Qh

0 º ph
0×qh

0 º fn(qh
0) ;                                                                                   h = 1,...,H;  

(255) Ph
1 º PF(ph

0,ph
1,qh

0,qh
1) º ch(ph

1) ; Qh
1 º [ph

1×qh
1]/Ph

1 ;                                                               h = 1,...,H.                                   
 
Under our new assumption of homothetic preferences for each household, definition (250) for the Laspeyres 
Konüs cost of living index PK(p0,p1,q0) simplifies into the following expression: 
 
(256) PK(p0,p1,q0) º åh=1

H Ch(uh
0,ph

1)/åh=1
H Ch(uh

0,ph
0)                                where uh

0 º fh(qh
0) for h = 1,...,H 

                             = åh=1
H uh

0ch(ph
1)/åh=1

H uh
0ch(ph

0)                                    since Ch(uh,ph) = uhc(ph) for each h  
                             = åh=1

H Ph
1Qh

0/åh=1
H Ph

0Qh
0                                             using (254) and (255) 

                             = PL(P0,P1,Q0,Q1) 
 
where Pt º [P1

t,...,PH
t] and Qt º [Q1

t,...,QH
t] for t = 0,1 and PL(P0,P1,Q0,Q1) is the ordinary Laspeyres price 

index using the aggregate household prices and quantities for the two periods under consideration as the 
price and quantity variables.  
 
Similarly, definition (251) for the Paasche Konüs cost of living index PK(p0,p1,q1) simplifies into the 
following expression: 
 
(257) PK(p0,p1,q1) º åh=1

H Ch(uh
1,ph

1)/åh=1
H Ch(uh

1,ph
0)                                where uh

1 º fh(qh
1) for h = 1,...,H 

                             = åh=1
H uh

1ch(ph
1)/åh=1

H uh
1ch(ph

0)                                    since Ch(uh,ph) = uhc(ph) for each h  
                             = åh=1

H Ph
1Qh

1/åh=1
H Ph

0Qh
1                                             using (254) and (255) 

                             º PP(P0,P1,Q0,Q1) 
 
where PP(P0,P1,Q0,Q1) is the ordinary Paasche price index using the aggregate household prices and 
quantities for the two periods under consideration as the price and quantity variables. 
 
The aggregate price indexes PK(p0,p1,q0) and PK(p0,p1,q1) defined by (256) and (257) are equally plausible 
measures of overall consumer price inflation between periods 0 and 1 and so it is reasonable to take an 
average of these two indexes to obtain a “final” estimate of inflation between the two periods. As usual, the 
geometric average leads to an index that will satisfy a time reversal test. Thus we have: 
 
(258) [PK(p0,p1,q0)PK(p0,p1,q1)]1/2 = [PL(P0,P1,Q0,Q1)PP(P0,P1,Q0,Q1)]1/2 º PF(P0,P1,Q0,Q1) 
 
where PF(P0,P1,Q0,Q1) is the Fisher index defined over the aggregate household prices and quantities for the 
two periods under consideration. It is actually a two stage Fisher index where the first stage of aggregation 
uses the price and quantity data for each household to construct household specific Fisher price and quantity 
levels for each household. The two stage Fisher price index PF(P0,P1,Q0,Q1) defined by (258) can be 
compared to the single stage Fisher price index PF(p0,p1,q0,q1) defined earlier as the geometric mean of  
PL(p0,p1,q0,q1) and PP(p0,p1,q0,q1) defined by (250) and (251). Using the results listed in section 8 above, we 
know that the single stage Fisher index will approximate its two stage counterpart to the second order around 
an equal price and quantity point. Thus normally, we would not expect much difference between these 
alternative measures of overall consumer price inflation. 
 
In the following section, we turn our attention to the definition of aggregate quantity indexes.       
  
17. Aggregate Allen Quantity Indexes  
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Recall the definition of the Allen quantity index for a single household defined above in section 11. In this 
section, we will generalize this index concept to cover the case of many households. 
 
Make the same assumptions on households and their preference functions that were made at the beginning of 
the previous section. Again assume that the observed household h consumption vector qh

t º (qh1
t,…,qhN

t) is a 
solution to the following household h expenditure minimization problem defined by (248) for t = 0,1 and h = 
1,...,H. Using the same notation that was used at the beginning of the previous section, the family of 
aggregate Allen quantity indexes for the group of households under consideration is defined as follows:  
 
(259) QA(q0,q1,p) º Sh=1

H Ch(fh(qh
1),ph)/Sh=1

H Ch(fh(qh
0),ph) = Sh=1

H Ch(uh
1,ph)/Sh=1

H Ch(uh
0,ph) 

 
where uh

t º fh(qh
t) for t = 0,1 and h = 1,...,H and p º [p1,...pH] is an NH dimensional vector of reference 

prices.  
 
Note that in the numerator and denominator of the last equation in (259), only the household utility variables 
are different, which is appropriate for an overall measure of household utility which in turn is an overall 
quantity or volume measure. Note also that if H = 1, definition (259) reduces to the definition of an Allen 
(1949) quantity index.  
 
We now specialize the general definition (259) by replacing the reference price vector p by either the period 
0 economy wide price vector p0 or the period 1 economy wide price vector p1. Thus define the Laspeyres 
aggregate Allen quantity index by QA(q0,q1,p0) and the Paasche aggregate Allen quantity index by 
QA(q0,q1,p1). It turns out that these two indexes satisfy some inequalities, which are counterparts to the 
inequalities (3) and (4) in section 2 above. Thus choosing p = p0 leads to the following index: 
 
(260) QA(q0,q1,p0) º åh=1

H Ch(fh(qh
1),ph

0)/åh=1
H Ch(fh(qh

0),ph
0)     

                              = åh=1
H Ch(fh(qh

1),ph
0)/åh=1

H ph
0×qh

0                                                   using (248) for t = 0 145 
                              £ åh=1

H ph
0×qh

1/åh=1
H ph

0×qh
0 

                                      since qh
1 is feasible for the cost minimization problem Ch(fh(qh

1),ph
0) for h = 1,2,…,H 

                              º QL(p0,p1,q0,q1) 
 
where QL(p0,p1,q0,q1) is defined to be the observable (in principle) Laspeyres quantity index, åh=1

H 
ph

0×qh
1/åh=1

H ph
0×qh

0 = p0×q1/p0×q0, which treats each household consumption vector as a separate commodity 
so that p0, q0 and q1 are HN dimensional vectors.   
 
The inequality (260) says that the theoretical Laspeyres Allen aggregate quantity index, QA(q0,q1,p0), is 
bounded from above by the observable Laspeyres quantity index QL. In a similar manner, specializing 
definition (259) by setting p = p1, the Paasche Allen aggregate quantity index, QA(q0,q1,p1), satisfies the 
following inequality: 
 
(261) QA(q0,q1,p1) º åh=1

H Ch(fh(qh
1),ph

1)/åh=1
H Ch(fh(qh

0),ph
1)     

                              = åh=1
H ph

1×qh
1/åh=1

H Ch(fh(qh
0),ph

1)                                                   using (248) for t = 1 146 

 
145 It can be seen that QA(q0,q1,p0) is equal to a weighted average of the individual household Laspeyres Allen quantity 
indexes; i.e., QA(q0,q1,p0) = Sh=1H Sh0Ch(uh1,ph0)/Ch(uh0,ph0) where Sh0 º ph

0×qh
0/Si=1

H pi
0×qi

0 for h = 1,...,H. Since the 
weights for the individual household quantity indexes are equal to the household’s share of total nominal consumption 
in period 0, QA(q0,q1,p0) can be interpreted as a plutocratic aggregate quantity index. A democratic aggregate quantity 
index can be defined as Sh=1H (1/H)[Ch(uh1,ph0)/Ch(uh0,ph0)].      
146 It  can be seen that QA(q0,q1,p1) is equal to a weighted harmonic average of the individual household Paasche Allen 
quantity indexes; i.e., QA(q0,q1,p1) = {Sh=1H Sh1 [Ch(uh1,ph0)/Ch(uh0,ph0)]-1}-1. 
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                              ³ åh=1
H ph

1×qh
1/åh=1

H ph
1×qh

0 
                                      since qh

0 is feasible for the cost minimization problem Ch(fh(qh
0),ph

1) for h = 1,2,…,H 
                              º QP(p0,p1,q0,q1) 
  
where QP(p0,p1,q0,q1) is defined to be the observable (in principle) Paasche quantity index, åh=1

H 
ph

1×qh
1/åh=1

H ph
1×qh

0 = p1×q1/p1×q0. The inequality (261) says that the theoretical Paasche Allen aggregate 
quantity index, QA(q0,q1,p1), is bounded from below by the observable Paasche quantity index QP º 
p1×q1/p1×q0.   
 
As usual, it is possible to find two sided bounds for a relevant Allen aggregate quantity index; i.e., we have 
the following proposition: 
 
Proposition 16: Under our regularity conditions, there exists a number l* between 0 and 1 such that  
 
(262)  QL £ QA(q0,q1,l*p0+(1-l*)p1) £ QP  or  QP £ QA(q0,q1,l*p0+(1-l*)p1) £ QL 
 
where QL º p0×q1/p0×q0 and QP º p1×q1/p1×q0. The proof of Proposition 16 is similar to the proof of Proposition 
1. 
 
The above result tells us that the theoretical aggregate Allen quantity index, QA(q0,q1,l*p0+(1-l*)p1), lies 
between the observable Laspeyres and Paasche quantity indexes, QL and QP, where the reference price 
vector is the intermediate price vector ,l*p0+(1-l*)p1. Hence if QL and QP are not too different, a good 
approximation to a theoretical aggregate quantity index will be the single stage Fisher quantity index 
QF(p0,p1,q0,q1) defined as [p0×q1p1×q1/p0×q0p1×q0]1/2. This single stage Fisher quantity index is computed just 
like the usual Fisher quantity index, except that each commodity in each region (or for each household) is 
regarded as a separate commodity. 
 
The two special cases of the family of aggregate Allen quantity indexes defined by (260) and (261) are 
connected to the two special cases of family of Konüs cost of living indexes defined by (250) and (251) in 
the previous section. Using these definitions, it is straightforward to show that the following two 
relationships hold: 
 
(263) PK(p0,p1,q0)QA(q0,q1,p1) =åh=1

H Ch(fh(qh
1),ph

1)/åh=1
H Ch(fh(qh

0),ph
0) =åh=1

H ph
1×qh

1/åh=1
H ph

0×qh
0 ;   

(264) PK(p0,p1,q1)QA(q0,q1,p0) =åh=1
H Ch(fh(qh

1),ph
1)/åh=1

H Ch(fh(qh
0),ph

0) =åh=1
H ph

1×qh
1/åh=1

H ph
0×qh

0. 
 
Thus the aggregate Laspeyres Konüs price index PK(p0,p1,q0) times the aggregate Paasche Allen quantity 
index QA(q0,q1,p1) equals the aggregate value ratio for the group of households, p1×q1/p0×q0, and the aggregate 
Paasche Konüs price index PK(p0,p1,q1) times the aggregate Laspeyres Allen quantity index QA(q0,q1,p0) also 
equals the aggregate value ratio, p1×q1/p0×q0.       
 

As was the case in the previous section, it is possible to obtain an alternative estimator for an aggregate 
quantity index if stronger assumptions on household preferences are made. Thus as in the previous section, 
assume that the preferences of household h are represented by the linearly homogeneous utility function 
fh(qh) º [qh

TAhqh]1/2 where Ah is a symmetric matrix, which satisfies the regularity conditions discussed in 
section 5 above for h = 1,...,H. Under these assumptions, the individual household Fisher price and quantity 
indexes, PF(ph

0,ph
1,qh

0,qh
1) and QF(ph

0,ph
1,qh

0,qh
1), will be exact for these preferences. As in the previous 

section, let ch(ph) = ch(ph1,...,phN) be the unit cost function that corresponds to fh(qh) for h = 1,...,H. Assuming 
utility maximizing behavior on the part of each household, equations (253)-(255) will be satisfied. 
 



 65 

Under the above homothetic utility function assumptions on household preferences, definition (260) for the 
Laspeyres Allen aggregate quantity index, QA(q0,q1,p0), simplifies into the following expression: 
 
(265) QA(q0,q1,p0) º åh=1

H Ch(uh
1,ph

0)/åh=1
H Ch(uh

0,ph
0)                  where uh

t º fh(qh
t) for h = 1,...,H and t = 0,1 

                              = åh=1
H uh

1ch(ph
0)/åh=1

H uh
0ch(ph

0)                      since Ch(uh,ph) = uhc(ph) for each h  
                              = åh=1

H Ph
0Qh

1/åh=1
H Ph

0Qh
0                               using (254) and (255) 

                              = QL(P0,P1,Q0,Q1) 
 
where Pt º [P1

t,...,PH
t] and Qt º [Q1

t,...,QH
t] for t = 0,1 and QL(P0,P1,Q0,Q1) is the ordinary Laspeyres quantity 

index using the aggregate household prices and quantities, Pt and Qt, for the two periods under consideration 
as the household aggregate price and quantity variables.  
 
Similarly, definition (261) for the Paasche Allen aggregate quantity index QA(q0,q1,p1) simplifies into the 
following expression: 
 
(266) QA(q0,q1,p1) º åh=1

H Ch(uh
1,ph

1)/åh=1
H Ch(uh

0,ph
1)                                 

                              = åh=1
H uh

1ch(ph
1)/åh=1

H uh
0ch(ph

1)                                   since Ch(uh,ph) = uhc(ph) for each h  
                              = åh=1

H Ph
1Qh

1/åh=1
H Ph

1Qh
0                                            using (254) and (255) 

                              º QP(P0,P1,Q0,Q1) 
 
where QP(P0,P1,Q0,Q1) is the ordinary Paasche quantity index using the aggregate household prices and 
quantities for the two periods under consideration as the price and quantity variables. 
 
The aggregate quantity indexes QA(q0,q1,p0) and QA(q0,q1,p1) defined by (265) and (266) are equally 
plausible measures of overall consumer quantity or volume growth between periods 0 and 1 and so it is 
reasonable to take an average of these two indexes to obtain a “final” estimate of aggregate quantity growth 
between the two periods. As usual, the geometric average leads to an index that will satisfy a time reversal 
test. Thus we have: 
 
(267) [QA(q0,q1,p0)QA(q0,q1,p1)]1/2 = [QL(P0,P1,Q0,Q1)QP(P0,P1,Q0,Q1)]1/2 º QF(P0,P1,Q0,Q1) 
 
where QF(P0,P1,Q0,Q1) is the Fisher quantity index defined over the aggregate household prices and 
quantities for the two periods under consideration. It is a two stage Fisher index where the first stage of 
aggregation uses the price and quantity data for each household to construct household specific Fisher price 
and quantity levels for each household. The two stage Fisher quantity index QF(P0,P1,Q0,Q1) defined by 
(267) can be compared to the single stage Fisher quantity index QF(p0,p1,q0,q1) defined as the geometric 
mean of QL(p0,p1,q0,q1) º p0×q1/p0×q0 and QP(p0,p1,q0,q1) º p1×q1/p1×q0. Using the results listed in section 8 
above, we know that the single stage Fisher quantity index will approximate its two stage counterpart to the 
second order around an equal price and quantity point. Thus normally, we would not expect much difference 
between these alternative measures of overall real aggregate consumption growth. 
 
18. Social Welfare Functions and Inequality Indexes 
 
Equations (265) and (266) have some interesting implications. These equations give the following 
decompositions for an aggregate quantity index: QA(q0,q1,p0) = åh=1

H uh
1ch(ph

0)/åh=1
H uh

0ch(ph
0) and 

QA(q0,q1,p1) = åh=1
H uh

1ch(ph
1)/åh=1

H uh
0ch(ph

1). The numerators in these equations can be interpreted as 
aggregate period 1 quantity levels and the denominators as aggregate period 0 quantity levels. These 
quantity levels have the same general form; i.e., the period t aggregate quantity level Qt is equal to a 
weighted sum of the period t household utility levels so that Qt º Sh=1

H whuh
t for t = 0,1 where the weights wh 

are fixed nonnegative numbers. Functions like Sh=1
H whuh

t are called social welfare functions in the 
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economics literature. Thus the two aggregate Allen indexes can be regarded as specific examples where the 
indexes are equal to ratios of social welfare functions.  
 
Choosing the appropriate weights for a social welfare function is a nontrivial problem, which has not been 
completly resolved in the economics literature but there is a demand for statistical agencies to produce 
measures of social welfare that take into account possible inequality in the distribution of income between 
households.147  We will not go into great detail on the complex issues surrounding the measurement of social 
welfare but we will indicate some of the problems that are associated with the construction of indexes of 
social welfare.  
 
The first problem that needs to be addressed is that the individual household utility measures have to be 
made cardinally comparable in some way. Recall the assumptions made on household preferences made 
above equations (253). In order to construct meaningful measures for the levels of social welfare, it is 
necessary to make stronger assumptions; i.e., we now assume that the preferences of household h are 
represented by the linearly homogeneous utility function fh(qh) º [qh

TAqh]1/2 for each h where A is a 
symmetric matrix which satisfies the regularity conditions discussed in section 5 above. Thus under these 
stronger assumptions, we are now assuming that the household preference functions are identical across 
households for h = 1,...,H. Under these assumptions, the Fisher price and quantity indexes will be exact 
across households within a time period as well as across time periods. Let c(ph) = c(ph1,...,phN) be the unit 
cost function that corresponds to f(qh) for h = 1,...,H. Assuming utility maximizing behavior on the part of 
each household, the following equations should be satisfied: 
 
(268) ph

t×qh
t = f(qh

t)c(ph
t) ;                                                                                                       h = 1,...,H; t = 0,1. 

 
Now use Fisher price and quantity indexes to estimate household quantity and price levels, Qh

t º f(qh
t) and 

Ph
t º c(ph

t), for t = 0,1 and h = 1,...,H as follows:                                                                                    
 
(269) P1

0 º 1 º c(p1
0) ; Q1

0 º p1
0×q1

0 º f(q1
0) º u1

0 ;       
(270) Ph

0 º PF(p1
0,ph

0,q1
0,qh

0) º c(ph
0) ; Qh

0 º ph
0×qh

0/Ph
0 º f(qh

0) º uh
0 ;                                            h = 2,...,H;  

(271) Ph
1 º PF(p1

0,ph
1,q1

0,qh
1) º c(ph

1) ; Qh
1 º [ph

1×qh
1]/Ph

1 º f(qh
1) º uh

1;                                           h = 1,...,H. 
 
Thus household 1 in period 0 acts as a numeraire household; the Fisher price and quantity indexes for the 
other households in periods 0 and 1 are computed relative to household 1 in period 0.148 Once the cardinally 
comparable utility levels uh

t have been computed using definitions (269)-(271), they can be used to 
determine the level of social welfare in each period t. For example, the period t level of social welfare could 
be defined as Qt º Sh=1

H whuh
t for t = 0,1 where the weights wh are somehow chosen by the statistical office. 

 
However, it has proven to be difficult to come up with consensus social welfare weights for the wh. A simple 
solution is to set wh = 1 for h = 1,...,H. The resulting function is the utilitarian social welfare function. 
However, this function shows no concern of the distribution of utility across all households. An allocation of 
the economy’s real expenditures on consumer goods and services that gave most of the total group 
expenditure to one household would generate the same level of social welfare using the utilitarian function 
as the distribution that divided the total real expenditures equally across households. In order to address 
distributional issues, it is necessary to introduce nonlinear social welfare functions. 
 

 
147 See Hays, Martin and Mkandawire (2019). 
148 This is known as a “star” approach to the construction of multilateral indexes and the resulting indexes will depend 
on the choice of the numeraire household. We will introduce more symmetric methods for making multilateral 
comparisons in Chapter 7.   
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Atkinson (1970; 257) introduced the following mean of order r social welfare function:149 
 
(272) Wr(u1,...,uH) º [Sh=1

H (1/H)(uh)r]1/r  
 
where r £ 1 and r ¹ 0.150 Note that Wr(u1,...,uH) is a measure of per capita utility rather than a measure of 
total utility for the period under consideration. Using the earlier materials on CES utility functions, we know 
that Wr(u1,...,uH) º Wr(u) is a linearly homogeneous, concave increasing function of the household utility 
levels, u º [u1,...,uH]. When r = 1, W1(u) = Sh=1

H (1/H)uh which is per capita utility. As r approaches minus 
infinity, Wr(u1,...,uH)  approaches min h {uh : h = 1,...,H}, which is the social welfare function advocated by 
Rawls (1971).151                                                          
 
It proves to be useful to compare an Atkinson measure of social welfare Wr(u1,...,uH) with per capita utility 
for each period. Period t per capita utility is defined as follows: 
 
(273) uA

t º Sh=1
H (1/H)uh

t º W1(u1
t,...,uH

t) ;                                                                                               t = 0,1. 
 
Thus per capita utility is a special case of the Atkinson family of social welfare measures with r = 1. For a 
general r < 1, Atkinson’s (1970; 250) period t equally distributed equivalent real income per head, uE

t, is 
defined (implicitly) by the following equation: 
 
(274) Wr(u1

t,...,uH
t) = Wr(uE

t1H) ;                                                                                                               t = 0,1 
                               = uE

tWr(1H)                                      using the linear homogeneity property of Wr(u1,...,uH)                             
                               = uE

t                                                 using definition (272) which implies Wr(1H) = 1. 
 
Thus actual social welfare in period t, Wr(u1

t,...,uH
t), is set equal to a level of social welfare where each 

household gets the same level of utility, uE
t.  Hardy, Littlewood and Polya (1934; 26) show that the mean of 

order r function, Wr(u1,...,uH), is increasing in r provided that not all uh are the same and nondecreasing in r 
in general. Since r < 1, Wr(u1

t,...,uH
t) £ W1(u1

t,...,uH
t) for t = 0,1. Using these inequalities and definitions 

(273) and (274), we have the following inequalities: 
 
(275) uE

t/uA
t £ 1 ;                                                                                                                                       t = 0,1.   

 
Kolm’s (1969; 186) period t index of relative injustice or Atkinson’s (1970; 257) and Sen’s (1973; 42) 
period t relative inequality index, It, is defined as follows: 
 
(276) It º 1 - (uE

t/uA
t) ³ 0 ;                                                                                                                        t = 0,1. 

 
Thus if household utility levels in period t are identical, uE

t will equal uA
t and period t inequality It will equal 

0. If r is a very large negative number, and one or more households in period t has a very low utility level, 
then uE

t will be close to 0 and It will be close to 1, the maximum amount of inequality that can occur. 
 
Define the period t equality index as 
 
(277) Et º uE

t/uA
t ;                                                                                                                                      t = 0,1. 

 
149 Atkinson worked with continuous distributions of nominal incomes whereas we work with discrete distributions of 
real incomes. Fleurbaey (2009; 1032) has a discrete version of Atkinson’s approach, which is similar to the approach 
presented here except that nominal incomes are used in place of our real incomes. Finally, Jorgenson and Schreyer 
(2017; S466) use a version of the approach presented here except they assume all households face the same prices.  
150 As usual, if r = 0, define the logarithm of W0(u1,...,uH) as Sh=1H (1/H)lnuh. 
151 See also Blackorby and Donaldson (1978). 
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Thus the closer Et is to its maximum value 1, the more equal is the distribution of real consumption in the 
group of households under consideration. Since period t Atkinson welfare is equal to Wr(u1

t,...,uH
t) = uE

t, we 
can write period t welfare as the product of per capita real consumption, uA

t, times Et:152 
 
(278) Wr(u1

t,...,uH
t) = uA

tEt                                                                                                                       t = 0,1.  
 
A practical problem with the above approach for measuring social welfare is that it is necessary to pick a 
specific value for r in order to implement it.153 Since the results will depend on which r is chosen and since 
there is no general consensus on which r to choose, statistical agencies have largely not produced practical 
measures of social welfare. Thus we will conclude this section by considering one more approach to the 
production of social welfare indexes: an approach that, at first glance, does not require chosing parameters 
for the social welfare function.   
 
Our final approach to the measurement of social welfare relies on a discrete version of the Gini (1921) 
coefficient. We first convert the household utility levels uh

t defined by (269)-(271) into household shares of 
total utility sh

t for each time period: 
 
(279) sh

t º uh
t/Si=1

H ui
t ;                                                                                                           h = 1,...,H; t = 0,1. 

 
Now order the households so that household 1 has the lowest utility in period t, household 2 has the next 
lowest utility and so on. Thus for each period t, the shares sh

t will satisfy the following inequalities: 
 
(280) s1

t £ s2
t £ ...  £ sH

t ;                                                                                                                         t = 0,1. 
 
The area under the cumulative distribution function of the share variables sh

t is proportional to At defined 
as follows: 
 
(281) At º s1

t + (s1
t+s2

t) + (s1
t+s2

t+s3
t) + ... + (Sh=1

H-1 sh
t) + (Sh=1

H sh
t) ;                                              t = 0,1 

              = Hs1
t + (H-1)s2

t + (H-2)s3
t + ... + 2sH-1

t  + sH
t.  

 
Consider the following linear programming problem: 
 
(282) max {Hs1+(H-1)s2+(H-2)s3+ ... +2sH-1+sH : 0 £ s1

t £ s2
t £ ...  £ sH

t; Sh=1
H sh = 1}. 

 
The solution to this problem is sh = 1/H for h = 1,...,H. Substitute this solution into the objective function in 
(282) and this will determine the maximum value A* for the objective function in (282): 
 
(283) A* º [H + (H-1) + (H-2) + ... + 2 + 1][1/H] = [H(H+1)/2][1/H] = (H+1)/2. 
 
Define the period t Gini index of equality for the distribution of household utilities, Et*, as: 
 
(284) Et* º At/A* £ 1 ;                                                                                                                                t = 0,1 
 

 
152 See Atkinson (1970; 250) and Fleurbaey (2009; 1032) for this type of decomposition applied to nominal incomes 
and see Jorgenson and Schreyer (2017; S470) for this type of decomposition applied to real incomes.  
153 For alternative social welfare functions that require exogenous parameterization, see Diewert (1985; 77-82), 
Fleurbaey (2009; 1032-1036) and Jorgenson and Schreyer (2017). 

Hss ,...,1
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where At is defined by (281) and A* is defined by (283). The inequalities At/A* £ 1 follow since At is 
necessarily less than the maximum possible value for At, which is A*. The period t Gini coefficient or Gini 
index of inequality for the discrete income distribution, Gt, is defined as: 
 
(285) Gt º 1 - Et* ;                                                                                                                                    t = 0,1.                                                                                   
 
The Gini coefficient as a measure of inequality in nominal income distributions is well understood and well 
accepted in economic measurement circles. The above algebra simply adapts it as a measure of inequality 
for real income distributions. There are no additional parameters that have to be determined by the official 
statistician. 154  
 
The final step is to use Et* to adjust per capita real consumption uA

t defined above by definitions (273) for 
inequality in the real income distribution; i.e., define period t welfare, Wt, as: 
 
(286) Wt º uA

tEt* = uA
t(1 - Gt) ;                                                                                                                t = 0,1.  

 
Thus for each period t, per capita real consumption for the group under consideration, uA

t, is multiplied by 
the Gini equality index Et* to give an estimate of social welfare for the group that takes into account the 
distribution of real incomes within the group. Since the Gini coefficient is a generally accepted measure of 
inequality, the social welfare estimates defined by (286) are likely to be acceptable to the public.155 
 
However, there are a number of practical measurement problems that are not addressed in the above 
material: 
 

• Real income distributions (or more accurately, distributions of real consumption over households in 
a country) do not exist. Thus the real “income” distribution described above may have to be 
approximated by a corresponding nominal distribution of household consumption expenditures for a 
period. This approximation may be satisfactory if all households in the group under consideration 
face approximately the same prices. 

• Some households have more members than other households but the theory outlined above 
implicitly assumed that all households had the same size. This problem can be addressed by the use 
of household equivalence scales but some measurement error will be introduced by their use.156 For 

 
154 However, the fact that the economic statistician using the Gini equality index to adjust per capita real income for 
inequality does not have to pick a particular value of r as is the case if an Atkinson social welfare function is used to 
measure inequality does not imply that the use of the Gini coefficient methodology is free of value judgements. The 
social welfare function defined by (286) does imply specific judgements about the relative welfare of the individuals in 
the welfare comparison; see Atkinson (1970; 257). 
155 For related work on the use of the Gini coefficient in measures of welfare, see Sen (1976; 30-31) and Fleurbaey 
(2009; 1034-1035).  
156 The simplest way to deal with households that differ in the number of members is to divide their utility, say uht for 
household h in period t, by nht, which is the number of household members. Then when constructing the distribution of 
utilities for period t, replace uht by nht copies of per person utility, uht/nht º uht*. This crude adjustment of utility for 
household composition neglects the fact that multiple person households can share the services of the durable goods 
owned by the household. A household equivalence scale for household h in period t is a household efficiency factor aht 
which is equal to 1 if nht = 1 and if nht > 1, aht > 1. The new adjusted per person utility for the household uht* is set equal 
to unadjusted per person utility, uht/nht, times the household efficiency factor aht. Thus the new adjusted for composition 
per person household utility is uht* º uhtaht/nht ³ uht/nht. Thus when constructing the distribution of utilities for period t, 
replace uht by nht copies of the composition adjusted per person utility, uht* = uhtaht/nht. Our suggested approach to 
adjusting social welfare measures for household composition is more or less the same as the procedure suggested by 
Jorgenson and Schreyer (2017; S466).   
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references to the literature on alternative household equivalence scales, see Fleurbaey (2009; 1051-
1052), Jorgenson and Slesnick (1987) and Jorgenson and Schreyer (2017; S462-S465). 

• The services of consumer durables should be included in household consumption.157 Most nominal 
income (or consumption) distributions for countries ignore the services provided by household 
durable goods. In particular, the services provided by Owner Occupied Housing are typically 
missing in published income distributions.158 This is a serious omission. 

• Finally, adjustments to household nominal expenditures should be made for households that receive 
goods and services provided by governments and charitable organizations at no cost or at highly 
subsidized prices. These subsidized goods and services should be valued at comparable market 
prices.159 

 
19. The Matching of Prices Problem 
 
The economic approach to index number theory starts out by developing a theory of individual household 
behavior. With the exception of the material in section 14, our analysis of the economic approach has 
assumed that prices faced by households were all positive in the two periods being compared and the 
quantities purchased by each household during the two periods were also positive. However, individual 
households rarely purchase positive amounts of the same commodities in two consecutive periods. The 
shorter is the time period, the greater will be this lack of matching problem. Part of the problem is due to the 
existence of seasonal commodities and part is due to the fact that consumers can store goods purchased in 
one period and consume them over multiple periods and the economic approach to index number theory 
does not take the storage problem into consideration. In recent years, an increasing number of firms have 
used dynamic pricing; i.e., they vary the prices of their products by introducing deeply discounted prices at 
random intervals. Thus individuals can purchase these discounted products in one period and gradually 
consume them over multiple periods.  
 
There are a number of ways to address this lack of matching problem: 
 

• Make the reference time period longer; i.e., move from a weekly index to a monthly index or move 
from a monthly index to a quarterly index. 

• Instead of defining products narrowly (i.e., by a product code and by a particular point of 
purchase), group similar products together and use broadly defined unit value prices instead of 
narrowly defined unit value prices. This reduces the number of products in scope for the index 
from N to a number considerably less than N and this will increase the number of “matched” 
products. 

• Aggregate households that are “similar” into a group of households and apply the economic 
approach to the group. 

• Acknowledge that the economic approach is difficult to implement at the level of individual 
households and apply the fixed basket approach to index number theory that was developed in 
Chapter 2 to groups of households.  

 
We will address each of the above points in turn. 
 

 
157 Christensen and Jorgenson (1969) advocated this inclusion many years ago and provided estimates for the US. 
158 Various approaches to the measurement of the services provided by consumer durables will be considered in 
Chapter 10. 
159 Thus there is a difference between household expenditures (final consumption expenditures in the System of 
National Accounts) and actual individual consumption, which includes social transfers in kind such as free or 
subsidized services such as health, education and housing services provided by governments at free or below market 
prices by government agencies. The latter concept is the correct concept to use in welfare measures. 
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There are a few countries that construct quarterly CPIs but most countries find that a monthly CPI seems to 
satisfy most user needs. Thus moving from a monthly CPI to a quarterly CPI is not feasible for most 
countries. Moving to weekly or daily CPIs is likely to encounter severe lack of matching problems if they 
are constructed at the individual level. 
 
The problem with moving from narrowly defined products to more broadly defined products is that unit 
value bias or quality adjustment bias is likely to result. It is difficult to quantify the tradeoff between 
obtaining more product matches versus increased unit value bias.  
 
The economic approach to index number theory can be applied to a group of households under some 
restrictive assumptions. Suppose we have a group of similar households which have the same homothetic 
preferences. In particular, suppose we have H households and N commodities and the unit cost function for 
each household is c(p) º (pTBp)1/2 where B is an N by N symmetric matrix with one positive eigenvalue with 
a strictly positive eigenvector and the remaining eigenvalues are nonpositive. We know that the Fisher price 
and quantity indexes for each household are exact for this functional form. Let the utility function that 
corresponds to this unit cost function be f(q). Let ph

t >> 0N and qh
t > 0N be the “observed” price and quantity 

vectors for household h in period t for h = 1,...,H and t = 0,1.160 Assuming cost minimizing behavior for each 
household in each period and using Shephard’s Lemma, the following equations will hold, where uh

t º f(qh
t) 

for h = 1,...,H and t = 0,1: 
 
(287) qh

t º Ñpc(ph
t)uh

t = Bph
tuh

t/c(ph
t) ;                                                                              h = 1,...,H and t = 0,1. 

 
Define the period t aggregate quantity vector qt and aggregate utility level ut as follows: 
 
(288) qt º Sh=1

H qh
t ; ut º Sh=1

H uh
t ;                                                                                                            t = 0,1. 

 
Our final assumption is that all households in each period t face the same vector of prices pt: 
 
(289) ph

t = pt ;                                                                                                                    h = 1,...,H and t = 0,1.  
 
Using (287)-(289), we have the following equations: 
 
(290) qt º Sh=1

H qh
t = Sh=1

H Bptuh
t/c(pt) = Bpt[Sh=1

H uh
t]/c(pt) = Bptut/c(pt) ;                                             t = 0,1.           

 
Thus qt, pt and ut satisfy the Shephard’s Lemma equations (287) where qt, pt and ut have replaced qh

t, ph
t and 

uh
t. Thus the period t aggregate price and quantity vectors, pt and qt, along with the aggregate utility level ut 

for t = 0 and 1 will be exact for the following Fisher aggregate quantity index: 
 
(291) u1/u0 = [p0×q1p1×q1/p0×q0p1×q0]1/2. 
 
Thus under the above hypotheses, the aggregate data will satisfy the same equations as the micro data. The 
above assumptions justify treating the data for the group as if it were generated by a single utility 
maximizing household. This result is better than having no result at all but it does rest on two restrictive 
assumptions: (i) identical homothetic preferences and (ii) all members of the group face the same vector of 
prices in each period. Thus if we apply this theory, we should try to group households so that they are 
demographically similar (so that their preferences can be better represented by the same preference function) 

 
160 We have assumed that all prices are positive but some quantities are allowed to equal 0. We assume that positive 
reservation prices are used for products that are not consumed by a household in some period.  
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and so that they face similar prices (so grouping households by location is also a useful thing to do).161 
Jorgenson and Schreyer summarized the need to group households in the following quotation: 
 
“Another, related measurement issue is the level of detail at which distributional measures are put in place. Ideally, the 
equivalence scales are directly applied to household-level information. In practice, another simplifying assumption is 
often used in empirical measurements. Rather than applying equivalence scales (and, as will be discussed below, price 
indices) at the level of individual households, groups of households are the object of measurement in the simplified 
case. Each group is treated like a single, homogenous household.” Dale Jorgenson and Paul Schreyer (2017; S464). 
 
Finally, it is possible to fall back on our very first approach to index number theory that was explained in 
Chapter 2. This theory works as follows: a group of households collectively purchase the vector of goods 
and services qt in periods t = 0,1. The corresponding unit value price vector for period t is pt for t = 0,1. Two 
equally reasonable measures of price inflation for this group of purchasers are the Laspeyres and Paasche 
price indexes, PL º p1×q0/p0×q0 and PP º p1×q1/p0×q1. Since both indexes are equally plausible, it makes sense 
to take an average of the two to obtain a point estimate of the price inflation facing this group of purchasers. 
The Fisher index is perhaps the “best” average because it ends up satisfying the time reversal test. A similar 
theory works well for measuring the growth of consumption at constant prices. If we use the base period 
prices as weights, the Laspeyres quantity index, QL º p0×q1/p0×q0 is a reasonable measure and if we use the 
current period prices as weights, the Paasche quantity index, QP º p1×q1/p1×q0 is another reasonable measure 
for the growth of consumption at constant prices. Again, it is reasonable to take a symmetric average of 
these two measures to end up with a point estimate for real consumption growth. The Fisher quantity index 
is again “best” because it satisfies the time reversal test.  
 
Appendix: Proofs of Propositions 
 
Proof of Proposition 1: Define g(l) for 0 £ l £ 1 by g(l) º PK(p0,p1,(1-l)q0 + lq1). Note that g(0) = 
PK(p0,p1,q0) and g(1) = PK(p0,p1,q1). There are 24 = (4)(3)(2)(1) possible a priori inequality relations that are 
possible between the four numbers g(0), g(1), PL and PP. However, the inequalities (3) and (4) above imply 
that g(0) £ PL and PP £ g(1). This means that there are only six possible inequalities between the four 
numbers: 
 
(A1)  g(0) £ PL £ PP £ g(1) ; 
(A2)  g(0) £ PP £ PL £ g(1) ; 
(A3)  g(0) £ PP £ g(1) £ PL ; 
(A4)  PP £ g(0) £ PL £ g(1) ; 
(A5)  PP £ g(1) £  g(0) £ PL; 
(A6)  PP £ g(0) £  g(1) £ PL. 
 
Using the assumptions that: (a) the consumer’s utility function f is continuous over its domain of definition; 
(b) the utility function is increasing in the components of q and hence is subject to local nonsatiation and (c) 
the price vectors pt have strictly positive components, it is possible to use Debreu’s (1959; 19) Maximum 
Theorem (see also Diewert (1993a; 112-113) for a statement of the Theorem) to show that the consumer’s 
cost function C(f(q),pt) will be continuous in the components of q. Thus using definition (2), it can be seen 
that PK(p0,p1,q)  will also be continuous in the components of the vector q. Hence g(l) is a continuous 
function of l and assumes all intermediate values between g(0) and g(1). By inspecting the inequalities 
(A1)-(A6) above, it can be seen that we can choose l between 0 and 1, l* say, such that PL £ g(l* ) £ PP for 
case (A1) or such that PP £ g(l* ) £ PL for cases (A2) to (A6). Thus at least one of the two inequalities in (5) 
holds.   

 
161 This last point helps to justify applying the above methodology to the customers of a particular retail outlet.  
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Proof of Proposition 2: Using assumptions (ii) and (iv), qt >> 0N solves the concave programming problem 
max q {f(q) : pt×q £ et ; q ³ 0N} for t = 0,1. Since qt is strictly positive, the nonnegativity constraints q ³ 0N 
are not binding and hence, using the differentiability assumptions (iii), the following Lagrangian conditions 
are necessary and sufficient for qt to solve the period t constrained maximization problem in (13): 
 
(A7) Ñf(qt) = ltpt ;                                                                                                                                     t = 0,1;    
(A8)   pt×qt  = et . 
 
Take the inner product of both sides of (A7) with qt and solve the resulting equation for lt. The solution for t 
= 0,1 is lt = qt×Ñf(qt)/pt×qt > 0.162 Substitute this solution for lt back into equation t in (A7). After a bit of 
rearrangement, we obtain the equations pt/pt×qt = Ñf(qt)/qt×Ñf(qt) for t = 0,1.   
 
Proof of Proposition 3: Let ut = f(qt) for t = 0,1. By assumption (iii), qt solves the cost minimization 
problem defined by C(ut,pt) for t = 0,1. Thus qt is a feasible solution for the following cost minimization 
problem where the general price vector p >> 0N has replaced the specific period t price vector pt: 
 
(A9) C(ut,p) º min q {p×q : f(q) ³ ut; q ³ 0N};                                                                                            t = 0,1 
         ≤ p×qt 
 
where the inequality follows, since qt is a feasible (but not necessarily an optimal) solution for the cost 
minimization problem defined by C(ut,p). Since by assumption (iii), qt is a solution to the cost minimization 
problem defined by C(ut,pt), we must have the following equalities: 
 
(A10) C(ut,pt) = pt×qt ;                                                                                                                                t = 0,1. 
 
Define the function gt(p) º C(ut,p) - p×qt for t = 0,1. Since C(ut,p) is a concave function in p and since the 
linear function - p×qt is also concave in p, it can be seen that gt(p) is also a concave function of p for t = 0,1. 
The inequalities (A9) and equalities (A10) show that gt(p) achieves a global maximum at p = pt for t = 0,1. 
Since C(ut,p) is differentiable with respect to the components of p at p = pt, the following first order 
necessary conditions for maximizing C(ut,p) with respect to the components of p must hold: 
 
(A11) Ñpg(pt) = ÑpC(ut,pt) - qt = 0N ;                                                                                                       t = 0,1. 
 
Equations (A11) can be rearranged to give us the following equations: 
 
(A12) qt = ÑpC(ut,pt);                                                                                                                                t = 0,1. 
 
To establish the uniqueness of qt, let qt* be any other solution to the cost minimization problem defined by 
C(ut,pt) for t = 0,1. Repeat the above proof to show that qt* = ÑpC(ut,pt) for t = 0,1. Thus qt = qt* for t = 0,1 
and the solution to the cost minimization problem defined by C(ut,pt) is unique for t = 0,1.163     
 

 
162 We assume that at least one component of Ñf(qt) is positive for t = 0,1. 
163 This method of proof is due to McKenzie (1956). Shephard (1953) (1970) was the first to derive this result starting 
with a differentiable cost function. However, Hotelling (1932; 594) stated a version of the result in the context of profit 
functions and Hicks (1946; 331) and Samuelson (1953; 15-16) established the result starting with a differentiable utility 
or production function. For a more complete exposition of the technical details and references to the literature, see 
Diewert (1993a; 107-117).    
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Proof of Proposition 4: Let f*(q) be a given increasing linearly homogeneous function which is twice 
continuously differentiable along the ray lq* where l > 0 and q* >> 0N. We assume that f*(q*) > 0. Since 
f*(q) is linearly homogeneous, we have: 
 
(A13) f*(lq*) = lf*(q*) for all l > 0. 
 
Differentiate both sides of (A13) with respect to l and evaluate the resulting derivatives at l = 1. We obtain 
the following equation: 
 
(A14) f*(q*) = Ñf*(q*)Tq* = Sn=1

N qn
*¶f*(q*)/¶qn. 

 
Thus if the first order partial derivatives of f*(q*) are known numbers, then the number f*(q*) is also known 
and is equal to q*TÑf*(q*) = Sn=1

N qn
*¶f*(q*)/¶qn. 

 
Now partially differentiate both sides of (A13) with respect to qn for n = 1,...,N. The following equations are 
obtained for all l > 0: 
 
(A15) [¶f*(lq*)/¶(lqn)][¶(lqn)/¶l] = l¶f*(lq*)/¶(lqn) = l¶f*(q*)/¶qn                                                n = 1,...,N. 
 
Let fn

*(q) º ¶f*(q)/¶qn denote the function that is the partial derivative of f*(q) with respect to qn for n = 
1,...,N. Using this notation, equations (A15) simplify to the following equations: 
 
(A16) fn

*(lq*) = fn
*(q*) for all l > 0 ;                                                                                                  n = 1,...,N. 

 
Thus the first order partial derivative functions fn

*(q) of a linearly homogeneous function f*(q) are 
homogeneous of degree 0. Now differentiate both sides of equations (A16) with respect to l, evaluate the 
resulting second order partial derivatives fnk

*(lq*) at l = 1 and we obtain the following system of equations: 
 
(A17) Sk=1

N fnk
*(q*)qn

* = 0 ;                                                                                                                 n = 1,...,N 
 
where fnk

*(q*) º ¶2f*(q)/¶qn¶qk for n,k = 1,...,N. The N equations (A17) can be rewritten more succinctly 
using matrix notation as the following matrix equation: 
 
(A18) Ñ2f*(q*)q* = 0N. 
 
Since f*(q) is assumed to be twice continuously differentiable at q = q*, Young’s Theorem in advanced 
calculus implies that the matrix of second order derivatives, Ñ2f*(q*), is a symmetric matrix so that 
¶2f*(q)/¶qn¶qk = ¶2f*(q)/¶qk¶qn for all n, k = 1,...,N. Using matrix notation once again, this means that: 
 
(A19) [Ñ2f*(q*)]T = Ñ2f*(q*). 
 
The 1 + N + N2 numbers f*(q*), Ñf*(q*) and Ñ2f*(q*) are regarded as given numbers or parameters in what 
follows. From the above derivations, we see that that these numbers are not independent: equation (A14), 
f*(q*) = Ñf*(q*)Tq*, implies that if the N components in the vector of first order partial derivatives Ñf*(q*) are 
given numbers, then the level of the function f*(q) evaluated at the point q* is determined by these numbers. 
Similarly, the symmetry conditions (A19) imply that if the N2 second order partial derivatives of f*(q*) are 
calculated, then these numbers are not independent of each other either. If the N(N-1)/2 components of 
Ñ2f*(q*) in the upper triangle of this matrix are given (so that ¶2f*(q)/¶qn¶qk for 1 £ n < k £ N are given 
numbers), then the N(N-1)/2 numbers in the lower triangle of this matrix are also determined. Furthermore, 
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the N restrictions given by equations (A18) mean that if the upper triangle second order partial derivatives 
are given (which means that the lower triangle second order partial derivatives are also given), then the main 
diagonal second order partial derivatives (the N derivatives ¶2f*(q)/¶qn¶qn for n = 1,...,N) are also determined 
(provided that the components of the q* vector are all positive). Thus the assumption of linear homogeneity 
of f*(q) (along with the assumption that second order partial derivatives of f*(q) exist and are continuous at q 
= q*) implies that there are only N(N-1)/2 independent parameters instead of N2 parameters in the matrix 
Ñ2f*(q*). 
 
Define the utility function f(q) over the set S º (q : q ³ 0N; Aq ³ 0N; qTAq > 0) as: 
 
(A20) f(q) º (qTAq)1/2 where A = AT. 
 
To show that the f(q) is a flexible functional form at q = q* >> 0N, we need to solve the following equations 
for the components of the N by N matrix A º [ank] where ank = akn for 1 £ n < k £ N: 
 
(A21)     f(q*) = f*(q*) ; 
(A22)  Ñf(q*) = Ñf*(q*) ; 
(A23) Ñ2f(q*) = Ñ2f*(q*). 
                 
Define the matrix A as follows: 
 
(A24) A º f*(q*)Ñ2f*(q*) + Ñf*(q*)Ñf*(q*)T. 
 
Note that this A matrix is symmetric; i.e., A = AT. Use this A matrix to define f(q) º (qTAq)1/2 and compute 
f(q*)2: 
 
(A25) f(q*)2 = q*TAq* 
                    = q*T[f*(q*)Ñ2f*(q*) + Ñf*(q*)Ñf*(q*)T]q*                                                using definition (A24) 
                    = q*TÑf*(q*)Ñf*(q*)Tq*                                                                            using (A18) 
                    =  f*(q*)2                                                                                                  using (A14). 
      
Take positive square roots of both sides of (A25) and the resulting equation is (A21). Now calculate the 
vector of first order partial derivatives of f(q) defined by (A20) and (A24) and evaluate these derivatives at q 
= q*: 
 
(A26) Ñf(q*) = Aq*/(q*TAq*)1/2 
                      = [f*(q*)Ñ2f*(q*) + Ñf*(q*)Ñf*(q*)T]q*/f*(q*)                                               using (A24) and (A25) 
                      = 0N + Ñf*(q*)[Ñf*(q*)Tq*]/f*(q*)                                                                 using (A18) 
                      = Ñf*(q*)                                                                                                      using (A14).  
 
Thus equations (A22) are satisfied. Finally, calculate the matrix of second order partial derivatives of f(q) 
defined by (A20) and (A24) and evaluate these derivatives at q = q*. Differentiating the first line in (A26) 
leads to the following matrix equation: 
 
(A27) Ñ2f(q*) = {A/(q*TAq*)1/2} - {Aq*q*TA/(q*TAq*)3/2} 
                       = [f*(q*)]-1{f*(q*)Ñ2f*(q*) + Ñf*(q*)Ñf*(q*)T} - {Aq*q*TA/(q*TAq*)3/2}   using (A24) and (A25) 
                       = Ñ2f*(q*) + [f*(q*)]-1[Ñf*(q*)Ñf*(q*)T] - [f*(q*)]-1[Ñf*(q*)Ñf*(q*)T]        using (A25) and (A26)  
                       = Ñ2f*(q*). 
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Thus equations (A23) are satisfied and f(q) º (qTAq)1/2 is a flexible functional form.164 Note that this 
functional form has the minimum number of free parameters (which is N(N+1)/2) that is required to satisfy 
the 1 + N + N2 equations (A21)-(A23). In the literature on flexible functional forms, such a function is called 
a parsimonious flexible functional form. 
 
Proof of Proposition 5: Let c(p) = (pTBp)1/2 where B = BT and B has one positive eigenvalue with a strictly 
positive eigenvector and the remaining N - 1 eigenvalues of B are negative. The function c(p) is well 
defined over the set S* º {p: p ³ 0N; Bp ³ 0N; pTBp > 0}. Under our eigenvalue assumptions, a result in 
Diewert and Hill (2010) will imply that c(p) is a concave function over the set S*. It will also be increasing, 
linearly homogeneous and positive over S*. Let q* >> 0N and suppose also that B-1q* >> 0N. Let f(q) be the 
utility function that is dual to c(p). Then f(q*) can be defined by the following modification of definition (50) 
in the main text:165  
  
(A28) f(q*) = 1/max p {c(p) : p×q* = 1; pÎS*}.           
 
Consider the maximization problem on the right hand side of (A28). If we temporarily drop the constraints 
pÎS*, then the resulting problem is: 
 
(A29) max p {(pTBp)1/2 : p×q* = 1}. 
  
The first order necessary conditions for an interior maximum for the constrained maximization problem 
(A29) are equivalent to the following conditions: 
 
(A30) Bp*  = l*q* ; 
(A31) p*×q* = 1. 
 
Since B-1 exists under our assumptions, p* = l*B-1q*. Substitute this equation into (A31) and solve the 
resulting equation, l*q*TB-1q* = 0 for l* = 1/q*TB-1q*, which is positive since q* and B-1q* are strictly 
positive vectors by our assumptions. Thus p* = l*B-1q* = B-1q*/q*TB-1q*. It can be seen that this p* is the 
global maximizer for the problem defined by (A29) under our regularity conditions on B. Thus we have 
 
(A32) max p {(pTBp)1/2 : p×q* = 1} = (p*TBp*)1/2 = (q*TB-1q*)-1/2. 
 
Since B-1q* >> 0N and l* > 0, p* = l*B-1q* >> 0N. From (A30), Bp* = l*q* >> 0N. Thus p* also solves the 
maximization problem on the right hand side of (A28) since p* belongs to S*. Thus we have166  
 
(A33) f(q*) = 1/max p {c(p) : p×q* = 1; pÎS*}  
                   = 1/(q*TB-1q*)-1/2 
                   = (q*TB-1q*)1/2.        
  
Proof of Proposition 6: Let A º [aik] be an N by N symmetric matrix with element aik in row i and column k 
so that A = AT. Suppose r ¹ 0, q >> 0N and define f(q) as follows:167 

 
164 The above proof of flexibility is an adaptation of the proof of flexibility for this functional form in Diewert (1974b; 
125). See also Diewert (1976; 140-142) for an alternative proof. 
165 See Blackorby and Diewert (1979) for additional material on local duality theorems. 
166 This seems to be the model considered by Konüs and Byushgens (1926; 171). 
167 In order to ensure that f(q) is well defined for any r ¹ 0, we require that åi=1

Nåk=1
N aikqi

r/2qk
r/2 > 0. If each aik ³ 0 

and at least one aik > 0, then for q >> 0N, åi=1
Nåk=1

N aikqi
r/2qk

r/2 will be greater than 0. However, as will be 
seen later in the proof, åi=1

Nåk=1
N aikqi

r/2qk
r/2 can be positive without assuming that each aik ³ 0.    



 77 

 
(A34)  f(q) = f (q1,…,qN) º [åi=1

N åk=1
N aikqi

r/2qk
r/2

 ]1/r.  
 
Denote the nth first order partial derivative of f(q) as fn(q) º ¶f(q)/¶qn for n = 1,...,N. Assuming that 
åi=1

Nåk=1
N aikqi

r/2qk
r/2

 is positive, fn(q) is equal to the following expression: 
 
(A35) fn(q) = (1/r)[åi=1

N åk=1
N aikqi

r/2qk
r/2

 ](1/r)-1 r[åk=1
N ankqn

(r/2)-1qk
r/2]                                                 n = 1,...,N 

                   = [f(q)]1-r [åk=1
N ankqn

(r/2)-1qk
r/2]. 

 
Denote the second order partial derivative of f(q) with respect to qn and qm as fnm(q) º ¶2f(q)/¶qn¶qm for n = 
1,...,N and m = 1,...,N. For n < m, fnm(q) is equal to the following expression: 
 
(A36) fnm(q) = [(1/r)-1][åi=1

N åk=1
N aikqi

r/2qk
r/2](1/r)-2r[åk=1

N ankqn
(r/2)-1qk

r/2][åk=1
N amkqm

(r/2)-1qk
r/2] 

                       + [f(q)]1-r [r/2][anmqn
(r/2)-1qm

(r/2)-1]                                                                            1 £ n < m £ N 
                    = (1-r)[f(q)]-1fn(q)fm(q) + (r/2)anmqn

(r/2)-1qm
(r/2)-1. 

 
As was seen in the proof of Proposition 4, because the f(q) defined by (A34) is linearly homogeneous, we 
need only to choose the anm to satisfy equations (A22) and the upper triangle of equations (A23) in order to 
prove that f(q) is a flexible functional form; i.e., for q* >> 0N. we need the anm to satisfy the following 
equations:168 
 
(A37)  fn(q*) = f*

n(q*) ;                                                                                                                  n = 1,...,N; 
(A38) fnm(q*) = f*

nm(q*) ;                                                                                                               1 £ n < m £ N.   
  
Temporarily assume that we have found a set of anm so that equations (A37) and the following equation are 
satisfied: 
 
(A39) f(q*) = f*(q*). 
 
Evaluate the second order partial derivatives of f(q) at q* using equations (A36) and set the nmth partial 
derivative of f(q) equal to the corresponding nmth partial derivative of f*(q*). Using equations (A37) and 
(A39), these equations become the following equations: 
 
(A40) f*

nm(q*) = (1-r)[f*(q*)]-1f*
n(q*)f*

m(q*) + (r/2)anm(qn
*)(r/2)-1(qm

*)(r/2)-1 ;                                 1 £ n < m £ N. 
 
The N(N-1)/2 equations (A40) determine anm for 1 £ n < m £ N. Define amn = anm for 1 £ n < m £ N. Thus 
all of the anm are determined except for the ann for n = 1,...,N. Again, assume that f(q*) = f*(q*) and evaluate 
equations (A35) at q = q* and set the resulting first order partial derivatives of f(q*) equal to the 
corresponding given first order partial derivatives of f*(q*). We obtain the following N equations:                                  
 
(A41) f*

n(q*) = [f*(q*)]1-r [åk=1
N ank (qn

*)(r/2)-1(qk
*) 

r/2];                                                                         n = 1,...,N. 
 
The N equations (A41) determine the ann for n = 1,...,N. It turns out that this solution for the anm enables f(q) 
defined by (A34) to satisfy all of the equations (A21)-(A23). Thus f(q) is a flexible functional form.169 Note 
that the resulting f(q) will be positive and the first order derivatives of f(q) will be positive in a 

 
168 We assume that the exogenous f*(q*) and Ñf*(q*) satisfy the positivity restrictions Ñf*(q*) >> 0N and hence f*(q*) = 
q*TÑf*(q*) > 0.   
169 This method of proof is due to Diewert (1976; 140-141). 
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neighbourhood around q* due to the continuity of the function f(q) defined by (A34). Finally, note that if r = 
2, then f(q) = (qTAq)1/2 and so the proof of Proposition 6 provides an alternative proof for Proposition 4.    
                                                      
Proof of Proposition 7: Let r ¹ 0 and define fr(q) by (53). The assumption that qt >> 0N solves the 
constrained utility maximization problem max q {fr(q) : pt×q £ et ; qÎS} where S is an open convex set means 
that qt is not on the boundary of S and hence qt will satisfy the first order conditions for the problem max q 
{fr(q) : pt×q £ et} for t = 0,1. The first order necessary conditions for these problems (which are equivalent to 
the Wold’s Identity conditions (16)) are the following conditions: 
 
(A42) pn

t/et = pn
t/pt×qt = fr

n(qt)/fr(qt) = [fr(qt)]-r [åk=1
N ank (qn

t)(r/2)-1(qk
t)r/2] ;                              n = 1,...,N; t = 0,1 

 
where we have used equations (A35) to establish the last equation in (A42). Using equations (A42), we 
obtain the following expressions for the shares sn

t: 
 
(A43) sn

t = pn
tqn

t/et = [fr(qt)]-r [åk=1
N ank (qn

t)(r/2)(qk
t)r/2] ;                                                         n = 1,...,N; t = 0,1. 

 
Now substitute the sn

t defined by (A43) into (54), the definition of Qr(p0,p1,q0,q1): 
 
(A44) Qr(p0,p1,q0,q1) º {ån=1

N sn
0(qn

1/qn
0)r/2}1/r{ån=1

N sn
1(qi

1/qn
0)-r/2}-1/r 

                                  = [fr(q0)]-1{ån=1
N åk=1

N ank (qn
0)(r/2)(qk

1)r/2}1/r [fr(q1)]{ån=1
N åk=1

N ank (qn
0)(r/2)(qk

1)r/2}-1/r 
                                  = fr(q1)/fr(q0).       
 
Proof of Proposition 9: Consider the following constrained maximization problem: 
 
(A45) max p {cr(p); et = p×qt; pÎS*}. 
 
Since S* is an open set, the first order necessary conditions for p*ÎS* to solve (A45) is that there exist l* 
such that the following equations are satisfied: 
 
(A46) Ñcr(p*) = l*qt ; 
(A47)   p*×qt   = et . 
 
Premultiply both sides of (A46) by p*T and we obtain the equation l*p*Tqt = p*TÑcr(p*) = cr(p*) where the last 
equality follows from the linear homogeneity of cr(p). Thus l* = cr(p*)/p*×qt = cr(p*)/et where the last 
equation follows using (A47). Substituting l* = cr(p*)/et into (A47) gives us the equation Ñcr(p*) = 
[cr(p*)/et]qt, which in turn can be written as follows: 
 
(A48) qt º etÑcr(p*)/cr(p*). 
 
But from (64), we have qt º etÑcr(pt)/cr(pt). Thus if we set p* to pt, equation (A48) will be satisfied. We also 
have pt×qt = etpt×Ñcr(pt)/cr(pt) = etcr(pt)/cr(pt) = et, so equation (A47) is satisfied if p* = pt. If we define l* = 
cr(pt)/et, then (A46) with p* = pt becomes Ñcr(p*) = [cr(pt)/et]qt which is (A48) and so p* º pt and l* = cr(pt)/et 
satisfy equations (A46) and (A47). Thus pt is a candidate to solve (A45) since it satisfies the first order 
necessary conditions for an interior solution for (A45). 
 
Next, we show that pt actually solves the constrained maximization problem defined by (A45). Define l* º 
cr(pt)/et and define the function g(p) as follows: 
 
(A49) g(p) º cr(p) + l*[et - p×qt]. 
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Since cr(p) is concave over S* by assumption and the function l*[et - p×qt] is linear in p (and hence concave 
everywhere), g(p) is a differentiable concave function over S*. Hence the first order Taylor series 
approximation to g(p) around the point pt will be coincident with or lie above the function; i.e., we have the 
following inequality: 
 
(A50) g(p) £ g(pt) + Ñg(pt)(p - pt)  for all pÎS*. 
 
Substituting definition (A49) into (A50) and noting that Ñg(pt) = Ñcr(pt) - l*qt = 0N (using (A46) with p* = 
pt and l* = cr(pt)/et), we find that (A50) becomes: 
 
(A51) cr(p) + l*[et - p×qt] £ cr(pt) + l*[et - pt×qt] ;                                                                                     pÎS*. 
 
But the above inequality does not take into account the constraint et = p×qt. If we impose this additional 
constraint on p, the inequality (A51) becomes the following inequality: 
 
(A52) cr(p) £ cr(pt) ;                                                                                                                pÎS* and p×qt = et. 
 
Thus pt solves the constrained maximization problem (A45) and we have: 
 
(A53) cr(pt) = max p {cr(p); et = p×qt; pÎS*}.  
 
Now use definition (63) with e = et to define fr*(qt) and we obtain the following result using (A53): 
 
(A54) fr*(qt) = et/max p {cr(p); et = p×qt; pÎS*} 
                     = et/cr(pt). 
 
(A54) establishes (65). Now consider the following local utility maximization problem: 
 
(A55) max q {fr*(q) : pt×q = et; qÎS} 
 
where fr*(q) is defined as 
 
(A56) fr*(q) = et/max p {cr(p); et = p×q; pÎS*}. 
 
Let qÎS and we suppose that q also satisfies the consumer’s period t budget constraint, pt×q = et. Let p* be a 
solution to max p {cr(p); et = p×q; pÎS*}. Thus we have: 
 
(A57) cr(p*) = max p {cr(p); et = p×q; pÎS*} 
                    ³ cr(pt)                                           
 
since pt×q = et and hence pt is a feasible solution for the constrained maximization problem. Using (A54), 
(A56) and (A57), we have fr*(qt) ³ fr*(q) for all q belonging to S such that pt×q = et. Thus qt solves the local 
utility maximization problem (A55).      
 
Proof of Proposition 10: The proof of the previous Proposition showed that qt solves the local utility 
maximization problem, max q {fr*(q) ; pt×q = et; qÎS}, for t = 0,1.   
 
Conditions (68) (Shephard’s Lemma) and definition (59) imply that the following equations will hold: 
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(A58) qn
t/pt×qt = cr

n(pt)/cr(pt) = [cr(pt)]-r [åk=1
N bnk (pn

t)(r/2)-1(pk
t)r/2] ;                                       n = 1,...,N; t = 0,1. 

 
Using equations (A58), we obtain the following expressions for the shares sn

t: 
 
(A59) sn

t = pn
tqn

t/pt×qt = [cr(pt)]-r [åk=1
N bnk (pn

t)(r/2)(pk
t)r/2] ;                                                     n = 1,...,N; t = 0,1. 

 
Now substitute the sn

t defined by (A59) into (69), the definition of Pr(p0,p1,q0,q1): 
 
(A60) Pr(p0,p1,q0,q1) º {ån=1

N sn
0(pn

1/pn
0)r/2}1/r{ån=1

N sn
1(pn

1/pn
0)-r/2}-1/r 

                                  = [cr(p0)]-1{ån=1
N åk=1

N bnk (pn
0)(r/2)(pk

1)r/2}1/r [cr(p1)]{ån=1
N åk=1

N bnk (pn
0)(r/2)(pk

1)r/2}-1/r 
                                  = cr(p1)/cr(p0).  
      
Proof of Proposition 11: Let p º [p1,...,pN] >> 0N. Ignoring the constraints q ³ 0N, the first order necessary 
(and sufficient) conditions for q* >> 0N and l* > 0 to solve the unit cost minimization problem defined by 
(96) are: 
 
(A61) pn = l*¶f(q*)/¶qn = l*anf(q*)/qn

* ;                                                                                             n = 1,...,N;  
(A62) 1  = f(q*). 
 
Substituting (A62) into (A61), we get the N equations pn = l*an/qn

* for n = 1,...,N which can be rearranged 
to give us the following equations: 
 
(A63) qn

* = l*an/pn ;                                                                                                                            n = 1,...,N. 
 
Now substitute equations (A63) into equation (A62) and using definition (94) for f, we get the following 
single equation involving l*: 
  
(A64) 1 = a0Pn=1

N [l*an/pn]     
             = l*a0Pn=1

N [an] Pn=1
N [1/pn] . 

 
Therefore, we have the following expression for l*: 
 
(A65) l* = [a0Pn=1

N [an] ]-1 Pn=1
N [pn] = k Pn=1

N > 0 
 
where the constant k is defined as k º [a0Pn=1

N [an] ]-1. Substitute l* defined by (A65) back into equations 
(A63) and we obtain the q* solution to the cost minimization problem defined by (96): 
 
(A66) qn

* = k [Pn=1
N ]an/pn ;                                                                                                        n = 1,...,N. 

 
Thus the optimized objective function for (96) is equal to the following expression:  
 
(A67) c(p) = Sn=1

N pnqn
* 

                  = Sn=1
N pnk[Pn=1

N ]an/pn                                                                                           using 
(A66) 
                  = k[Pn=1

N ][Sn=1
N an] 

                  = k Pn=1
N                                                                                                                  using (95). 
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Thus c(p) is defined by (97).  
 
Proof of Proposition 12: If r = 0, then the CES preferences collapse to Cobb Douglas preferences, which 
will imply that s0 = s1, and thus the Sato Vartia index collapses to the Konüs Byushgens index which was 
studied in section 9. Hence we assume r ¹ 0 and define the consumer’s unit cost function by (108). Let p0 >> 
0N, p1 >> 0N and define q0 and q1 using Shephard’s Lemma, equations (109). We assume that q0 >> 0N and q1 
>> 0N and hence the share vectors s0 and s1 defined by equations (110) also satisfy s0 >> 0N and s1 >> 0N. 
Given these positivity conditions, equations (110) can be rewritten as follows: 
 
(A68) ån=1

N an(pn
t)r = ai(pi

t)r/si
t ;                                                                                            t = 0,1; i = 1,…,N. 

 
Take the logarithm of both sides of (A68) and obtain the following equations: 
 
(A69) ln[ån=1

N an(pn
t)r] = lnai + rlnpi

t - lnsi
t ;                                                                        t = 0,1; i = 1,…,N. 

                      
The consumer’s true cost of living index is c(p1)/c(p0) = a0 [ån=1

N an (pn
1)r]1/r/a0 [ån=1

N an (pn
0)r]1/r, which 

equals [ån=1
N an (pn

1)r]1/r/[ån=1
N an (pn

0)r]1/r. Raising both sides of this equation to the power r and taking the 
logarithm of the resulting equation leads to the following equation: 
 
(A70) ln{[c(p1)/c(p0)]r} = ln[ån=1

N an (pn
1)r] - ln[ån=1

N an (pn
0)r]. 

 
From (118), the logarithm of PSV(p0,p1,q0,q1)r is defined as follows: 
 
(A71) ln{PSV(p0,p1,q0,q1)r} = rSn=1

N wi
*[lnpi

1 - lnpi
0]/Sn=1

N wi
* 

 
where wi

* º [si
1 - si

0]/[lnsi
1 - lnsi

0] if si
1 ¹ si

0 and  wi
* º si

0 if si
1 = si

0. Now equate (A71) to (A70) and after a 
bit of rearrangement, we obtain the following equation: 
 
(A72) rSn=1

N wi
*[lnpi

1 - lnpi
0] = Sn=1

N wi
*ln[ån=1

N an (pn
1)r] - Sn=1

N wi
*ln[ån=1

N an (pn
0)r] 

                                               = Sn=1
N wi

*[lnai + rlnpi
1 - lnsi

1] - Sn=1
N wi

*[lnai + rlnpi
0 - lnsi

0]       using (A69) 
                                               = rSn=1

N wi
*[lnpi

1 - lnpi
0] - Sn=1

N wi
*[lnsi

1 - lnsi
0] 

                                               = rSn=1
N wi

*[lnpi
1 - lnpi

0] - Sn=1
N [si

1 - si
0] 

                                               = rSn=1
N wi

*[lnpi
1 - lnpi

0]                                         since Sn=1
N si

1 = Sn=1
N si

0 = 1.   
 
The last equality follows because if si

0 ¹ si
1, then wi

*[lnsi
1 - lnsi

0] = {[si
1 - si

0]/[lnsi
1 - lnsi

0]}[lnsi
1 - lnsi

0] = 
si

1 - si
0. If si

1 = si
0, then wi

* = si
0 but lnsi

1 - lnsi
0 = 0 so wi

*[lnsi
1 - lnsi

0] = 0 = si
1 - si

0. Thus we have shown 
that ln{[c(p1)/c(p0)]r} = ln{PSV(p0,p1,q0,q1)r} and thus that c(p1)/c(p0) = PSV(p0,p1,q0,q1).  
 
We note that the Sato Vartia quantity index QSV(p0,p1,q0,q1) can be defined by interchanging prices and 
quantities in the definition of the Sato Vartia price index; i.e., define QSV(p0,p1,q0,q1) º PSV(q0,q1,p0,p1). The 
above proof can be adapted to show that f(q1)/f(q0) = QSV(p0,p1,q0,q1) where f(q) is defined by (134). In order 
to prove this result, we require that s < 1 and s ¹ 0.         
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