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Abstract

This paper introduces a new test to show that business cycles are in general asymmetric,
and in particular are characterized by recession events that resemble “mini-disasters.”
It is well known that stochastic growth is fat-tailed and non-Gaussian, but we present
evidence that this is true not only in the widely-studied rare disaster events. Using long-
run historical data, we show empirically that this holds for advanced economies since
1870. Focusing on peacetime eras, we develop a tractable local projection framework to
estimate consumption processes in normal and financial-crisis recessions. Introducing
random coefficient local projections (RCLP) we get an easy and transparent mapping
from estimates to a calibrated simulation model of disasters with variable severity.
Our simulations show that substantial welfare costs arise not just from the large rare
disasters, but also from the smaller but more frequent mini-disasters. On average, even
with low risk aversion, households would be willing to pay 12 percent of deterministic
consumption to avoid these fat-tailed cyclical fluctuations.
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1. Introduction

A great deal of research in macroeconomics is aimed at understanding the business cycle
and thinking about policy responses to dampen cyclical fluctuations. In standard models,
agents are assumed to prefer smooth consumption streams and would therefore be willing
to insure against fluctuations. But how much they are willing to pay for such insurance
depends on how undesirable the otherwise non-smooth consumption streams would be.

Seminal works by Lucas (1987, 2003) showed that assuming transitory i.i.d. Gaussian
consumption deviations from the postwar U.S. trend under log utility resulted in very
small welfare losses: less than 1⁄10 of a percent for the representative agent. Even allowing
for more volatile consumption, like the pre-war U.S. or as in other countries, or allowing
for stochastic growth (Obstfeld, 1994), it is hard to get the costs of fluctuations (and hence
potential gains from managing aggregate demand through countercyclical macroeconomic
policy) to exceed 1–2 percent. If costs are really this low, there appears to be little upside
from stabilization policies.

However, a new take on this welfare conundrum emerges as a spinoff from research on
asset pricing anomalies in settings where the endowment process is fat-tailed. In short, if the
welfare cost of fluctuations is low, then why is the related risk premium—the compensation
for holding risky claims—so puzzlingly high? The “rare disasters” approach resolves this
tension via very large but infrequent losses (Rietz, 1988; Barro, 2006; Gabaix, 2008; Wachter,
2013). In a rare disaster setting the welfare costs of fluctuations can be high. Barro (2009)
finds welfare costs of 17 percent due to disaster-driven jumps, ten times larger than the
1.6 percent attributable to purely Gaussian growth components.1 The implied costs can
be larger still if utility is recursive, or if disasters have stochastic probability, stochastic
size, more persistence, or are permanent rather than transitory (Obstfeld, 1994; Reis, 2009;
Gourio, 2012; Nakamura, Steinsson, Barro, and Ursúa, 2013; Barro and Jin, 2011). The key
insight is that amplification of both the welfare costs and risk premia derives from the
impacts of higher moments of the endowment process (Martin, 2008).2

In the purely rare disaster perspective, the welfare cost of economic fluctuations mainly
stems from such infrequent, but very costly events. But it is possible that the value of
stabilization policy is even bigger if disaster dynamics are more pervasive, and in this paper
we argue that this could be so and that the rare disaster approach needs amendment: it is
not that it is incorrect, but rather that it does not go far enough.

1For comparability with the baseline welfare functions we adopt below, this 17% welfare cost is for the
CRRA case with γ = θ = 4 as reported in Table 3 in Barro (2009).

2Of course, in models with heterogeneous agents other sources of risk, notably uninsured idiosyncratic
income risk, can also amplify the costs of cycles (Atkeson and Phelan, 1994; Imrohoroğlu, 1989).
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In fact, when we use long-run historical data to look at growth at risk in recessions, we
find that over the full sample even the typical “normal” business cycle contains a fat-tail
that materially amplifies welfare costs. Deviations from the Gaussian benchmark do not just
appear in the extreme form of rare disasters—the wars, pandemics, revolutions, financial
crises, etc., considered by previous research. Instead, we show that fat tails with strong
persistence also appear in peacetime and even in normal recessions that are not coincident
with a financial crisis. In short, there are disasters everywhere.3

Once we embrace this idea, welfare cost judgments change. In our estimates, even with
low risk aversion (γ = 4) and simple non-recursive power utility, households would be
willing to pay 12 percent of deterministic consumption to avoid the peacetime consumption
fluctuations seen in advanced economies since 1870. Business cycle volatility then becomes
a first-order issue and successful stabilization policy could deliver sizeable welfare gains.
Our further examination of the normal versus financial crisis recession dichotomy also
speaks to the increased interest in potential gains from macroprudential policies to mitigate
crisis risk. Here direct policy actions are being debated and even implemented as we write.
Of course, in contrast, some other disastrous recessions like wars or pandemics may be less
susceptible to purely economic policy interventions, and not all risks can be mitigated by
economic stabilization policy.

Outline The first part of our paper documents the new stylized fact using a comprehensive
macro-historical database (Jordà, Schularick, and Taylor, 2017) covering 18 advanced
economies since 1870. Using local projections (LP) methods (Jordà, 2005), we present
a new test for the presence of disasters. Instead of assuming disasters are present, or
relying on skewness diagnostics, our test has the virtue of directly mapping into a tractable
counterfactual simulation model discussed below. Our results apply to peacetime advanced
economies, a sample considered exempt from the more frequent dislocations seen in
emerging markets or wartime eras.

Our finding ties into recent research on the importance of skewness for macro and
finance puzzles (Colacito, Ghysels, Meng, and Siwasarit, 2016; Dew-Becker, Tahbaz-Salehi,
and Vedolin, 2019), and the micro skewness underpinnings at the firm or household level
(Busch, Domeij, Guvenen, and Madera, 2018; Salgado, Guvenen, and Bloom, 2019). In this
research, skewness is a general phenomenon at all times, not just in disaster episodes.4 Our
analysis also meshes with macro frameworks that embrace asymmetry and hysteresis, from
the older Friedman “plucking” model to recent DSGE models with nominal wage rigidity

3Deviations from Gaussianity are in line with venerable arguments for asymmetric business cycle dynamics.
See, e.g., Keynes (1936); Neftçi (1984); Sichel (1993); Acemoglu and Scott (1994); Morley and Piger (2012).

4The large literature on time-varying volatility also points to the importance of higher moments in macro.
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(deLong and Summers, 1988; Kim and Nelson, 1999; Dupraz, Nakamura, and Steinsson,
2019; Calvo, Coricelli, and Ottonello, 2013; Schmitt-Grohé and Uribe, 2013). The work of
Fatás and Mihov (2013) also echoes this idea, noting that U.S. postwar growth volatility
fell in the Great Moderation, but negative skewness increased. But, to our knowledge, we
are the first to re-assay the debate over the costs of business cycles in an extended disaster
framework with ubiquitous fat tails.

The second part of the paper proposes a new empirical framework for estimating and
calibrating a growth process consistent with the above findings. LP estimation has been
successfully employed in fixed-coefficient form to document the systematic, large, and
persistent differences in paths in normal and financial crisis recessions (Jordà, Schularick,
and Taylor, 2013). Here we show how to extend the approach using random-coefficient
local projections (RCLP) as a natural way to model variable-severity disasters, which is
known to be an essential feature in the data and is a key driver of welfare consequences.5

We then take the RCLP-estimated growth process and simulate an economy under various
parameter configurations to assess counterfactual welfare losses due to peacetime business
cycles in the standard way.6

As in Barro (2009), we ask how much welfare loss relative to the deterministic baseline
is due to Gaussian terms versus disaster terms. Results still depend on the permanent
component of the disasters. But since disasters are now everywhere, including in normal
recessions, we find that welfare costs are much larger. In a peacetime setting, the Gaussian
terms account for only about a 1 percent loss (cf. Obstfeld, 1994); allowing fat tails with
hypothetical 100% normal recessions would increase this loss to 9 percent; and with
hypothetical 100% financial crisis recessions would increase it to about 20 percent.

Main findings Summing up, we make two main contributions in this paper. First,
we present a new empirical methodology for estimation and simulation built around the
attractive technique of local projections. It is particularly suited to the problem of measuring
disaster losses over multi-period horizons in an parsimonious way without the complexity
and fragility of more elaborate methods. In random coefficient form, local projections are
well equipped to model disaster gaps with stochastic scaling and persistence in a tractable
and flexible fashion. The methods make for an easy and transparent mapping from the LP
estimates to the calibrated simulation model.

5One could also explore what happens in this setting when the recession-type probability has a conditional
mean which depends on covariates; a natural case to consider is when financial crisis probability depends on
the history of credit growth (Schularick and Taylor, 2012). We leave this extension for future research.

6Economics has little to say about how to stop wars. But other events classified as disasters outside of
wars are still very damaging. Here, as is well known, the most damaging type are financial crisis recessions
(see, e.g., Muir, 2017). Normal recessions are rarely very disastrous, though probabilistically some will be so.
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Second, we offer a new perspective on the important macro question of the cost of
business cycles and the importance of stabilization policy. The main new insight is that
disasters are possibly everywhere—in the sense that the growth process has fat tails not
just in the large Barro-type rare disasters. And although these recessions are smaller in
amplitude than the rare big disasters, they are more frequent, and the welfare costs add up
to something substantial. The size of the consumption-equivalent welfare loss that we find
is 12% over the full historical sample back to 1870. Looking at the crisis-prone post-1985

era in advanced economies, our model says agents would sacrifice about 15 percent of
consumption to avoid all business cycles; and about 7 percent just to avoid financial-crisis
recessions. This goal was attainable in the 1950s–1960s era when financial crises were
absent. This result also speaks to the large potential gains from making our financial
systems less crisis-prone. In short, even outside of times of war and pandemics, there is
considerable gain to smoothing economic fluctuations, and all the more so in economies
subject to financial instability.

2. Disasters everywhere? testing for the presence of disasters

A large literature has documented the evidence against the null assumption of a Gaussian
random-walk growth process. In this section we begin with a review of the stylized facts
using the most recent data. We then turn to a key question: if the growth process is
not Gaussian, then which among all the many alternative candidate models should we
investigate? At that point we follow the standard literature on disasters and model growth
as a jump process with some basic and widely-used features in that jumps are negative and
they may exhibit persistence, alhtough in addition they might be quite frequent.

Skewness and kurtosis tests Many researchers in the disasters literature have noted the
evidence against the Gaussian growth assumption in long-run cross-country panel data.
For sure, the Gaussian assumption can be difficult to reject in a single advanced country,
such as in the United States, in so-called New World Offshoots like Australia and Canada,
or in neutral countries like Sweden and Switzerland. These fortunate economies largely
avoided the huge adverse shocks associated with world wars in the typical post-1870 panel.
But the baseline assumption for us, as in the literature, is that the history of any advanced
country represents a draw from the underlying distribution of the growth process, so that
we must pool all histories to avoid the “peso problem” of drawing only from the urns
associated with tranquil development paths.

For example, Barro (2006, Table III) and Ursúa (2011, Table 1.3) report standard tests
of skewness and kurtosis tests for log real consumption per capita growth, and we show
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similarly findings here in Table 1, using the JST Macrohistory annual panel dataset which
covers a sample of 17 advanced economies since 1870 (http://www.macrohistory.net/
data/). Note that our sample now includes the 2008 crisis and its aftermath, which only
serves to make rejection of the Gaussian null even stronger. In the full sample skewness is
-0.87 (the null is 0) and kurtosis is 17.25 (the null is 3). Confidence intervals are computed
with an 8-year-span panel block bootstrap as in Ursúa (2011, Table 1.3), and the values are
significantly different from the null. Rejection is also strong even when wartime periods are
dropped, showing that non-Gaussian growth is not driven just by those few major disaster
events. Thus, the historical data suggest a non-Gaussian model is needed to match reality.

Variance ratio tests Evidence against the null also emerges from earlier research on the
persistence of shocks using long-run variance-ratio tests. Under the null of an i.i.d. random
walk, the ratio VR of 1/k times the k-period variance of growth to the 1-year variance
should be exactly 1. For example, with this test Cochrane (1988) argued for stable long-run
trend-reversion dynamics in the United States for 1869 to 1986. However, for a wider
OECD sample Cogley (1990) found that not to be the case for other advanced economies.
Expanding to the broadest sample yet, with emerging and developing economies up to
2009, Ursúa (2011, Table 1.43) showed that the U.S. pattern of trend-reversion was the
exception not the rule.

Evidence of the same sort for our sample using the JST Macrohistory dataset is given in
Table 2. Again, for some of the fortunate countries mentioned above, the null is not rejected,
as in Cochrane (1988). However, using the standard Lo-Mackinlay test, we reject the null
even for the U.S. using spans of 20 and 30 years. The null fails to be rejected for Canada,
for 3 out of 4 Scandinavian countries, and for Switzerland. In all other cases, the null is
rejected at the 30 year span, and often at 10 and 20 also. Thus, the historical data suggest a
non-random-walk model is needed to match reality.

The next question is what alternative model we might consider. To persuade the reader
that our choice of a disaster framework is reasonable, and that this jump-based model can
be justifiably extended to a wider range of more frequent events, we first need to develop
convincing tools for inference in a nonstandard setting in order to make our case.

Modeling and testing for disasters In the wide range of standard linear models, like the
workhorse neoclassical stochastic growth model, where perturbations are symmetrically
distributed, bad outcomes are temporary. A quick reversion to the mean is a built-in feature,
and although shocks may be persistent they are not skewed. In contrast, disaster models
eschew symmetry—but then, one might ask: is there any asymmetry? and, if so, of what
form?
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Table 1: Skewness and kurtosis tests for log real consumption per capita growth

Skewness and kurtosis computed for log real consumption per capita growth based on the JST Macrohistory
dataset which covers a sample of 17 advanced economies since 1870 (http://www.macrohistory.net/data/).
The non-war sample excludes 1914–21, 1939–49, and the years 1934–38 for Portugal and 1935–36 for Spain.
Confidence intervals based on 8-year-span panel block bootstrap.

Sample Skewness 90% CI Kurtosis 90% CI
Full sample −0.87 [−1.50,−0.10] 17.25 [12.69, 21.55]

Excluding wars −0.31 [−0.82,−0.11] 7.88 [6.77, 10.01]

Of course, it might be an obvious conclusion when studying a small number of large
rare disaster events with heavily skewed outcomes (e.g., Barro, 2006) that the draws have to
be non-Gaussian at these moments. Peak to trough declines ranging from 20% to 60%, as
seen in wars or the Great Depression, would be 5σ to 10σ events using back-of-the-envelope
math, so a formal test is almost superfluous, and we know what it will say. The world is
surely not Gaussian at those moments and that debate is largely settled.

However, we propose to broaden the definition of a “disaster” event. If we seek to
extend this way of modeling skewness to a wider range of episodes—which is the goal
of this paper—then the rejection of the Gaussian null in this larger class of putative mini-
disasters isn’t so obvious, and having a formal hypothesis testing structure is an essential
piece of the argument to convince the reader. Below we show that even if one excludes well
documented disasters from the sample, our tests indicate that economic fluctuations have
all the hallmarks of traditional disasters, albeit at a smaller scale but occurring at a higher
frequency.

There are two main difficulties in formally testing for disasters. The first difficulty is that
definitions of a disaster are self-referential and lead to sample selection bias. Recessions,
for example, refer to periods of negative growth after a peak. As we will show, even if the
null model is correct, the distribution under the null is shifted by an amount equivalent
to the conditional mean given that growth is negative in disaster states, which is different
to the unconditional mean under the null. Alternative definitions of disasters (sometimes
involving multiple periods) truncate the space of possible outcomes in other ways. The null
distribution in these more general cases cannot be easily derived analytically and requires
simulation methods—the bootstrap, in particular—as we shall see.

The second difficulty is the specification of the alternative model that describes the
disaster asymmetry. What type of dynamic pattern characterizes a financial crisis, for
example? Specifying a model, as is usually done in this literature, simplifies the analysis to
a few parameters. However, it is less clear how well such models describe the dynamics
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Table 2: Variance ratio tests for log real consumption per capita growth

Variance ratio tests computed for log real consumption per capita growth based on the JST Macrohistory
dataset which covers a sample of 17 advanced economies since 1870 (http://www.macrohistory.net/data/).
Full sample is used. The Lo-Mackinlay test is reported for spans of 10, 20, and 30 years. VR is variance ratio,
Rs is the standardized test statistics which in normally distributed, and p is the significance level.

span N VR Rs p > |z|
AUS 10 117 1.268 0.7021 0.4826

20 117 2.080 1.8683 0.0617

30 117 4.062 4.2549 0.0000

BEL 10 74 2.809 3.0690 0.0021

20 74 5.933 7.3986 0.0000

30 74 10.733 13.8024 0.0000

CAN 10 116 1.051 0.1109 0.9117

20 116 1.119 0.1820 0.8556

30 116 1.770 0.9774 0.3284

CHE 10 117 0.910 −0.2475 0.8045

20 117 1.210 0.3951 0.6927

30 117 1.550 0.8461 0.3975

DEU 10 117 2.598 3.2692 0.0011

20 117 3.417 3.6254 0.0003

30 117 5.040 5.2321 0.0000

DNK 10 117 0.495 −1.0537 0.2920

20 117 0.488 −0.8228 0.4106

30 117 0.634 −0.5089 0.6108

ESP 10 117 1.176 0.4375 0.6618

20 117 1.747 1.2746 0.2025

30 117 3.030 2.8724 0.0041

FIN 10 117 1.046 0.0972 0.9226

20 117 1.488 0.8186 0.4130

30 117 2.469 2.1061 0.0352

FRA 10 117 1.917 1.3881 0.1651

20 117 2.349 1.6758 0.0938

30 117 3.700 3.0682 0.0022

GBR 10 117 1.717 1.6991 0.0893

20 117 2.866 3.5267 0.0004

30 117 5.329 7.1691 0.0000

ITA 10 117 3.297 4.4783 0.0000

20 117 6.580 8.5118 0.0000

30 117 12.087 14.7778 0.0000

JPN 10 113 2.967 2.7223 0.0065

20 113 5.098 4.7852 0.0000

30 113 7.524 7.0151 0.0000

NLD 10 117 0.959 −0.0715 0.9430

20 117 1.052 0.0767 0.9388

30 117 1.628 0.8537 0.3932

NOR 10 117 0.647 −0.5670 0.5707

20 117 0.980 −0.0261 0.9792

30 117 2.126 1.3776 0.1683

PRT 10 77 3.007 5.1099 0.0000

20 77 6.030 9.2170 0.0000

30 77 11.585 16.2933 0.0000

SWE 10 117 0.596 −0.8923 0.3722

20 117 0.659 −0.5694 0.5691

30 117 0.932 −0.0976 0.9223

USA 10 117 1.331 0.7821 0.4342

20 117 2.247 2.0770 0.0378

30 117 4.072 4.2258 0.0000
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seen in the data. By necessity, they must be quite parsimonious to have tractable likelihood
functions. But we know reality is often more complicated. Instead, we take a semiparametric
flexible approach that preserves tractability while adapting to the dictates of the data. The
local projections (Jordà, 2005) toolkit turns out to work quite well for this purpose.

In our application we will examine measures of economic activity generally used in
studies of rare disasters and drawn from very long run historical annual panel data (Barro,
2006; Barro and Ursúa, 2008b). We generically label the variable as X, which may refer to
either real GDP per capita, Y, or real consumption per capita C. Let x = log(X), hence,
lowercase variables denote logs. We will write the growth rate as ∆xt = xt − xt−1. Our
focus for now in the main text will be on consumption, as this is the key measure in the
rare disaster literature, and will matter for the second part of this paper as we consider
welfare implications.

Gaussian null model What does it mean to choose a null Gaussian model? As noted, one
canonical model is a deterministic trend with Gaussian shocks (Lucas, 1987, 2003); today,
the widely-used baseline is a random walk with drift (Obstfeld, 1994). Working in the rare
disasters tradition (Barro, 2006; Barro and Ursúa, 2008b), we follow the latter, where the
null characterizes growth as a random walk with drift, with a data generating process

M0 : ∆xt+1 = µ + ϵt+1 ; ϵt+1 ∼ N (0, σ2) . (1)

If adopting this model as the data generating process, the researcher has to find a way to
specify only two parameters {µ, σ}. The notation M0 denotes “null model.” The economic
implications of this model are simple. Absent shocks, the economy will grow at a constant
µ rate. Shocks will make the economy grow faster or slower but because they are i.i.d.
draws, they have no lasting impact on the growth trajectory (though, of course, have a
permanent effect on the level). Intuitively, there will likely be few gains from stabilization
policy unless the variance of the residuals is quite large.

The mapping of disasters What is a disaster event? There is no single agreed definition.
Generally speaking, we have a rule which specifies how the observer maps historical data
into a set of events. An example of such a rule is the (Barro, 2006) definition of a rare
disaster which we specify here as the year of a local peak, followed by a peak to trough
consumption decline exceeding 15% in log terms (i.e., a cumulative change of −0.15 log
points). Other observers may choose different rules: for example, the widest definition
would be when the events are all consumption recessions, i.e., any consumption peak year.

In general, suppose the data seen by the observer are the historical realizations of
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the process ∆x = {∆x1, . . . , ∆xT}. Based on these realizations, the observer generates
binary indicators that capture disasters based on a mapping, denoted mt(∆x), such that:
dt = I(mt(∆x)), where I(.) is the indicator function that takes the value of 1, when at time
t there is a disaster according to mt(∆x), and is 0 otherwise. Thus {dt}T

t=1 is a point process.

What makes inference complicated? Importantly, we have to note that the mapping is:
(1) determined by the observer; and (2) depends on the sample observed. As a result, the
mapping under the null results in a truncation of the distribution of the data, generating
sample selection bias. Sample selection can lead the analyst astray, as we now show with a
simple example, using “negative growth” as a naı̈ve event definition purely for illustration.

Consider the Gaussian null model in Equation 1 and the implied “negative growth”
mapping dt = 1 iff ∆xt < 0, the definition of a recession event. Then note that:

E(∆xt+1) = E(∆xt+1 | dt = 1) p + E(∆xt+1 | dt = 0) (1 − p) ,

with p = P(dt = 1) = Φ(η) where, Φ(.) refers to the normal cumulative probability
function and hence η = −µ/σ due to standardization. From the properties of the truncated
Gaussian, we have

E(∆xt+1 | dt = 1) = µ − σ
ϕ(η)

Φ(η)
, E(∆xt+1 | dt = 0) = µ + σ

ϕ(η)

1 − Φ(η)
.

For simplicity and noting that λ(η) = σϕ(η)/(1 − Φ(η)) is the inverse Mills ratio scaled by
σ, we have that

M0 : ∆xt+1 = µ − λ(η)
1 − p

p
dt + λ(η)(1 − dt) + ϵt+1

= µ + β11 dt + β01 (1 − dt) + ϵt+1 . (2)

The notation β11 < 0 serves to indicate that the “downshift” parameter refers to when dt = 1
and that the effect is felt in period 1. Similarly, the notation β01 > 0 indicates the “upshift”
that happens when dt = 0 and the effect is felt in period 1. Note that β11 = β01(1 − p)/p
so we can focus just on the “downshifts” in applications and testing, as we do below.

Equation 2 thus serves to illustrate an important point. Even under the null model in
Equation 1, estimation by partitioning the sample according to the point process {dt} will,
in general, create bias. Estimation allowing for a potentially different mean when dt = 1
than when dt = 0, generates sample selection bias. A test of the null that the ”downshift”
(or the ”upshift”) are zero could be rejected, not because the null model is rejected, but
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simply because the conditional means differ as a function of dt. And that sample selection
bias, λ(η)(1 − p)/p when dt = 1 and λ(η) when dt = 0, happens to be a function of the
inverse Mills ratio, just as the Heckman (1974) correction would prescribe.

Just to put some numbers on this example, suppose µ = 2 and σ2 = 4, for simplicity
(close to the actual values for the U.S. in the postwar annual data). That is, in log terms,
consumption grows at 2% on average and between 6% and −2% about 95% of the time.
Under these parameters, we would find that the downshift under the null is β11 = −1.5
with a t-ratio of approximately 3 in a sample with 100 observation where the share of
consumption recession peaks is 16% (one every six years, roughly as in the data). An
unsuspecting researcher might therefore conclude that the regression provides ample
evidence against the random walk with drift null when in fact there is none.

Of course, outside of this simple mapping, it is usually difficult or impossible to
determine the null downshift of the mean and hence the null model itself. However, the
downshift can be easily determined by simulation using the bootstrap under the null.

A general alternative model In what follows, we entertain various definitions of disaster
events that go well beyond (but include) the simple example from the previous section
based on recession peaks. Instead of specifying a particular data generating process (DGP)
that can be specified with a few additional parameters (see, e.g. Barro and Ursúa, 2008a;
Barro and Jin, 2011; Nakamura et al., 2013), we follow a more general approach. The idea
is to be flexible and put as few constrains as possible on the alternative model, while still
being able to test the null hypothesis efficiently. We accomplish this with a semi-parametric
approach.

In general, the mapping m(∆x) generates a point process {dt}T
t=1 that can induce

potentially persistent downshifts on mean growth when an event takes place. Given the
null model in Equation 1, each mapping will generate a truncation of the null distribution,
which can have effects that are observed over several periods.

Consider then, a natural extension of the null model in Equation 2, namely

M0 : ∆xt+h = µ + β1h dt + β0h (1 − dt) + ϵt+h ; h = 1, . . . , H , (3)

which is the usual specification of a local projection. Thus, β1h captures the downshift over
time of a disaster that happened h periods ago, whereas β0h captures the upshift. Both
are constructed under the null random-walk-with-drift model in Equation 1 in parallel
fashion to how we derived the null model when the mapping refers to recession peaks in
Equation 2.

The β0h and β1h are, in principle, infinite dimensional moving average terms. Since the
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growth rate ∆xt+1 is assumed to be stationary around µ, it is natural to assume absolute
summability, that is ∑∞

h=1 |β jh| < ∞ for j = 0, 1. Of course, in finite samples, we cannot
estimate infinite parameters and hence we have to truncate the series at some horizon, say
H. If we are willing to assume that H is chosen such that H2/T → 0 as H, T → ∞, and
furthermore H1/2 ∑∞

h=H+1 |β jh| → 0 as H, T → ∞, for j = 0, 1, then truncation will deliver
consistent estimates up to horizon H (see, e.g. Kuersteiner, 2005, for a similar condition
applied to justify the consistency of truncated infinite vector autoregressions).

Consider now an alternative model, denoted MA, with a similar structure as M0 in
Equation 3 but with potentially different upshift and/or downshift parameters to admit the
possibility of disaster-type deviations from the null, namely

MA : ∆xt+h = µ + b1h dt + b0h (1 − dt) + ϵt+h; h = 1, . . . , H (4)

where we once again assume absolute summability to preserve stationarity, and that the
truncation horizon H is chosen under similar conditions as for the null model to ensure
consistency.

Given this alternative, the typical hypothesis that one would be interested in testing is

H0 : E(∆xt+h | dt = 1 ; MA) = E(∆xt+h | dt = 1 ; M0) =⇒ H0 : β1h = b1h (5)

Local projection estimation and inference Equation 3 and Equation 4, when truncated
at horizon H, fit naturally into the local projections framework. The null can be easily
estimated from Equation 1 from which bootstrap samples of the specification in Equation 3

can be easily constructed to obtain the empirical distribution of β1h. Similarly, one can
directly estimate Equation 4.

In addition, we can formulate the null and alternative models in cumulative terms to
gain more clarity. This can be easily done with the set of local projections,

M0 : xt+h − xt = µh +
h

∑
j=1

β1j dt +
h

∑
j=1

β0j (1 − dt) + ut+h

= µh + α1h dt + α0h (1 − dt) + ut+h ; h = 1, . . . , H , (6)

with µh = µ h, and where α1 = β1, αh = β1 + . . . + βh. Similarly, the alternative model
becomes

M1 : xt+h − xt = gh + a1h dt + a0h (1 − dt) + vt+h ; h = 1, . . . , H , (7)
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and where a1 = b1, ah = b1 + . . . + bh.
The hypothesis of interest now becomes H0 : αh = ah for h = 1, . . . , H. Again, we note

that estimation of the null model using Equation 1 and using the bootstrap to obtain the
empirical distribution of the αh is easy, while the ah can be directly estimated by local
projections.

The key aspect of inference is that ah − αh < 0 gives evidence against the Gaussian null,
indicating downshifts at one or more horizons that exceed what should be seen under the
null. With that framing in mind, we turn to the results of these tests in long-run panel data.

3. Results from applying the tests

Using the local projection tools just developed, we can now present—given any mapping—
our estimates of the parameters under the null βh and αh, and likewise the data-based
estimates of bh and ah to evaluate the hypothesis of “disaster” type deviations from the
Gaussian null.

The data used for our estimates are from the JST Macrohistory annual panel dataset
which covers a sample of 17 advanced economies since 1870 as originally developed by
Schularick and Taylor (2012); Jordà, Schularick, and Taylor (2013), and subsequently up-
dated (http://www.macrohistory.net/data/). The consumption data here are an extended
version of the data in Barro (2006).

We should further note here that the JST dataset excludes emerging markets, a subset
which accounts for many of the peacetime rare disasters in Barro (2006) and where growth is
typically judged to be more fat-tailed in general. Our sample selection is just the advanced
economies, and that will tend to work against our main hypothesis, likely making it harder
to reject the Gaussian null, and making this a sterner test of our our proposed alternative
“disasters everywhere” hypothesis.

To recap, we now estimate for various mappings the null and alternative local projections
in long-run panel data, over countries i = 1, . . . , N and years t = 1, . . . , T, for the models

M0 : ∆xi,t+h = µi + β1h dit + β0h (1 − dit) + ϵi,t+h ; h = 1, . . . , H ,

MA : ∆xi,t+h = µi + b1h dit + b0h (1 − dit) + ϵi,t+h ; h = 1, . . . , H .

Again, the former uses the bootstrap assuming the null; the latter is estimated from the
data. We present the “downshift” parameters (β1h, b1h) and cumulatives (α1h, a1h), as well
as bootstrap confidence bands for the null. Note that for the panel we include country fixed
effects to control for different long-run growth trends, and we estimate the local projections
using OLS with inverse propensity score weights based on the country-level disaster-event
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probabilities 1
pi

, 1
1−pi

, to address sample selection bias at the panel level.
To facilitate a comparison of the alternative views of disasters we will examine three

different mappings of consumption recession peaks dt = I(mt(∆x)), as follows,

All : dit = 1 ⇐⇒ (i, t) ∈ PeaksAll = {(i, t) | ∆xi,t ≥ 0, ∆xi,t+1 < 0} ,

BRD : dit = 1 ⇐⇒ (i, t) ∈ PeaksBRD = {(i, t) | ∆xi,t ≥ 0, ∆xi,t+1 < 0, PT(∆x)it < θ} ,

xBRD : dit = 1 ⇐⇒ (i, t) ∈ PeaksxBRD = {(i, t) | ∆xi,t ≥ 0, ∆xi,t+1 < 0, PT(∆x)it ≥ θ} ,

where PT(∆x)it denotes the percentile (in the sample) of the peak-to-trough decline after
the peak denoted by dit = 1, and where the θ cutoff is chosen to match the frequency of
Barro rare disasters (BRD) in the actual data (i.e., those that incur peak-to-trough declines
larger than -0.15 log units).

Note that by using a percentile cutoff we focus on the left tail. In the end, we will thus
be asking whether the worst fraction of Gaussian events can match the same worst fraction
of observed events, using a cutoff that captures the BRD definition.

Here, the notation “All” denotes the simple set of all consumption recession peaks, “BRD”
denotes peaks that are followed by Barro rare disasters (under the percentile definition), and
“xBRD” denotes the complement, the peaks that are not followed by Barro rare disasters
(likewise).

To get an idea of the fairly typical parameters under the hypothetical null random
walk with drift, and the frequency of standard recession peaks and BRD peaks, we can
consult Table 3. Average annual drift is about 2% and volatility is about 4%, in line with
expectations. A typical country has about 20 recessions in 120 peacetime years, or one every
six years. The consumption rare disasters are quite infrequent outside of wars, and number
only 15.

Main result: all recessions have non-Gaussian permanent losses Figure 1 presents our
main result, with baseline estimates on the full sample, 1870–2016, all 17 countries. The
mapping All is used here, so the definition of a disaster event is any recession peak. The
sample is all peacetime years, with the exclusion of WW1 and WW2 (and subsequent
recovery windows), and the Spanish Civil war periods that effected the economies of both
Spain and Portugal. These match the war-related disasters in Barro (2006).

In the figure, the left panel displays bh coefficient estimates from the data, with point
estimates shown by a navy square. The right panel shows the corresponding cumulative
coefficient estimates of ah from the data as a navy line. Both panels also show with
purple circles the corresponding coefficients under the Gaussian null, βh and αh, with 90%
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Table 3: Summary data: Gaussian null drift and volatility, recessions and rare disasters, full sample (ex. war)

The table shows the country-specific drift µi and volatility σ in a model of random walk with drift,

∆xt+1 = µ + ϵt+1 ; ϵt+1 ∼ N (0, σ2)

The variable x is real consumption per capita and the sample used is the baseline full sample, excluding wars. The table also shows the
number of country-specific recession peaks and the number of peaks which satisfy the BRD criterion of a peak-trough log ×100 change
less than −15.

No. of No. of List of BRD peaks
µi σ peaks BRD peaks (peak-trough change, expressed as 100 × log C)

Australia 1.31 3.76 24 3 1891 (-39.3) 1896 (-17.8) 1930 (-23.7)
Belgium 1.80 3.76 10 0

Canada 1.88 3.76 16 2 1873 (-16.5) 1929 (-26.1)
Denmark 1.53 3.76 20 0

Finland 2.39 3.76 18 2 1928 (-22.2) 1989 (-15.1)
France 1.61 3.76 24 0

Germany 2.27 3.76 17 0

Italy 1.56 3.76 18 0

Japan 2.54 3.76 21 0

Netherlands 1.50 3.76 22 0

Norway 1.96 3.76 17 0

Portugal 3.05 3.76 12 0

Spain 1.92 3.76 22 3 1894 (-23.0) 1901 (-15.6) 2007 (-16.3)
Sweden 1.99 3.76 23 0

Switzerland 1.35 3.76 22 4 1876 (-25.5) 1881 (-15.3) 1885 (-15.2) 1887 (-17.1)
UK 1.54 3.76 20 0

USA 1.89 3.76 20 1 1929 (-23.4)

confidence intervals from the bootstrap (500 replications).
In the left panel Figure 1a, the growth penalty relative to the null bh − βh = 0 cannot

be rejected at h = 1, meaning that the first year of a recession is not typically different
from the Gaussian null. However, we can see that evidence of drag accumulates in later
years, with the null rejected in most years for h ≥ 2. This has corresponding implications
for the cumulative path of deviations shown in the right panel Figure 1b. Again, the path
aligns with the null at at h = 1, but then diverges down and away from the null thereafter.
By h = 10 the cumulative level penalty relative to the null ah − αh becomes substantial,
amounting to a highly statistically significant 4% loss in levels terms at year 10. After a
recession event, growth is skewed negatively relative to the Gaussian null.

We briefly remark on the null path here. It is, of course, a dogleg down in levels at
h = 1 and then flat. A recession under the Gaussian null must have negative growth
draw at h = 1, by construction, so the mean is a truncated Normal; after that, with an iid
process, any draw can obtain and the unconditional growth mean is zero. Using non-panel
notation to avoid clutter, we have E(∆xt+1 | dt = 1) = µ − σϕ(η)/Φη as before , but
E(∆xt+h | dt = 1) = 0 for h > 1, given iid draws, and the event probability would be
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Figure 1: Tests for disasters: all recessions, advanced economies 1870–2017 (ex. war)

The figure shows the bh and cumulative ah coefficients, with ah = ∑h
j=0 bj for h = 1, . . . , 10, with 90% confidence intervals from the

bootstrap in brackets (500 replications). The event indicator denotes all recessions in the full sample. The coefficients are also estimated
separately for normal and financial crisis recessions, following the classification approach in Jordà, Schularick, and Taylor (2013). See text.
Units are in log times 100.
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p = P(dt = 1) = Φ(η)(1 − Φ(η)) since a peak event requires a positive growth draw
followed by a negative growth draw.7

This is our main result. The cumulative penalty relative to the Gaussian null is found to
be substantial and statistically significant for the sample of all recessions, what we term
”disasters everywhere.” We now probe the robustness of this result.

Robustness: the main result is not driven by just the Barro rare disaster events One
objection to our main result might be that such negative skew is not surprising in a sample
that includes quite a few Barro (2006)-type rare disasters. There is a straightforward way to
address this concern: repeat the analysis using a subset of events that includes only the
Barro (2006) rare disasters, and another subset that excludes them. This is put into effect
by using the mappings BRD and xBRD defined above, where the cutoff for a rare disaster
event is a peak-trough decline larger than 15 in log ×100 units.

And the main result continues to hold, as reported in Figure 2. Both panels shows the
cumulative coefficient estimates of ah from the data as a navy line, and the corresponding
coefficients under the Gaussian null, αh, as purple circles with 90% confidence intervals.
Note that the scales are very different in the two panels, with of course the trajectories for
the BRD case deviating negatively to a much larger degree than in the xBRD case.

The left panel Figure 2a reports results where only BRD peaks are included, both in the
null and alternative. The null is just rejected here, but rejection would be much stronger
if we used the full set of disasters covering wartime events as well (it is in wars that most
of the largest peak-trough declines of 40%–60% are observed). The right panel Figure 2b
reports results with the BRD peaks excluded, both in the null and alternative. The null
is strongly rejected here, even more convincingly than in Figure 2a. Even outside of rare
disasters growth trajectories deviate sharply from the Gaussian null after a recession. By
year 10 the shift is a highly statistically significant 2% loss in levels terms.

We briefly remark on the null paths here. Whilst above we could obtain simple closed-
form solutions for the null path, here we cannot and we must turn to simulation. In
Figure 2a, the rare disasters encompass very large losses but they can be spread over
1, 2, 3, . . . or many years. Hence, when the null picks the worst θ fraction of events, the path
declines gradually, reflecting a weighted average of all those possible disaster realizations
that qualify. Conversely, in the right panel Figure 2b we have the average path that obtains
under the null in all recessions minus the weighted contribution of those rare disaster paths.
So this path doglegs down at first but then bounces back up, as we have excluded the slow
moving disasters where the worst downside materializes.

7This setup would then have introduced a bivariate Mills ratio into the corresponding version of Equation 2,
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Figure 2: Tests for disasters: Barro rare disasters or not, advanced economies 1870–2017 (ex. war)

The figure shows the cumulative ah coefficients, with ah = ∑h
j=0 bj for h = 1, . . . , 10, with 90% confidence intervals from the bootstrap in

brackets (500 replications). The event indicator denotes all BRD recessions in the full sample in the left panel, all xBRD recessions in the
full sample in the right panel. See text. Units are in log times 100.
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Robustness: the main result holds even in the post-WW2 sample Another concern might
be that our results are driven by unusually volatile and skewed outcomes in the pre-WW2

period, and especially in the interwar period which includes the Great Depression. Even
though some of those skewed outcomes might be filtered out above using the BRD sample
exclusion, this is a more stringent test. To address that we repeat the analysis by fully
excluding the entire pre-WW2 period from the sample.

And the main result still continues to hold, as reported in Figure 3a. Even in the
Post-WW2 period, seen as being dominated by the era of so-called Great Moderation, and
when there is only one BRD event (Spain, 2007), growth trajectories still deviate sharply
downwards after a recession, and much more so than one would expect under the Gaussian
null. By year 10 the deviation is a highly statistically significant 3% loss in levels terms.

This is a strong finding, since the rare disaster literature, and also the equity premium
puzzle, literature has gone to great lengths to point out how we might have a biased view
of the frequency of bad events if we only look at the nice and smooth growth outcomes
seen from the 1950s to the 1990s in the advanced economies. So this sample restriction
is, in a sense, precisely what one should not do if one wants to respect the idea that only
the widest sample of events should be used so that we avoid cherry-picking good times.
And yet, even when we try to cherry pick here, our test still throws up a rejection of the
Gaussian null.

Robustness: the main result holds for normal and financial crisis recessions In a final
robustness check, we confront another question. Is the non-Gaussianity we find just a
manifestation of only a few moderately rare events that align with serious downturns,
namely the phenomena of occasional financial crises? If so, our result may simply expand
the scope of disaster dynamics by a little.

But the main result still continues to hold whether we look at financial crisis recessions
or normal recessions, as reported in Figure 3b. The coefficients here are estimated separately
for the two types of recessions, following the classification approach in Jordà, Schularick,
and Taylor (2013). For sure, the deviation from the Gaussian null is much more adverse
in financial crisis recessions, but it is still not trivial in a normal recession. In the latter
case, average growth trajectories still deviate downwards after a recession, with a highly
statistically significant 2% loss in levels terms by year 10. In the former case, the loss
accumulates to about 7% at year 10.

which is why we used a simpler example at that point.
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Figure 3: Tests for disasters: postwar sample and normal-financial, advanced economies (ex. war)

The figure shows the bh and cumulative ah coefficients, with ah = ∑h
j=0 bj for h = 1, . . . , 10, with 90% confidence intervals from the

bootstrap in brackets (500 replications). The event indicator denotes all recessions in the full sample. The coefficients are also estimated
separately for normal and financial crisis recessions, following the classification approach in Jordà, Schularick, and Taylor (2013). See text.
Units are in log times 100.
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Table 4: Level penalties, all and normal-financial recessions, advanced economies 1870–2017 (ex. war)

The table shows the cumulated level penalty coefficients, defined as the deviation of the estimated coefficients from the Gaussian null,
ψh = ah − αh for h = 1, . . . , 10, estimated as in the text with 95% confidence intervals from the bootstrap in brackets (B = 500 replications).
In column 1 the mapping (All) denotes all recessions in the full sample. Additionally in columns 2 and 3 the coefficients are estimated
separately for normal and financial crisis recessions, following the classification approach in Jordà, Schularick, and Taylor (2013). Sample
size is 2,149 observation on real per capita consumption growth ∆xit, with some losses to leads and lags at each h. See text. Units are in
log times 100.

All recessions Normal recessions Financial recessions

ψ1 0.11 0.12 -0.01

[-0.18, 0.42] [-0.17, 0.43] [-0.29, 0.31]

ψ2 -0.29 0.23 -2.47

[-0.73, 0.14] [-0.22, 0.66] [-2.91, -2.04]

ψ3 -1.08 -0.22 -3.51

[-1.55, -0.53] [-0.68, 0.34] [-3.98, -2.96]

ψ4 -1.45 -0.45 -4.17

[-1.98, -0.85] [-0.98, 0.15] [-4.70, -3.57]

ψ5 -1.96 -0.57 -4.99

[-2.56, -1.34] [-1.17, 0.05] [-5.59, -4.36]

ψ6 -2.05 -0.76 -5.13

[-2.66, -1.38] [-1.37, -0.09] [-5.74, -4.45]

ψ7 -2.60 -1.15 -5.72

[-3.23, -1.86] [-1.77, -0.40] [-6.34, -4.97]

ψ8 -3.10 -1.52 -6.63

[-3.81, -2.34] [-2.23, -0.76] [-7.34, -5.87]

ψ9 -3.33 -1.81 -6.51

[-4.08, -2.55] [-2.56, -1.03] [-7.25, -5.72]

ψ10 -3.80 -2.28 -6.97

[-4.63, -2.86] [-3.11, -1.34] [-7.79, -6.02]

N 2149 2149 2149

Summary In Table 4 we recap our main finding. After a recession event the level penalties,
defined as the deviation of the estimated level coefficients from the Gaussian null model
ψh ≡ ah − αh grow to become negative and highly significant out to the 10 year horizon.
The full-sample ψh estimates show losses, along with 95% confidence intervals, and the
loss amounts to −3.8% after 10 years in all recessions. Deviations are more substantial
for financial crisis recessions, as expected, at around −6.9% after 10 years, but they are
nontrivial even in normal recessions, reaching −2.3% after 10 years. These losses outstrip
what would be expected from the Gaussian null model.
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4. Alternative model: disaster paths with randomly varying severity

The previous section establishes that, on average, even plain vanilla recessions are like
mini-disasters. The Gaussian null is rejected, and not just on account of a few very large,
rare disasters. Instead, fat tails are pervasive, and growth skews negative in recessions.

But while we know that we can reject the null, that does not tell us how to set up
an appropriate alternative model. The goal now is to propose a simple and tractable
alternative model that builds on the well-established rare disaster framework, allows for
variable severity disasters, and permits a direct calibration based on the local projection
estimation toolkit. We can then use the model to conduct counterfactual welfare calculations.

Model: Random Coefficients Local Projections Following the rare disaster paradigm,
we begin by conceiving of the economy as evolving under baseline stochastic growth path
with a recurring risk of a disaster-type event defined as a recession of any form, as before.
When such an event strikes, the economy is shunted onto a new forward-looking path
whose dynamics we aim to characterize using a parsimonious set of stochastic shifts over
a finite horizon H. These shifts apply repeatedly to future growth outcomes whenever a
disaster-type event happens. For the moment, we restrict attention to a single disaster type
for clarity. Also note that we present the model by omitting the panel dimension of our
application to avoid notational clutter.

A simple way to pursue estimation is to build out from our earlier local projections
specification in as follows,

∆xt = µ +
10

∑
h=1

shdt−hζt−h + ϵt ; log ζt ∼ N (−v2/2, v2) ; ϵt ∼ N (0, σ2) ; (8)

where µ is baseline drift, ζ and ϵ are independent from each other, and the {dt}T
t=1 are

event indicators for a recession event, with dt = 1(∆xt < 0 & ∆xt−1 ≥ 0), i.e., an event is
now defined as one year after a cyclical peak.

In Equation 8 the simplifying assumption is that if a disaster strikes at time t − h, then
for all h, all impulse response coefficients sh at horizon h after that event are shifted up or
down by the same random-draw from a log-normal, but these will be different (random)
amounts when looking across disaster events. That is, we implement variable disasters in
our LP framework. Note that we will set the mean of the log-normal to E(log ζ) = −v2/2
so that E(ζ) = 1, using the properties of the log-normal, and hence these are pure scaling
factors relative to the mean shift sh. We also allow for no contemporaneous shifter, only
with a lag, given that the Gaussian null was not rejected earlier in the first year after a peak.
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We refer to this model the random coefficient local projections or RCLP model. To get a sense
of what the RCLP specification buys us, notice that ζ ∈ (0, ∞) since log ζ ∈ (−∞, ∞). So, as
log ζ → −∞, the disaster approaches the Gaussian null model and shown in Equation 1. As
log ζ → +∞, the disaster becomes increasingly severe. Below, we estimate σζ ≈ 0.39. This
means that the penalty coefficients, sh are scaled up or down as follows. Take a centered
95% probability range for ζ. At the low end, sh is scaled down by a factor of approximately
0.47. At the other end, it gets scaled up by a factor of approximately 2.1. In other words, in
this range, a harsh recession is about 4.6 times worse than a mild one when comparing the
2.5% quantile to the 97.5% quantile of the ζ draw.

We set a maximal horizon for estimation H = 10 years as a practical matter since few
expansions last more than 10 years, so we have insufficient observations at large horizons
to get plausibly accurate parameter estimates. Beyond that horizon we implicitly assume in
the growth rate regression that the process reverts to the random walk with drift for h > H.
That is, the growth losses captured by the sh parameters will cease at that point.

Estimation of Equation 8 is mostly standard, even when extended to a panel setting, with
allowance for country fixed effects to capture differences in drift. The only complication is
to obtain an estimate of the variance of log ζ, denoted v2, where we have

V(∆xt) = V

(
H

∑
h=1

st−hζt−h

)
+ V(ut)

=⇒ V(∆xt)− V(ut) =
H

∑
h=1

s2
h[q(1 − q)V(ζ) + q(1 − q) + V(ζ)q2]

=
H

∑
h=1

s2
hq(1 − q)V(ζ) +

H

∑
h=1

s2
hq(1 − q) +

H

∑
h=1

s2
hq2V(ζ)

=⇒ V(ζ) =
V(∆xt)− V(ut)− ∑H

h=1 s2
hq(1 − q)

q ∑H
h=1 ψ2

h

=⇒ v = log [V(ζ) + 1]1/2

Results Using the methods above, we now estimate a baseline RCLP model on the data
that we subsequently simulate for use in welfare calculations of the cost of business cycles.
Hence, we focus only on real consumption per capita in what follows. Thus, let xit denote
the log of annual real consumption per capita across years t = 1, ..., T and countries
i = 1, ..., I. The relevant sample will be drawn from the same peacetime dataset as above,
with recession events sorted into two types, recessions associated with financial crises (F)
and normal recessions (N) as before.
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Figure 4: Recession paths for normal and financial crisis recessions: Random Coefficient Local Projections
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Notes: The figure shows Normal versus Financial Crisis recession paths based on Random Coefficient Local Projections. The event at
year h = 0 is the first year of a recession, so the peak is a time h = −1. There is no effect at h = 0. The coefficients of the growth versions
are reported in cumulative form by adding up the coefficient estimates appropriately. The estimates are scaled by 100 to show the results
in percent (log ×100) deviations from the peak of consumption. 95% confidence intervals are provided. See text.

Hence, we estimate the panel RCLP model

∆xt = µ +
10

∑
h=1

(sN
h dN

t−h + sF
h dF

t−h)ζt−h + ui + ϵit ; log ζt ∼ N (m, v2) ; ϵt ∼ N (0, σ2) ;

where the intercept µ is the average of the country fixed effects, with the country-weighted
average of the ui constrained to zero.

Our baseline estimate of the RCLP model is shown in Table 5 and Figure 4. In the
table, the growth penalties are substantial, resemble what we saw earlier in the LP tests,
and cumulate over 10 years to −3.8% for normal recessions and −8.1% for financial crisis
recessions. In the figure, estimated cumulative coefficients θk

h = ∑h
j=1 sk

j , with k = N, F are
shown, with 95% confidence intervals. Recall that these coefficients are average level effects
h years after an event, corresponding to a draw of ζ = 1. To show the range of variable
penalties the figure also displays a fan chart of dotted lines corresponding to deciles of the
distribution of ζ, where blue denotes normal and red denotes financial crisis recessions.

Summing up, our estimates of the data generating process appear reasonable and closely
resemble the type of negatively-skewed deviations from the Gaussian null seen in our
earlier LP tests, for example, as in Figure 3b. With these estimates in hand we now turn to
simulating these DGPs for use in counterfactual welfare analysis.
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Table 5: Random Coefficient Local Projections: Estimates

∆x

sN
1 0.109

(0.271)
sN

2 -0.811
∗∗

(0.275)
sN

3 -0.582
∗

(0.275)
sN

4 -0.365

(0.278)
sN

5 -0.382

(0.278)
sN

6 -0.426

(0.280)
sN

7 -0.434

(0.281)
sN

8 -0.203

(0.282)
sN

9 -0.770
∗∗

(0.281)
sN

10 0.0179

(0.277)
sF

1 -1.490
∗∗∗

(0.397)
sF

2 -2.168
∗∗∗

(0.402)
sF

3 -0.669

(0.405)
sF

4 -1.235
∗∗

(0.402)
sF

5 0.0369

(0.406)
sF

6 -0.957
∗

(0.424)
sF

7 -1.242
∗∗

(0.442)
sF

8 -0.0910

(0.459)
sF

9 -0.292

(0.496)
sF

10 -0.00921

(0.504)
µ 2.643

∗∗∗

(0.132)

∑10
h=1 sN

h -3.847***
(0.838)

∑10
h=1 sF

h -8.117***
(1.277)

σ 3.552

v 0.494

N 1919

Notes: Dependent variable: ∆ci,t × 100. The table displays regression coefficients for the RCLP model with H=10. Standard errors in
parentheses. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The row v displays the estimate of the variance of the random lognormal draw. The
estimated drift is the intercept µ, which is the average of the country fixed effects. See text.
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5. Costs of business cycles with disasters everywhere

Recessions are not just bad consumption draws from a random walk with drift. They have
patterns that defy this Gaussian null model in ways we have shown above—in this sense,
disasters are everywhere, and not only of the rare kind.

If so, how much is a representative consumer willing to pay to avoid such pervasive
and weighty left-tail randomness? In this section we take the lessons from our empirical
work seriously and apply them in a standard welfare counterfactual exercise.

Model setup and calibration Our approach will be to simulate the RCLP model of con-
sumption growth as the true data generating process using the above estimated parameters.

After a “good” no-disaster event at time t, consumption will not be affected in any
future years. But if a “bad” disaster event takes place, with some probability the normal or
financial type of disaster is decided, k ∈ {N, F}, and then the path of consumption deviates
at t + h by a penalty sk

h as above, adjusting its severity by the log-normal draw of ζt. Thus,
the growth deviations applied to the Gaussian DGP at time t + h are sk

hζt as t + h counts
upwards within a given cycle for h = 1, . . . , H, with all such penalties applied additively at
any future date.

To proceed with the above model, we simulate data for annual consumption growth.
The simulation is for an individual country, so the i subscript is dropped. Just as described
above, we will assume consumption follows a process given by a drift with penalties,

∆ct = µ̂ +
10

∑
h=1

[
ŝF

h dF
t−hζt−h + ŝN

h dN
t−hζt−h

]
︸ ︷︷ ︸

penalties

+ ϵt , (RCLP)

where ϵt is drawn from N (0, σ̂2), and log ζt is drawn from N (− v2/2, v2). The parameters µ̂,
ŝ f

h , ŝN
h , σ̂2, and v2 are taken from the RCLP estimates reported in Table 5.

Here, a disaster event is endogenously given by dt = 1(∆xt < 0 & ∆xt−1 ≥ 0), i.e., an
event is now defined as one year after a cyclical peak. We then further define two types
of events dN

t = dtNt and dF
t = dtFt, wher a normal recession indicator is Nt = 1 and a

financial recession indicator is Ft = 1.
To fully specify the simulation, it remains to define the process governing the evolution

of the disaster type, for which we define event-type indicators indicating when there is a
recession (normal or financial), namely Rt = {Nt, Ft}. This requires that we make a choice
of an independent draw probability (qn, q f ) for whether the type is normal or financial, with
qn + q f = 1. So Nt, Ft are Bernoulli i.i.d. draws, with P(Nt = 1) = qN and P(Ft = 1) = qF.
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Candidates for these probabilities are chosen as follows, based on empirical frequency
in the data in the full sample of the JST dataset, excluding wars, and these will help us
illustrate how varying the sub-draw probabilities (qn, q f ) affects welfare outcomes:

• Zero financial crisis risk q f = 0, qn = 1, empirical frequencies for the “quiet”
1950s–60s era.

• Medium financial crisis risk q f = q̄ f = 0.25, qn = q̄n = 0.75, approximate empirical
frequencies for the full sample.

• High financial crisis risk q f = 0.50, qn = 0.50, approximate empirical frequencies of
the post-1985 era.

• Variable financial crisis risk any q f , qn combination.

To afford welfare comparisons with other benchmarks from the literature, we comple-
ment our simulated models above with three additional simulated models of consumption
growth: a deterministic trend, to be used as a welfare baseline; a “Deterministic plus
Gaussian” path, which adds i.i.d. Gaussian shocks to get a random walk with drift; and a
simulated Barro RD rare disaster process, with Bernoulli probability π and draws bt from
an empirical distribution of the 65 output disasters in Barro (2006), and applied additively
to the Deterministic + Gaussian drift model above. Formally, we can write these as follows,

∆ct = µ̂ , (Deterministic)

∆ct = µ̂ + ϵt , (Deterministic + Gaussian)

∆ct = µb + πbt + ϵt . (Deterministic + Gaussian + Barro RD)

Here, µ̂ is the conditional drift in our RCLP model estimation above, and σ̂2
ϵ is residual

variance. Note that µ̂ + E(penalties) = E(∆c) For comparability, the RD drift is chosen so
its DGP has the same mean, with µb + E(πb) = E(∆c).

By construction, the full model matches the observed mean drift. But what is being
assumed in the reference Deterministic counterfactual? As is standard practice in the
disasters literature, we assume that all permanent losses and temporary skew arising from
the disaster or penalty terms are completely switched off in the counterfactuals, as well as
the Gaussian residual (see, e.g., Barro, 2006).8 In the case of paths with permanent losses
(i.e., our recession paths or the Barro RD paths) this means that the counterfactual process

8An implicit assumption is that a move to the counterfactual will not damage mean drift, but only tamp
down higher moments of growth. Policies may or may not achieve that objective and specifics matter. This
remains an open debate in theory and empirics (see, e.g., Rancière, Tornell, and Westermann, 2008).

26



will inherit a higher mean growth, as well as being stripped of negative-skewed terms. To
be clear, these changes will contribute to higher welfare for the representative consumer
from increases in the mean as well as the elimination of all higher moments.

For numerical implementation, we simulate a large history of all series over T = 10,000

years for the benchmark models indexed by M ∈ {Deterministic, Deterministic + Gaussian}
and for the simulated RCLP models indexed by M = q f ∈ [0, 1] using a grid of size 0.05.
We obtain a welfare estimate for each model by averaging the discounted lifetime utility
(truncating over 500 years forwards) at all dates. We assume CRRA preferences with a
baseline low risk aversion parameter γ = 4 (as in Barro, 2006, 2009) and a discount factor
of β = 0.96 for annual data.9 The welfare level for model M is then a function of simulated
real consumption per capita CM,t in that model,

WelfareM = W(CM,t) ≡
∑T

s=1 ∑K
k=1 βk C1−γ

M,s+k
1−γ

S
,

where s refers to the start period of the sample, and K = 500 is the truncation point.
We will then compute the consumption-equivalent welfare ratio of any model versus the
Deterministic baseline CEM implied by the formula W(CM,t) = W(CEM × CDeterministic,t).

Comparing welfare under actual and counterfactual histories Our main result is shown
in Figure 5. Using the deterministic model as a baseline, the vertical axis shows consumption-
equivalent welfare ratio relative to the baseline. The horizontal axis shows the relative
probability of a financial crisis for the subdraw q f which varies between zero and one. The
reference level for the deterministic model is the thin dotted blue line at CE = 1.

Consider first the Deterministic + Gaussian model, shown by the thin dashed blue line.
The welfare loss is fixed, about 1%, as expected and consistent with (Obstfeld, 1994). In
contrast, the red line shows the welfare losses for our baseline RCLP disaster model, which
are roughly and order of magnitude larger, ranging between about 9% and 20%.

The red line shows how financial crisis disaster frequency q f impacts the losses relative
to the deterministic path. In a simulated RCLP world of high financial crisis risk the welfare
loss of 15% is not so different from the loss of 18% generated in a standard Barro RD
calibration, shown by the thin solid blue line, under the same CRRA welfare function.10

9As for our functional form, Lucas (1987, 2003) and Barro (2006) preferences are CRRA, but Barro (2009)
employs Epstein-Zin-Weil preferences. The latter tend to magnify welfare losses, all else equal. However,
even in our CRRA environment with a conservative choice of γ, we can generate considerable welfare losses:
in our setup, disaster-style fat tails are a feature of all recessions, and weigh heavily in the full welfare cost.

10This 18% figure for the Barro RD case is close to the 17% in footnote 1. The small difference is due to a
slightly different calibration of drift and residual variance for consistency with our baseline.
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Figure 5: Welfare simulations: Main results
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Notes: Consumption-equivalent welfare ratios associated with our baseline model and for the benchmarks, relative to the Deterministic
model. The squares correspond to the zero, medium, and high frequency crisis risk levels. See text.

To focus on a few reference levels, three points on the line are picked out with squares
corresponding to zero, medium, and high frequency crisis risk levels. A representative
agent in a world of high financial crisis risk, like the recent decades, (q f = 0.50, post-1985)
suffers a welfare loss of about 15% compared to the deterministic path. In a world of
medium financial crisis risk (q f = q̄ f = 0.25, the historical average) they lose about 12%.
But even with zero financial crisis risk, and all recessions constrained to be of the normal
type (q f = 0.00, 1950s–1960s), they still lose 9% compared to the deterministic path.

These are large welfare costs, and they arise without wartime rare disasters present
at all in the analysis, and with no rare disasters of any kind in the simulation (q f = 0)
restricted to purely normal peacetime recessions. These results speak not only to the
massive welfare losses associated with frequent financial crises, but also to the hitherto
ignored but nontrivial welfare losses felt even in normal recessions. The latter effects have
not been captured in traditional models Lucas (1987); Obstfeld (1994); Lucas (2003); Barro
(2006) which treat normal recessions as deriving from Gaussian processes with no fat tail
disaster attributes. Instead, as our LP tests have shown, even normal recessions are non-
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Figure 6: Welfare simulations: Shutting down growth penalties in normal recessions

0.99

0.95

0.91

0.99

0.95

0.91

0.982

1.000

0.82

.8
.8

5
.9

.9
5

1

W
el

fa
re

 in
 c

on
su

m
pt

io
n 

eq
ui

va
le

nt
re

la
tiv

e 
to

 d
et

er
m

in
is

tic
, C
E 

(C
R

R
A

 γ
=4

)
 

0 .05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1
 

Conditional probability of financial crisis recession, qf

Deterministic trend, baseline normalized to 1 Plus Gaussian
Plus Gaussian and Barro RD

LP model: variable disasters (RCLP) Zero-medium-high financial crisis risk

Notes: Consumption-equivalent welfare ratios associated with our baseline model with the restriction sN
h = and for the benchmarks,

relative to the Deterministic model. The squares correspond to the zero, medium, and high frequency crisis risk levels. See text.

Gaussian, with significant fat tails in the consumption path relative to the null. In welfare
terms, this really matters. If the rare disaster model has reawakened concerns about the
welfare costs of non-deterministic fluctuations, then our findings about the broader costs of
“disasters everywhere” with pervasive fat-tailed dynamics are of comparable quantitative
import.

Robustness: Shutting down growth penalties in normal recessions A robustness check
shown in Figure 6 examines shutting down the fat-tail for normal recessions. The RCLP is
re-estimated with all normal recession penalty coefficients SN

h constrained to zero, and the
new parameters are used to construct a new set of simulated consumption paths as before.

This change should tilt the dependence of welfare costs on crisis risk substantially. In
the case q f = 0, when there are no crisis financial recessions, the DGP (RCLP) will be
simply the Deterministic + Gaussian model, and welfare losses would then be tied down
close to the 1% level. However, when q f = 1 when there are only crisis financial recessions,
the welfare losses would then inherit the full set of variable disaster penalties as before.
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As Figure 6 shows, this intuition is correct. However, we see that even moderate levels
of crisis risk can drive up welfare losses quite quickly. In a world of medium financial crisis
risk (q f = 0.25, the historical average) the consumption-equivalent welfare loss is 5%. But
in a world of high financial crisis risk, (q f = 0.50, post-1985) the loss rises to 9%.

We caution that our RCLP estimates clearly reject this model, with skew evident even in
normal recessions. However, some might have a strong a priori that a normal recession
should leave no permanent mark. But even then, the non-trivial risk of financial crises
and the strong evidence of persistent drag from these events (Cerra and Saxena, 2008;
Jordà, Schularick, and Taylor, 2013; Reinhart and Rogoff, 2014) should focus special concern
on this case, with large potential gains from careful macroprudential policies which can
mitigate these damaging left-tail scenarios.

6. Conclusions

At the time of writing this paper, the world’s economies were recovering from one of the
largest and most sudden declines in output due to the COVID-19 pandemic. This is one
example of the rare disasters that Barro (2006, 2009) saw as a cause of the large equity
premium and large welfare losses.

Based on a historical frequency of less than 2%, a person with a life expectancy of
80 years will see on average 1.5 rare disasters in their lifetime—maybe a great war, a
depression, or even a pandemic. But these are just the very worst events, and beyond this
we would infer that they will have to endure on average 12 other recessions, of which 3

on average will be financial crises. Those events may not be as catastrophic, but given the
pattern of persistent downside skew we have documented, the associated welfare losses
from such asymmetric shocks look far from trivial and can still mount up.

Our argument in this paper is that the rare disasters in the outer-tail are not the only
events that matter. We find in the long-run historical data that business cycles tend to be
asymmetric and the inner-tail events resemble “mini-disasters”. Consumers also experience
considerable welfare losses from less extreme but more frequent peacetime recessions.
The depth and duration of such recessions are variable, and because they cause skewed
deviations from trend growth that can last for extended periods, households would pay a
nontrivial cost to insure against them. Disasters, in this sense, are everywhere.

Our paper re-calculates the costs of business cycles in this setting of frequent fat tails in
advanced economies. The size of the consumption-equivalent welfare loss that we find is
large: 15% of permanent consumption for cycles in the crisis-prone past three decades under
very moderate risk aversion, and 12% over the full historical sample back to 1870. These
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losses are more than two magnitudes above that in a Lucas (1987) trend-stationary model,
and more than one magnitude above that in an Obstfeld (1994) random-walk-with-drift
model. These losses are in the same order of magnitude as those arising from a pure rare
disaster model like Barro (2006).

The welfare costs of business cycles have increased in the recent decades as financial
crises have become more frequent. If these results are a good approximation of reality,
then substantial gains in welfare could be achieved from well-designed policies to prevent
financial crises and mitigate even normal recessions.
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