The Micro and Macro Dynamics of Capital Flows Felipe E. Saffie Liliana Varela Kei-Mu Yi U. of Virginia (Darden) LSE & CEPR U. of Houston, Dallas FED & NBER 3rd Workshop on International Capital Flows Financial Policies October 17th 2022 This paper does not necessarily reflect the views of the Federal Reserve System, or its Board of Governors, or any Regional Federal Reserve Bank. ### Motivation - Large expansion of capital flows over the last decades. - Understanding their implications requires assessing their effect on allocation of resources within and across industries. - Macro papers link inflows to the expansion in non-tradable activities. - ightarrow (European crisis: Reis 2013, Benigno and Fornaro 2014, Benigno et al 2015...) - Yet, the absence of data on service firms hinders the identification of the forces shifting resources between sectors. ## This Paper #### I. Assess the impact of capital flows employing - firm-level census data for Hungary on all economic activities over 1995-2008. - Build from micro to macro, and assess the extensive margin. - 2001 Quasi natural experiment: Financial deregulation in 2001. ## This Paper #### I. Assess the impact of capital flows employing - firm-level census data for Hungary on all economic activities over 1995-2008. - Build from micro to macro, and assess the extensive margin. - 2001 Quasi natural experiment: Financial deregulation in 2001. #### II. Investigate two channels leading to resource allocation - Relative input-cost channel: lower the relative price of capital. - favors industries with high capital elasticity. - Consumption channel: increases current consumption. - favors industries producing high expenditure-elasticity goods. - → Use diff. in capital and expenditure elasticities to assess impact of capital flows. # This Paper #### I. Assess the impact of capital flows employing - firm-level census data for Hungary on all economic activities over 1995-2008. - Build from micro to macro, and assess the extensive margin. - 2001 Quasi natural experiment: Financial deregulation in 2001. #### II. Investigate two channels leading to resource allocation - Relative input-cost channel: lower the relative price of capital. - favors industries with high capital elasticity. - Consumption channel: increases current consumption. - favors industries producing high expenditure-elasticity goods. - → Use diff. in capital and expenditure elasticities to assess impact of capital flows. #### III. Build a small open economy model to assess impact of capital flows - Two sectors: manufacturing and services, composed by heterogeneous firms. - Economy transitioning to financial autarky steady state opens to capital flows. - Study impact of capital flows on resource allocation within and across sectors. ### 1. Financial Liberalization in Hungary and Data # International Financial Liberalization in Hungary \rightarrow In 2001, Hungary deregulated capital controls leading to capital inflows. | Before After 2001-2008 | | | | |--|--------------------------|-----|-----| | Financial account (net)* 2.5 8.2 NFA/GDP -62 -87 Credit-to-GDP ratio 25 49 Lending interest rate 22 10 | | | | | NFA/GDP -62 -87 Credit-to-GDP ratio 25 49 Lending interest rate 22 10 | | (1) | (2) | | Credit-to-GDP ratio 25 49 Lending interest rate 22 10 | Financial account (net)* | 2.5 | 8.2 | | Lending interest rate 22 10 | NFA/GDP | -62 | -87 | | | Credit-to-GDP ratio | 25 | 49 | | Consumption/GDP 74 77 | Lending interest rate | 22 | 10 | | | Consumption/GDP | 74 | 77 | Note: in %. *In billions of USD dollars. Year averages. Source: NBH, IMF. ### Data #### → Database: - APEH (NBH), census data on all firms in the economy (1995-2008). - Accounts for more than 95% of empl. in agriculture, manufacturing and services. - \rightarrow in 2000, about 150,000 firms, 4 employees, 80% in services. Table #### → Identification Strategy (Diff-in-Diff) - Three sources of variation: - 1. Time: reform (2001). - 2. Cross sectional: capital elasticity (4-digit industries, WLP 2009). - 3. Cross sectional: expenditure elasticity (2-digit industries, Bils et al 2013). - Potential concerns: parallel-trend assumption, survival, firms' characteristics. # 2. Empirical Design ### Model Intuition • Non-homothetic preferences à la Comin et al (2020): $$1 = \sum_j heta_j^{ rac{1}{\eta}} C_t^{ rac{e_j - \eta}{\eta}} C_{j,t}^{ rac{\eta - 1}{\eta}}$$ where e_j : expenditure elasticity of sector j, $C_{j,t}$ is composed by intermediate varieties. ### Model Intuition • Non-homothetic preferences à la Comin et al (2020): $$1 = \sum_{j} \theta_{j}^{\frac{1}{\eta}} C_{t}^{\frac{e_{j} - \eta}{\eta}} C_{j,t}^{\frac{\eta - 1}{\eta}}$$ where e_j : expenditure elasticity of sector j, $C_{j,t}$ is composed by intermediate varieties. • Firm heterogeneous model (à la Melitz): $$q_{(\varphi)t} = \varphi \, k_t^{\alpha_j} I_t^{\beta_j}$$ φ is productivity, $\frac{\alpha_j}{\alpha_j}$: capital elasticity of sector j, input-cost index $\phi_{j,t} \equiv \left(\frac{r_t^k}{\alpha_j}\right)^{\alpha_j} \left(\frac{w_t}{\beta_j^*}\right)^{\beta_j}$. ### Model Intuition • Non-homothetic preferences à la Comin et al (2020): $$1 = \sum_j \theta_j^{\frac{1}{\eta}} C_t^{\frac{e_j - \eta}{\eta}} C_{j,t}^{\frac{\eta - 1}{\eta}}$$ where e_j : expenditure elasticity of sector j, $C_{j,t}$ is composed by intermediate varieties. • Firm heterogeneous model (à la Melitz): $$q_{(\varphi)t} = \varphi \, k_t^{\alpha_j} I_t^{\beta_j}$$ φ is productivity, $\frac{\alpha_j}{\alpha_j}$: capital elasticity of sector j, input-cost index $\phi_{j,t} \equiv \left(\frac{r_t^k}{\alpha_j}\right)^{\alpha_j} \left(\frac{w_t}{\beta_j}\right)^{\beta_j}$. · Optimal production for each firm: $$q_{jt}(\varphi) = \left[\left(\frac{\frac{\phi_j}{\varphi \rho}}{\varphi \rho} \right)^{-\sigma} \theta_j C_t^{e_j} P_{j,t}^{\sigma - \eta} P_t^{\eta} \right]$$ → Relative input-cost and consumption channels. ## **Empirical Design** • Re-write optimal production for each firm $$\log(q_{jt}(\varphi)) = \underbrace{-\alpha_j \eta \log(r_t^k/w_t)}_{} + \underbrace{e_j \log(C_t)}_{} - (\alpha_j + \beta_j) \eta \log(w_t) + (\sigma - \eta) \tilde{\varphi}_{jt} + \eta \log(P_t) + D_{\varphi j}.$$ input-cost channel consumption channel ## **Empirical Design** Re-write optimal production for each firm $$\log(q_{jt}(\phi)) = \underbrace{-\alpha_j \eta \log(r_t^k/w_t)}_{\text{input-cost channel}} + \underbrace{e_j \log(C_t)}_{\text{consumption channel}} - (\alpha_j + \beta_j) \eta \log(w_t) + (\sigma - \eta) \tilde{\phi}_{jt} + \eta \log(P_t) + D_{\phi j}.$$ • In a diff-in-diff estimator: $$\begin{split} \log(q_{ijt}) &= \gamma_0 \mathit{FL}_t + \textcolor{blue}{\gamma_1} (\alpha_j \times \mathit{FL}_t) + \textcolor{blue}{\gamma_2} (e_m \times \mathit{FL}_t) + \gamma_3 ((\alpha_j + \beta_j) \times \mathit{FL}_t) + \gamma_4 \tilde{\varphi}_{jt} + \mu_i + \varepsilon_{it} \end{split}$$ where $\mathit{FL}_t = 1$ if year ≥ 2001 , 0 otherwise, μ_i are firm-FE, $\tilde{\varphi}_{jt} = \frac{1}{\sigma - 1} \log \left[\int_{\phi_{jt}^*} \phi^{\sigma - 1} \mu(\phi) d\phi \right].$ ## **Empirical Design** · Re-write optimal production for each firm $$\log(q_{jt}(\varphi)) = \underbrace{-\alpha_j \eta \log(r_t^k/w_t)}_{\text{input-cost channel}} + \underbrace{e_j \log(C_t)}_{\text{consumption channel}} - (\alpha_j + \beta_j) \eta \log(w_t) + (\sigma - \eta) \widetilde{\varphi}_{jt} + \eta \log(P_t) + D_{\varphi j}.$$ In a diff-in-diff estimator: $$\begin{split} \log(q_{ijt}) &= \gamma_0 F L_t + \gamma_1(\alpha_j \times F L_t) + \gamma_2(e_m \times F L_t) + \gamma_3((\alpha_j + \beta_j) \times F L_t) + \gamma_4 \tilde{\varphi}_{jt} + \mu_i + \varepsilon_{it} \\ \end{aligned}$$ where $\mathsf{FL}_t = 1$ if year ≥ 2001 , 0 otherwise, μ_i are firm-FE, $\tilde{\varphi}_{jt} = \frac{1}{\sigma - 1} \log \left[\int_{\varphi_s^*} \varphi^{\sigma - 1} \mu(\varphi) d\varphi \right].$ In first differences: $$\Delta q_{ij} = \gamma_0 + \gamma_1 \alpha_j + \gamma_2 e_m + \gamma_3 (\alpha_j + \beta_j) + \gamma_4 \Delta \tilde{\varphi}_j + \Delta \varepsilon_i$$ (1) where $$\Delta q_{ij} = \log(\frac{1}{8}\sum_{2001}^{2008}q_{ij}) - \log(\frac{1}{6}\sum_{1995}^{2000}q_{ij})$$ - γ_1 : impact across capital-elasticity industries (j: four-digit industry). - γ_2 : impact across expenditure-elasticity industries (m: two-digit industry). - Standard errors are clustered at the four-digit industry level. ### 3. Empirical Results: Firm, industry and aggregate level analysis ## Summary of Empirical Results #### \rightarrow Firm-level results show that: - 1. Capital-intensive sectors: firms increase value added & capital (p25-p75: 3.5%). - 2. High expenditure elasticity sectors: firms increase value added (p25-p75: 4%). #### \rightarrow Industry-level results show that: - High expenditure elasticity sectors: - higher net entry (p25-p75: 20%), entrants are smaller & less productive. - from agriculture ($e_m = 0.44$) to bars ($e_m = 1.8$) 800 net entrants more per year. - smaller firm-size, lower RTFP and higher price level. | | Firm-Level Analysis | | Industry-L | Entrants | | | | |------------------------|---------------------|-------------------|------------|----------------------------|--------------------|---------|----------| | | Value Added | Δ Net
Entrants | Δ Entrants | Δ Firm Size
(VA x firm) | Δ Industry
RTFP | Log VA | Log RTFP | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | | Capital elasticity | 0.752** | -0.984 | -1.481** | 0.645 | 0.552 | 0.404** | 1.327*** | | | (0.361) | (0.724) | (0.593) | (0.570) | (0.518) | (0.205) | (0.323) | | Expenditure elasticity | 0.079* | 0.420*** | 0.325*** | -0.138* | -0.144* | -0.038* | -0.090** | | | (0.044) | (0.112) | (0.117) |
(0.076) | (0.079) | (0.023) | (0.040) | | Average sectoral RTFP | yes | | | | | | | | Returns to scale | yes | | | | | | | | R^2 | 0.002 | 0.042 | 0.039 | 0.015 | 0.014 | 0.127 | 0.096 | | N | 56,525 | 348 | 348 | 348 | 348 | 185,609 | 95,576 | Notes: *, **, *** significant at 10, 5, and 1 percent. Source: APEH. ## 4. Model Economy ### Household #### → Preferences • Non-homothetic preferences on manufacturing (M) and services (S): $$U = \sum_{t=0}^{\infty} \beta^t \frac{(C_t^{1-\gamma} - 1)}{1-\gamma} \qquad \text{and} \qquad 1 = \left[\theta_M^{\frac{1}{\eta}} C_t^{\frac{e_M - \eta}{\eta}} C_{M,t}^{\frac{\eta - 1}{\eta}} + \theta_S^{\frac{1}{\eta}} C_t^{\frac{e_S - \eta}{\eta}} C_{S,t}^{\frac{\eta - 1}{\eta}}\right]$$ em & es: expenditure elasticities. - M composed by D & F goods: $C_{Mt} = \left[\theta_D^{\frac{1}{1M}} C_{Mt}^D \frac{\eta_M 1}{\eta_M} + \theta_F^{\frac{1}{\eta_M}} C_{Mt}^F \frac{\eta_M 1}{\eta_M}\right]^{\frac{\eta_M 1}{\eta_M 1}}$ - M^D and S composed by differentiated varieties: $C_{d,j,t} = \left[\int_{\omega \in \Omega_t} c_{j,t}(\omega) \frac{\sigma 1}{\sigma}\right]^{\frac{\sigma}{\sigma} 1}$ #### \rightarrow Budget constraint $$P_{M,t}^{D}C_{M,t}^{D}+C_{M,t}^{F}+P_{S,t}C_{S,t}+K_{t+1}-(1-\delta^{k})K_{t}+B_{t+1}=w_{t}L+r_{t}^{k}K_{t}+(1+r_{t})B_{t}+\Pi_{t}+T_{t}$$ ▶ Demand Functions ## Firms, Trade and Capital Flows $$\rightarrow$$ Production function: $$q_{jt}(\varphi) = \varphi k_{jt}(\varphi)^{\alpha_j} I_{jt}(\varphi)^{1-\alpha_j} \qquad j = \{M, S\}$$ $$\rightarrow$$ Foreign demand for manufacturing: $$q_{Mt}^{\times}(\varphi) = Ap_{Mt}(\varphi)^{-\sigma}$$ (Fixed costs for producing and exporting.) $$\rightarrow \text{ Trade balance:}$$ $$ightarrow$$ Trade balance: $TB_t = \underbrace{X_{M,t}}_{\text{Exports}} - \underbrace{C_{Mt}^F - (K_{t+1} - (1 - \delta^k)K_t)}_{\text{Imports}}$ #### → Capital Controls - Household can issue a foreign bond B, but pays a per unit tax τ . Domestic interest rate: $$r_t = r^* + \underbrace{\tau.\mathbb{1}_{\{B_t < 0\}}}$$ where $$r^*= rac{1}{eta}-1$$. Capital controls # 5. Quantitative Analysis # Financial Liberalization Experiment #### → Calibration: • at annual frequency to Hungarian micro and macro data for $\tau = 0$. ▶ Table #### \rightarrow Exercise: - Financial autarky: economy transitioning to the steady state. - Financial liberalization: - Unexpected decrease of capital controls to $\tau = 0$. - 55% of capital with respect to the financial autarky steady state. - ightarrow match 3.5% decrease in the interest rate in the post-reform period. ## Relative Input-Cost and Consumption Channels -Liberalization in $t = 3 \rightarrow$ decrease in capital controls and start borrowing. | | Model | Data $ert arepsilon_M = arepsilon_S$ | $\alpha_M = \alpha_S$ | $\varepsilon_M = \varepsilon_S \& \alpha_M = \alpha_S$ | |---|--------|--------------------------------------|-----------------------|--| | | (1) | (2) (3) | (4) | (5) | | Household consumption (real) (log) | 0.061 | 0.083 | | | | Average within firm capital increase | 0.292 | 0.235 | | | | Real Consumption Ratio (S/M) | 0.033 | 0.028 | | | | Share of value added in services (real) | 0.018 | 0.038 | | | | Relative price index (S/M) (log diff) | 0.018 | 0.052 | | | | Relative op. cut-off (S/M) (log diff) | -0.009 | -0.031 | | | | Relative expo. cut-off (log diff) | 0.029 | 0.040 | | | | Relative entry rate (S/M) (log diff) | 0.045 | 0.113 | | | | Relative entrant size (S/M) (log diff) | -0.014 | -0.020 | | | Note: Coefficients in column 2 are computed in a regression of the variable on a time trend and a dummy for the reform period: $y_t = \alpha F L_t + T_t + \varepsilon_t$, where $F L_t = 1$ if year ≥ 2001 and 0 otherwise. All data coefficients are significant. Non targeted: Cost and demand channel are quantitatively relevant. | | Model | Data | $arepsilon_{M}=arepsilon_{S}$ | $\alpha_{M}=\alpha_{S}$ | $\varepsilon_M = \varepsilon_S \& \alpha_M = \alpha_S$ | |---|--------|--------|-------------------------------|-------------------------|--| | | (1) | (2) | (3) | (4) | (5) | | Household consumption (real) (log) | 0.061 | 0.083 | | | 0.097 | | Average within firm capital increase | 0.292 | 0.235 | | | 0.249 | | Real Consumption Ratio (S/M) | 0.033 | 0.028 | | | 0.001 | | Share of value added in services (real) | 0.018 | 0.038 | | | 0.011 | | Relative price index (S/M) (log diff) | 0.018 | 0.052 | | | -0.001 | | Relative op. cut-off (S/M) (log diff) | -0.009 | -0.031 | | | -0.001 | | Relative expo. cut-off (log diff) | 0.029 | 0.040 | | | 0.027 | | Relative entry rate (S/M) (log diff) | 0.045 | 0.113 | | | 0.030 | | Relative entrant size (S/M) (log diff) | -0.014 | -0.020 | | | -0.008 | Note: Coefficients in column 2 are computed in a regression of the variable on a time trend and a dummy for the reform period: $y_t = \alpha F L_t + T_t + \varepsilon_t$, where $F L_t = 1$ if year ≥ 2001 and 0 otherwise. All data coefficients are significant. - Non targeted: Cost and demand channel are quantitatively relevant. - Homogeneous model tilts production towards services. | | Model | Data | $\varepsilon_{M}=\varepsilon_{S}$ | $\alpha_{M}=\alpha_{S}$ | $\varepsilon_M = \varepsilon_S \& \alpha_M = \alpha_S$ | |---|--------|--------|-----------------------------------|-------------------------|--| | | (1) | (2) | (3) | (4) | (5) | | Household consumption (real) (log) | 0.061 | 0.083 | 0.101 | | 0.097 | | Average within firm capital increase | 0.292 | 0.235 | 0.268 | [| 0.249 | | Real Consumption Ratio (S/M) | 0.033 | 0.028 | -0.011 | [| 0.001 | | Share of value added in services (real) | 0.018 | 0.038 | 0.008 | [| 0.011 | | Relative price index (S/M) (log diff) | 0.018 | 0.052 | 0.017 | - [| -0.001 | | Relative op. cut-off (S/M) (log diff) | -0.009 | -0.031 | 0.002 | - [| -0.001 | | Relative expo. cut-off (log diff) | 0.029 | 0.040 | 0.026 | - 1 | 0.027 | | Relative entry rate (S/M) (log diff) | 0.045 | 0.113 | 0.024 | [| 0.030 | | Relative entrant size (S/M) (log diff) | -0.014 | -0.020 | -0.005 | | -0.008 | Note: Coefficients in column 2 are computed in a regression of the variable on a time trend and a dummy for the reform period: $y_t = \alpha F L_t + T_t + \varepsilon_t$, where $F L_t = 1$ if year > 2001 and 0 otherwise. All data coefficients are significant. - Non targeted: Cost and demand channel are quantitatively relevant. - Homogeneous model tilts production towards services. - Heterogeneous α deliver changes in relative prices. | | Model | Data $arepsilon_M$ | $= \varepsilon_S \alpha_M = \alpha_S$ | $\epsilon_M = \epsilon_S \& \alpha_M = \alpha_S$ | |---|--------|--------------------|--|--| | | (1) | (2) | 3) (4) | (5) | | Household consumption (real) (log) | 0.061 | 0.083 0. | 101 0.059 | 0.097 | | Average within firm capital increase | 0.292 | 0.235 0. | 268 0.268 | 0.249 | | Real Consumption Ratio (S/M) | 0.033 | 0.028 -0 | .011 0.043 | 0.001 | | Share of value added in services (real) | 0.018 | 0.038 0. | 0.021 | 0.011 | | Relative price index (S/M) (log diff) | 0.018 | 0.052 0. | 017 -0.001 | -0.001 | | Relative op. cut-off (S/M) (log diff) | -0.009 | -0.031 0. | 002 -0.011 | -0.001 | | Relative expo. cut-off (log diff) | 0.029 | 0.040 0. | 0.030 | 0.027 | | Relative entry rate (S/M) (log diff) | 0.045 | 0.113 0. | 0.048 | 0.030 | | Relative entrant size (S/M) (log diff) | -0.014 | -0.020 -0 | .005 -0.010 | -0.008 | Note: Coefficients in column 2 are computed in a regression of the variable on a time trend and a dummy for the reform period: $y_t = \alpha F L_t + T_t + \varepsilon_t$, where $F L_t = 1$ if year > 2001 and 0 otherwise. All data coefficients are significant. - Non targeted: Cost and demand channel are quantitatively relevant. - Homogeneous model tilts production towards services. - ullet Heterogeneous lpha deliver changes in relative prices. - Heterogeneous ε deliver changes in relative consumption. # 6. Policy Analysis Faster transition: Smoother consumption path, trade long-run consumption for short-run consumption. Lower initial capital, larger gains. - Faster transition: Smoother consumption path, trade long-run consumption for short-run consumption. Lower initial capital, larger gains. - 2. **Long-run level:** Lower initial capital implies more borrowing and larger long-run deficit. Lower domestic abortion in the long-run implies lower prices and lower capital. Intuitively: $MPK_s = \frac{r_k}{LP_s} \implies \downarrow K_s$ - Faster transition: Smoother consumption path, trade long-run consumption for short-run consumption. Lower initial capital, larger gains. - 2. **Long-run level:** Lower initial capital implies more borrowing and larger long-run deficit. Lower domestic abortion in the long-run implies lower prices and lower capital. Intuitively: $MPK_s = \frac{r_k}{lP_c}$ \Rightarrow $\downarrow K_s$ - Faster transition: Smoother consumption path, trade long-run consumption for short-run consumption. Lower initial capital, larger gains. - 2. **Long-run level:** Lower initial capital implies more borrowing and larger long-run deficit. Lower domestic abortion in the long-run implies lower prices and lower capital. Intuitively: $MPK_s = \frac{r_k}{lP_c} \implies \downarrow K_s$ The literature has ignored this channel by assuming a unique price taking sector. - Faster transition: Smoother consumption path, trade long-run consumption for short-run consumption. Lower initial capital, larger gains. - 2. **Long-run level:** Lower initial capital implies more borrowing and larger long-run deficit. Lower domestic abortion in the
long-run implies lower prices and lower capital. Intuitively: $MPK_s = \frac{r_k}{lP_c}$ \Rightarrow $\downarrow K_s$ - The literature has ignored this channel by assuming a unique price taking sector. - Reminiscent of Bhagwati (1958) Immiserizing Growth. # Welfare Analysis \rightarrow Gourinchas and Jeanne (2006): Welfare gains of a full liberalization are small. ## Welfare Analysis \rightarrow Gourinchas and Jeanne (2006): Welfare gains of a full liberalization are small. Figure: Full liberalization CEQ Welfare (%) over Autarky \rightarrow Financial liberalization can lead to welfare losses! ## Welfare Analysis \rightarrow Gourinchas and Jeanne (2006): Welfare gains of a full liberalization are small. Figure: Full liberalization CEQ Welfare (%) over Autarky - \rightarrow Financial liberalization can lead to welfare losses! - \rightarrow Potential welfare gains from slowing down the liberalization. # **Policy Analysis** - $\rightarrow \text{ Tax on borrowing: } \tau_t = \max \left\{ \left(1 \left(\frac{2t}{T}\right)^{\phi}\right) \cdot \overline{\tau}, 0 \right\}$ - Immediate full liberalization $o \phi = 0$. # Policy Analysis $$o$$ Tax on borrowing: $au_t = \max\left\{\left(1-\left(rac{2t}{T} ight)^{\phi} ight)\cdotar{ au},0 ight\}$ • Immediate full liberalization $\rightarrow \phi = 0$. Figure: Policy Gains over Autarky CEQ Welfare (%) # Policy Analysis $$ightarrow$$ Tax on borrowing: $au_t = \max\left\{\left(1-\left(rac{2t}{T} ight)^{\phi} ight)\cdot ar{ au}, 0 ight\}$ • Immediate full liberalization $\rightarrow \phi = 0$. Figure: Policy Gains over Autarky CEQ Welfare (%) ightarrow Slowing down the reform leads to higher long-run K and welfare gains. # Conclusion - This paper makes three contributions: - 1. Novel evidence about the impact of capital flows on service firms. - Consumption channel is important to understand within and across sectoral reallocation of resources. - In the long term, financial openness affects the structure of the economy and can lead to welfare loses. - \rightarrow Slowing down a financial liberalization can improve welfare. # Extra Slides # Hungary: Financial Liberalization and Net Foreign Asset Position Source: Lane and Milesi-Ferreti (2018) # Hungary: Financial Liberalization and Capital Flows | | Before | After | В | efore | After | | | |--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--| | | 1995-2000 | 2001-2008 | 1995-1998 | 1998-2000 | 2001-2004 | 2005-2008 | | | | (1) | (2) | (3) | (4) | (5) | (6) | | | Financial account (net)* | 2.5 | 8.2 | 1.2 | 3.8 | 6.1 | 10.4 | | | NFA/GDP | -62 | -87 | -57 | -67 | -79 | -95 | | | Credit-to-GDP ratio | 25 | 49 | 23 | 27 | 39 | 59 | | | Lending interest rate | 22 | 10 | 27 | 16 | 11 | 9 | | | Consumption/GDP | 74 | 77 | 74 | 74 | 77 | 76 | | Note: in %. *In billions of USD dollars. Source: NBH, IMF, Lane and Milesi-Ferreti (2018). ◆ Return #### Trade with the EU # Manufacturing Trade with the EU # Foreign Direct Investment ## Capital Controls in Hungary before 2001 - \rightarrow Foreign exchange (FX) market regulations were the main tool of capital controls. - Restrict banks' ability to intermediate foreign funds: - → Spot and Forward FX markets: - Forward: banned all instruments to hedge the currency risk. - Spot: made very costly and difficult to acquire foreign currency. - → Critical: costly and illiquid spot market and inexistent forward market. - → Banks relied their credit supply on local savings, leading to low credit. | In 2000 | Hungary | OECD | |-------------------------|---------|------| | Credit-to-GDP Ratio | 0.27 | 0.86 | | Credit-to-Deposit Ratio | 0.83 | 1.20 | ## **Summary Statistics** | | Agriculture | Manufacture | Services | |--------------------|-------------|-------------|----------| | | (1) | (2) | (3) | | Value Added* | 2,058 | 3,029 | 1,008 | | Capital* | 5,200 | 2,140 | 1,038 | | Capital Intensity* | 1,150 | 386 | 358 | | Employment | 5 | 6 | 3 | | Log RTFP | 5.40 | 5.53 | 5.10 | | Age | 5 | 5 | 4 | | Export Share** | 0.19 | 0.31 | 0.19 | | Number of firms | 6,925 | 23,231 | 115,949 | Notes: *in thousands of Forints. ** Conditional on Exporting/Importing. Median values. Average over 1995-2000. Source: APEH. ## Identification Strategy: Firms' Characteristics across Sectors | | Mean | Capital Elasticity | Expenditure Elasticity | |------------------|---------|---------------------|------------------------| | | (1) | (2) | (3) | | Log value added | 7.165 | 7.408***
(0.225) | -0.399***
(0.018) | | Log capital | 7.103 | 6.211***
(0.249) | -0.227***
(0.019) | | Log employment | 1.350 | 2.236***
(0.148) | -0.372***
(0.011) | | Log RTFP | 5.139 | 1.146***
(0.159) | -0.125***
(0.013) | | Log age | 1.319 | 1.058***
(0.068) | -0.127***
(0.005) | | Log export share | 0.036 | 0.415***
(0.014) | -0.007***
(0.001) | | Number of firms | 255,008 | 255,008 | 255,008 | Notes: *, **, *** significant at 10, 5, and 1 percent. This table reports the estimated coefficients from a regression of the log of each variable on the capital and expenditure elasticities for the pre-reform period (1995-2000). Source: APEH. Source: APEH. # Identification Strategy: Growth Rate Pre-Reform | | | Capital Elasticity | | Expenditure Elasticity | | | | |------------------------|--------------------|--------------------|-------------------|------------------------|----------------|-------------------|--| | | Value Added Growth | Capital Growth | Employment Growth | Value Added Growth | Capital Growth | Employment Growth | | | | (1) | (2) | (3) | (4) | (5) | (6) | | | Capital Elasticity | -0.125 | 0.135 | -0.080 | | | | | | | (0.148) | (0.114) | (0.078) | | | | | | Expenditure Elasticity | | | | 0.003 | -0.022 | -0.007 | | | | | | | (0.014) | (0.041) | (0.005) | | | R^2 | 0.002 | 0.001 | 0.002 | 0.001 | 0.000 | 0.001 | | | N | 274,591 | 256,947 | 242,221 | 274,591 | 256,947 | 242,221 | | | Sector FE | Yes | Yes | Yes | Yes | Yes | Yes | | | N | 313,512 | 313,512 | 335,895 | 335,895 | 335,895 | 335,895 | | Notes: *, **, *** significant at 10, 5, and 1 percent. This table reports the estimated coefficients from a regression of the growth rate of each variable on the capital and expenditure elasticities for the pre-reform period (1995-2000). Source: APEH. 4 Poturn # Identification Strategy: Survival Ratio | | Capital Elasticity | Expenditure Elasticity | |----------------|--------------------|------------------------| | | (1) | (2) | | Survival Ratio | 0.024 | -0.038*** | | | (0.031) | (0.007) | | N | 103,555 | 103,555 | Notes: *, **, *** significant at 10, 5, and 1 percent. This table reports the estimated coefficients from a regression of the survival rate between 2000 and 2007 on the capital and expenditure elasticities. All regressions include a constant term. Source: APEH. ◆ Return ## Firm-Level Analysis: Value Added | | | △ Value Ad | ded | | |-------------------------------|---------|---------------------------|----------------------|---| | | (1) | (2) | (3) | | | | | Capital Elast | icity | | | Capital elasticity | 0.728** | 0.701** | 0.656* | _ | | | (0.351) | (0.343) | (0.342) | | | Average sectoral productivity | | 0.025 | 0.022 | | | | | (0.037) | (0.038) | | | Returns to scale | | | -0.122 | | | | | | (0.142) | | | R^2 | 0.001 | 0.001 | 0.001 | | | | | Expenditure El | asticity | | | Expenditure elasticity | 0.094* | 0.091* | 0.102** | | | | (0.051) | (0.052) | (0.051) | | | Average sectoral productivity | | 0.034 | 0.026 | | | | | (0.036) | (0.039) | | | Returns to scale | | | -0.242 | | | | | | (0.148) | | | R^2 | 0.001 | 0.001 | 0.002 | | | | | Panel C. Capital and Expe | nditure Elasticities | | | Capital elasticity | 0.752** | 0.725** | 0.687* | | | | (0.361) | (0.354) | (0.353) | | | Expenditure elasticity | 0.079* | 0.077* | 0.079* | | | | (0.044) | (0.045) | (0.042) | | | Average sectoral productivity | | 0.025 | -0.008 | | | | | (0.034) | (0.020) | | | Returns to scale | | | -0.185 | | | | | | (0.141) | | | R^2 | 0.002 | 0.002 | 0.002 | | | N | 56,525 | 56,525 | 56,525 | | Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Source: APEH. ## Aggregate-Level Analysis: Expenditure and Capital Elasticities Aggregate sectors with high (low) expenditure and high (low) capital elasticities. $y_{s,t} = \sum_{i=2001}^{2008} \beta_i D_i + \mathsf{Time}_t + \varepsilon_{st}$, where $D_i = 1$ if year = i and 0 otherwise. # Aggregate-Level Analysis: Expenditure and Capital Elasticities | | | Expenditure E
ligh Capital Ela | | | Expenditure I
Low Capital El | | | Expenditure E
High Capital E | | | Expenditure El
ow Capital Ela | | |-------|-------------|-----------------------------------|----------|----------------|---------------------------------|--------------------|-------------|---------------------------------|--------------------|-------------|----------------------------------|-----------| | | Value Added | Empl. | Number | of Value Added | Empl. | Number of
Firms | Value Added | Empl. | Number of
Firms | Value Added | Empl. | Number of | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | | 2001 | 0.019** | 0.011** | 0.013*** | 0.011 | -0.002 | 0.013** | -0.034** | 0.004 | -0.017** | 0.004 | -0.013** | -0.009*** | | | (0.007) | (0.003) | (0.003) | (0.007) | (0.004) | (0.005) | (0.011) | (0.006) | (0.007) | (0.006) | (0.005) | (0.002) | | 2002 | 0.016* | 0.019*** | 0.010** | 0.009 | -0.001 | 0.010 | -0.029** | 0.002 | -0.010 | 0.004 | -0.021*** | -0.010*** | | | (0.007) | (0.004) | (0.003) | (0.007) | (0.005) | (0.006) | (0.011) | (0.006) | (0.007) | (0.006) | (0.005) | (0.002) | | 2003 | 0.025** | 0.025*** | 0.010** | 0.011 | 0.003 | 0.011 | -0.034** | 0.005 | -0.004 | -0.001 | -0.033*** | -0.017*** | | | (800.0) | (0.004) | (0.003) | (800.0) | (0.005) | (0.006) | (0.012) | (0.007) | (0.007) | (0.006) | (0.006) |
(0.002) | | 2004 | 0.025** | 0.031*** | 0.000 | 0.012 | 0.015** | 0.025*** | -0.026* | -0.005 | -0.020** | -0.011 | -0.041*** | -0.005* | | | (800.0) | (0.004) | (0.004) | (800.0) | (0.005) | (0.006) | (0.013) | (0.007) | (800.0) | (0.007) | (0.006) | (0.002) | | 2005 | 0.026** | 0.039*** | 0.001 | 0.016 | 0.013** | 0.022** | -0.031* | 0.001 | -0.013 | -0.011 | -0.053*** | -0.010*** | | | (0.009) | (0.004) | (0.004) | (0.009) | (0.005) | (0.007) | (0.014) | (800.0) | (800.0) | (0.007) | (0.007) | (0.002) | | 2006 | 0.033*** | 0.046*** | 0.008* | 0.024** | 0.016** | 0.019** | -0.045** | 0.005 | -0.004 | -0.012 | -0.067*** | -0.024*** | | | (0.009) | (0.005) | (0.004) | (0.009) | (0.006) | (0.007) | (0.014) | (800.0) | (0.009) | (0.007) | (0.007) | (0.002) | | 2007 | 0.040*** | 0.051*** | 0.003 | 0.022* | 0.018** | 0.017* | -0.048** | 0.011 | 0.004 | -0.014 | -0.080*** | -0.024*** | | | (0.010) | (0.005) | (0.004) | (0.010) | (0.006) | (0.007) | (0.015) | (0.009) | (0.009) | (0.008) | (0.007) | (0.003) | | 2008 | 0.121*** | 0.071*** | 0.067*** | 0.020* | 0.011 | -0.022** | -0.111*** | 0.013 | 0.009 | -0.029** | -0.096*** | -0.054*** | | | (0.011) | (0.005) | (0.005) | (0.010) | (0.006) | (800.0) | (0.016) | (0.009) | (0.010) | (800.0) | (0.008) | (0.003) | | Time | Yes | trend | | | | | | | | | | | | | | R^2 | 0.980 | 0.973 | 0.995 | 0.983 | 0.997 | 0.997 | 0.985 | 0.997 | 0.998 | 0.819 | 0.987 | 0.991 | | N | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | Notes: *, **, *** significant at 10, 5, and 1 percent. Source: APEH. # Aggregate Analysis: Broadly-Defined Sectors - Manufacturing: more capital intensive $\alpha_i = 0.36$ (vs 0.30 in S). - Services: high expenditure elasticity $e_m = 1.19$ (vs 0.96 in M). $$y_{s,t} = \sum_{i=2001}^{2008} \beta_i D_i + \mathsf{Time}_t + \varepsilon_{st}$$, where $D_i = 1$ if year $= i$ and 0 otherwise. \rightarrow Increase in the share of services in value added and employment. \bigcirc Re #### Reallocation across Broadly-Defined Sectors II Define: entrant before if entry <2001, and entrant after if entry ≥ 2001. \rightarrow Entrants explain a non-negligible in the expansion of services. Return Re # Cross-Country Evidence: Financial Liberalization and Value Added Share # Cross-Country Evidence: FL and Structural Change Estimate a Arellano and Bond (1995), GMM system of 5 years non-overlapping data. | | | | | | Log | g share in value | added | | | | | | |-----------------------|---------------------------|--------------------|----------------------|------------------|--------------------|---------------------|--------------------|------------------------|---------------------|------------------|----------------------|--| | | Agriculture Manufacturing | | | | | | | | | Services | | | | | OLS | (| MM | OLS | | (| SMM | | OLS | (| ММ | | | | | | | | | | LDC | Developed
Countries | | | | | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | | | FL Index | -0.020***
(0.007) | -0.028*
(0.015) | -0.026***
(0.008) | 0.007
(0.008) | 0.032**
(0.015) | -0.000
(0.017) | 0.041*
(0.022) | 0.003
(0.064) | 0.010**
(0.004) | 0.007** | 0.014***
(0.005) | | | Trade Openness | | | -0.363**
(0.143) | | | -0.136
(0.315) | -0.613
(0.950) | -0.936***
(0.313) | | | 0.100*** (0.022) | | | Government Size | | | 0.337*** (0.127) | | | 0.132
(0.264) | 0.735
(1.018) | 0.862*** (0.328) | | | -0.109***
(0.019) | | | Financial Depth | | | -0.041*
(0.021) | | | -0.017
(0.062) | 0.018
(0.077) | 0.015
(0.075) | | | 0.032*** (0.006) | | | Financial Crisis | | | 0.034** (0.015) | | | -0.103**
(0.051) | -0.033
(0.054) | -0.023
(0.048) | | | 0.033*** (0.006) | | | Lag Dep. Var. | 1.006*** (0.009) | 0.983*** (0.040) | 1.004*** (0.027) | 0.877*** (0.027) | 0.827*** (0.047) | 0.709***
(0.132) | 0.613**
(0.278) | 0.792***
(0.216) | 0.817***
(0.037) | 0.807*** (0.028) | 0.704*** (0.023) | | | Year FE
Country FE | Yes
Yes | | N
Countries | 914
163 | 914
163 | 342
62 | 914
163 | 914
163 | 342
62 | 229
31 | 127
27 | 914
163 | 914
163 | 342
62 | | | Sargan (pvalue) | | 0.410 | 0.821 | | 0.313 | 0.220 | 0.314 | 0.648 | | 0.208 | 0.265 | | Notes: *, **, **** significant at 10, 5, and 1 percent. All regressions include a constant term. Period 1970-2015. Chinn and Ito (2016) index of Financial Liberalization. Source: World Bank, IMF, Chinn and Ito (2016). # Cross-Country Evidence: FL and Structural Change # Firm-Level Analysis: Capital and Employment | | | Δ Capital | | | △ Employme | nt | |-------------------------------|----------|------------------|----------------|--------------------|------------|----------| | | (1) | (2) | (3) | (4) | (5) | (6) | | | | | Capital and Ex | penditure Elastici | ties | | | Capital elasticity | 1.033*** | 1.008*** | 1.030*** | 0.516 | 0.456 | 0.408 | | | (0.364) | (0.369) | (0.354) | (0.317) | (0.315) | (0.295) | | Expenditure elasticity | -0.083 | -0.085 | -0.088 | 0.119*** | 0.114*** | 0.123*** | | | (0.064) | (0.064) | (0.061) | (0.040) | (0.038) | (0.035) | | Average sectoral productivity | | 0.023 | 0.024 | | 0.058*** | 0.054*** | | | | (0.019) | (0.023) | | (0.015) | (0.018) | | Returns to scale | | | 0.058 | | | -0.130 | | | | | (0.151) | | | (0.112) | | R^2 | 0.002 | 0.002 | 0.002 | 0.004 | 0.006 | 0.006 | | N | 53,987 | 53,987 | 53,987 | 54,251 | 54,251 | 54,251 | Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Source: APEH. #### Firm-Level Analysis: Value Added ightarrow No differential trend before the reform, but higher growth according with capital and expenditure elasticities after it. #### Robustness: Non-Exporters and Domestic Firms | | | Non-Exporter | s | I | Domestically-Owner | ed Firms | |-------------------------------|---------------|-------------------------|----------|---------------|-----------------------|----------| | | Δ Value Added | Δ Value Added Δ Capital | | Δ Value Added | Value Added Δ Capital | | | | (1) | (2) | (3) | (4) | (5) | (6) | | Capital elasticity | 0.887** | 1.274*** | 0.546* | 0.653* | 1.030*** | 0.408 | | | (0.399) | (0.387) | (0.327) | (0.368) | (0.354) | (0.295) | | Expenditure elasticity | 0.087* | -0.100 | 0.125*** | 0.103** | -0.088 | 0.123*** | | | (0.052) | (0.065) | (0.040) | (0.048) | (0.061) | (0.035) | | Average sectoral productivity | 0.042 | 0.035 | 0.061*** | 0.024 | 0.024 | 0.054*** | | | (0.036) | (0.028) | (0.019) | (0.038) | (0.023) | (0.018) | | Returns to scale | -0.268* | 0.022 | -0.171 | -0.210 | 0.058 | -0.130 | | | (0.162) | (0.168) | (0.123) | (0.153) | (0.151) | (0.112) | | R^2 | 0.004 | 0.003 | 0.007 | 0.003 | 0.002 | 0.006 | | N | 49102 | 46636 | 46805 | 56525 | 53987 | 54251 | Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Columns 1-3 exclude multinational firms (where MNC are firms with 10% foreign ownership). Columns 4-6 exclude exporters. Columns 7-9 exclude government firms (firms with more than 50% local and state shares). Source: APEL of the state of the state shares). **↓** Return #### Robustness: Firms without Debt. | | Credit Registry | | Balance Sheet Data | | | | | | |-------------------------------|--------------------|--------------------|--------------------|--------------------|-------------------|---------------------|---------------------|--| | | No ST or
LT | No LT | | ST | Obligations | | No Credit or LT/ST | | | | Credit | Obligations | w/ Owners | Trade
Credit | w/ Banks | All | Obligation | | | | | | | | | =(3)+(4)+(5) | =(1)+(2)+(6) | | | | | | Value Added | | | | | | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | | | Capital elasticity | 0.126
(0.397) | -0.193
(0.508) | 0.416
(0.509) | 0.107
(0.754) | 0.064
(0.492) | -0.209
(1.151) | -0.854
(1.400) | | | Expenditure elasticity | 0.152**
(0.063) | 0.232**
(0.103) | 0.232**
(0.091) | 0.350**
(0.141) | 0.186*
(0.100) | 0.608***
(0.193) | 0.737***
(0.217) | | | Average sectoral productivity | yes | | Returns to scale | yes | | R^2 | 0.003 | 0.007 | 0.008 | 0.024 | 0.006 | 0.066 | 0.081 | | | N | 27,790 | 23,358 | 20,989 | 8,420 | 22,583 | 4,410 | 2,508 | | Notes: *, **, **** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit NACE industries. Column 1 excludes firms reporting short term (ST) and/or long term (LT) credit in the credit registry data. Columns 2 to 6 consider liabilities obligations reported in balance shed ata. Column 2 excludes firms reporting ghort-term loans with owners, column 4 excludes firms reporting short-term trade credit; column 5 excludes firms reporting short-term trade credit; column 5 excludes firms reporting all short-term obligations. Column 7 excludes firms reporting any type of short or long term obligation or credit registry or balance sheet data. Source: APEH and credit registry. #### Robustness: Financial Dependence | | Rajan and Zingales | | Inventories to Sales | | Cash Conversion Cycle | | | | | |-------------------------------|--------------------|-----------|----------------------|------------------|-----------------------|--------------|------------------|-----------|--------------| | | Δ Value
Added | Δ Capital | Δ Employment | Δ Value
Added | △ Capital | Δ Employment | Δ Value
Added | △ Capital | Δ Employment | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | | Capital elasticity | 0.701* | 1.322*** | 0.666** | 0.729** | 1.205*** | 0.580** | 0.681* | 1.245*** | 0.589** | | | (0.361) | (0.394) | (0.285) | (0.366) | (0.360) | (0.284) | (0.391) | (0.356) | (0.283) | | Expenditure elasticity | 0.077* | -0.096 | 0.105*** | 0.114* | -0.120 | 0.071* | 0.106* | -0.103 | 0.103*** | | | (0.041) | (0.074) | (0.039) | (0.064) | (0.074) | (0.042) | (0.062) | (0.072) | (0.039) | | Financial Dependence | 0.011** |
-0.008 | -0.003 | 0.136 | -0.255 | -0.334** | 0.025 | -0.022 | -0.005 | | | (0.005) | (0.007) | (0.005) | (0.201) | (0.177) | (0.155) | (0.028) | (0.021) | (0.003) | | Average sectoral productivity | yes | Returns to scale | yes | R ² | 0.005 | 0.003 | 0.005 | 0.005 | 0.003 | 0.005 | 0.006 | 0.003 | 0.004 | | N | 47,549 | 45,723 | 46,163 | 46,723 | 44,652 | 45,020 | 46,831 | 44,754 | 45,127 | Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit NACE industries. Columns 1-3 include as a control the Rajan and Zingales (1988) index. Columns 4-6 controls for the inventories to sales index and columns 7-9 controls for the cash conversion cycle, both estimated as in Raddatz (2006). The three financial dependence measures are estimated at four-digit NACE industries. Source: APEH. #### Robustness: Price index | | Δ Value Added (1) | Δ Capital (2) | Δ Employment (3) | |------------------------|--------------------------|----------------------|-------------------------| | Capital elasticity | 0.671* | 1.135*** | 0.603** | | | (0.365) | (0.350) | (0.280) | | Expenditure elasticity | 0.080* | -0.103 | 0.101*** | | | (0.047) | (0.063) | (0.034) | | Sectoral price index | -0.024 | 0.182*** | 0.315*** | | | (0.312) | (0.069) | (0.069) | | Returns to scale | -0.175 | 0.007 | -0.226** | | | (0.137) | (0.135) | (0.096) | | R^2 | 0.002 | 0.003 | 0.008 | | N | 56,525 | 53,987 | 54,251 | Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Source: APEH. ## Robustness: Panel Regressions | | Log Value Added
(1) | Log Capital
(2) | Log Employment
(3) | |-------------------------------|------------------------|--------------------|-----------------------| | FL * Capital Elasticity | 0.534* | 1.068** | 0.573* | | | (0.316) | (0.392) | (0.304) | | FL * Income Elasticity | 0.066* | -0.072 | 0.098** | | | (0.039) | (0.065) | (0.039) | | Average sectoral productivity | 0.027*** | 0.016* | 0.020** | | | (800.0) | (800.0) | (800.0) | | FL * Returns to scale | -0.158 | 0.130 | -0.099 | | | (0.130) | (0.144) | (0.109) | | Firm FE | Yes | Yes | Yes | | Year FE | Yes | Yes | Yes | | R^2 | 0.802 | 0.865 | 0.781 | | N | 905,630 | 846,162 | 791,981 | Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at year and four-digit sector levels. Source: APEH. #### Robustness: Standardized Beta Coefficient: Firm-level | | Δ Value Added (1) | Δ Capital (2) | Δ Employment (3) | |-------------------------------|--------------------------|----------------------|-------------------------| | Capital elasticity | 0.029* | 0.035*** | 0.022 | | | (0.015) | (0.012) | (0.016) | | Expenditure elasticity | 0.031* | -0.027 | 0.060*** | | | (0.016) | (0.019) | (0.017) | | Average sectoral productivity | -0.007 | 0.013 | 0.043*** | | | (0.017) | (0.012) | (0.014) | | Returns to scale | -0.023 | 0.006 | -0.020 | | | (0.017) | (0.015) | (0.017) | | R^2 | 0.002 | 0.002 | 0.006 | | N | 56,525 | 53,987 | 54,251 | Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Source: APEH. # Robustness: Standardized Beta Coefficient: Extensive Margin | | Industry-Level Analysis | | | |------------------------|-------------------------|-------------------|--| | | Δ Net Entrants | Δ Entrants | | | | (1) | (2) | | | Capital elasticity | -0.074 | -0.114** | | | | (0.054) | (0.046) | | | Expenditure elasticity | 0.194*** | 0.154*** | | | | (0.052) | (0.055) | | | R^2 | 0.042 | 0.039 | | | N | 348 | 348 | | Notes: *, **, *** significant at 10, 5, and 1 percent. Source: APEH. ■ Return ## Correlation Capital and Expenditure Elasticities # **Expenditure Elasticities across Sectors** ## Robustness: Expenditure and Capital Elasticities | | Capital Elasticity
Olley and Pakes (1996) | | | Expenditure Elasticity Comin, Lashkari, Mestiere (2018) | | | |-------------------------------|--|-----------|---------------------|---|-----------|--------------| | | Δ Value Added | △ Capital | Δ Employment | Δ Value Added | △ Capital | Δ Employment | | | (1) | (2) | (3) | (4) | (5) | (6) | | Capital elasticity | 0.800** | 0.888*** | 0.887*** | 0.873** | 1.211*** | 1.073*** | | | (0.321) | (0.244) | (0.201) | (0.431) | (0.358) | (0.255) | | Expenditure elasticity | 0.081* | -0.109* | 0.102*** | 0.083* | 0.076 | 0.288*** | | | (0.042) | (0.058) | (0.027) | (0.050) | (0.069) | (0.036) | | Average sectoral productivity | 0.015 | 0.017 | 0.043** | 0.001 | 0.013 | 0.027 | | | (0.041) | (0.021) | (0.017) | (0.027) | (0.027) | (0.017) | | Returns to scale | -0.232 | 0.015 | -0.139 | -0.210 | -0.013 | -0.162* | | | (0.145) | (0.143) | (0.115) | (0.156) | (0.173) | (0.087) | | R ² | 0.004 | 0.002 | 0.009 | 0.002 | 0.002 | 0.015 | | N | 56,485 | 53,978 | 54,242 | 47,579 | 53,950 | 54,212 | Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at the firm-level. Columns 1-3 employ capital elasticities computed with Olley and Pakey (1996) method. Columns 4-6 employ the expenditure elasticity from Comin, Lashkari, Mestiere (2018). Source: APEH. ◆ Return #### Robustness: Balanced Panel 1995-2008 | | Δ Value Added (1) | Δ Capital (2) | Δ Employment (3) | |-------------------------------|--------------------------|----------------------|-------------------------| | Capital elasticity | 0.665* | 1.121*** | 0.376 | | | (0.368) | (0.375) | (0.353) | | Expenditure elasticity | 0.094* | -0.037 | 0.107*** | | | (0.048) | (0.052) | (0.038) | | Average sectoral productivity | 0.024 | 0.027 | 0.060*** | | | (0.028) | (0.023) | (0.021) | | Returns to scale | -0.287* | -0.024 | -0.097 | | | (0.159) | (0.155) | (0.133) | | R^2 | 0.004 | 0.003 | 0.006 | | N | 20,936 | 20,936 | 20,936 | Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Source: APEH. ◆ Return ### Robustness: Top 30 in Net entry Return 4544 Painting and glazing Service Construction | Activity | Broad sector
(II digits) | Sector
(IV digits) | Description | Income
elasticity | Net entry
per year | Number of
employees | Share agg.
employment
(in %) | |----------|--|-----------------------|--|----------------------|-----------------------|------------------------|------------------------------------| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | | Service | Real estate activities | 7012 | Buying and selling of own real estate | 2.02 | 982 | 2 | 0.08 | | Service | Construction | 4521 | General construction of buildings and civil engineering works | 0.89 | 505 | 3 | 0.21 | | Service | Hotels and restau-
rants | 5530 | Restaurants | 1.80 | 480 | 3 | 0.13 | | Service | Other business activ-
ities | 7414 | Business and management consultancy activities | 1.35 | 446 | 2 | 0.08 | | Service | Other business activ-
ities | 7487 | Other business activities n.e.c. | 1.35 | 439 | 3 | 0.10 | | Service | Retail trade | 5248 | Other retail sale in specialized stores | 0.83 | 420 | 2 | 0.06 | | Service | Land transport | 6024 | Freight transport by road | 2.02 | 404 | 3 | 0.08 | | Service | Other business activ-
ities | 7420 | Architectural and engineering activities and related techni-
cal consultancy | 1.35 | 363 | 2 | 0.06 | | Service | Real estate activities | 7020 | Letting of own property | 2.02 | 297 | 4 | 0.03 | | Service | Retail trade | 5211 | Retail sale in non-specialized stores with food, beverages or
tobacco predominating | 0.83 | 271 | 4 | 0.11 | | Service | Sale, maintenance
and repair of motor
vehicles | 5010 | Sale of motor vehicles | 0.85 | 250 | 2 | 0.06 | | Service | Hotels and restau-
rants | 5540 | Bars | 1.80 | 248 | 2 | 0.04 | | Service | Retail trade | 5263 | Other non-store retail sale | 0.83 | 229 | 2 | 0.02 | | Service | Construction | 4531 | Installation of electrical wiring and fittings | 0.89 | 212 | 3 | 0.05 | | Service | Other business activ-
ities | 7411 | Legal activities | 1.35 | 211 | 2 | 0.04 | | Service | Retail trade | 5242 | Retail sale of clothing | 0.83 | 201 | 2 | 0.06 | | Service | Computer and re-
lated activities | 7222 | Other software consultancy and supply | 1.35 | 199 | 2 | 0.04 | | Service | Construction | 4533 | Plumbing | 0.89 | 197 | 3 | 0.04 | | Service | Sale, maintenance
and repair of motor
vehicles | 5020 | Maintenance and repair of motor vehicles | 0.85 | 189 | 2 | 0.03 | | Service | Activities auxiliary
to financial inter | 6720 | Activities auxiliary to insurance and pension funding | 1.44 | 182 | 1 | 0.02 | | Service | Real estate activities | 7011 | Development and selling of real estate | 2.02 | 176 | 2 | 0.01 | | Service | Other business activ-
ities | 7460 | Investigation and security activities | 1.35 | 170 | 6 | 0.11 | | Service | Other services activ-
ities | 9302 | Hairdressing and other beauty treatment | 1.18 | 151 | 2 | 0.02 | | Service | Retail trade | 5246 | Retail sale of hardware, paints and glass | 0.83 | 143 | 2 | 0.03 | | Service | Other business activ-
ities | 7440 | Advertising | 1.35 | 141 | 2 | 0.03 | | Service | Recreational, cul-
tural and sporting
activities | 9262 | Other sporting activities | 1.79 | 131 | 2 | 0.01 | | Service | Activities auxiliary
to financial inter | 6713 | Activities auxiliary to financial intermediation n.e.c. | 1.44 | 123 | 2 | 0.01 | | Service | Computer and re-
lated activities | 7220 | Software consultancy and supply | 1.35 | 121 | 2 | 0.03 | | Service | Other business activ-
ities | 7470 | Industrial cleaning | 1.35 | 121 | 7 | 0.08 | | | | | | | | | | 0.89 112 8109 0.03 1.68 #### Robustness:
Imports | | Δ Value Added | Δ Capital | Δ Employment | | |-------------------------------|----------------------|------------------|---------------------|--| | | (1) | (2) | (3) | | | Capital elasticity | 0.564* | 1.005*** | 0.352 | | | | (0.339) | (0.365) | (0.283) | | | Expenditure elasticity | 0.082** | -0.087 | 0.122*** | | | | (0.041) | (0.063) | (0.034) | | | Imports | 0.011*** | 0.004 | 0.016*** | | | | (0.003) | (0.003) | (0.002) | | | Average sectoral productivity | 0.012 | 0.022 | 0.048*** | | | | (0.036) | (0.022) | (0.018) | | | Returns to scale | -0.113 | 0.065 | -0.035 | | | | (0.139) | (0.156) | (0.112) | | | R^2 | 0.004 | 0.002 | 0.011 | | | N | 55,928 | 53,535 | 53,278 | | Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at the firm-level. Source: APEH. Return #### Household \rightarrow Optimal demands $$\begin{array}{lll} C_{S,t} & = & \left(\frac{P_{S,t}}{P_t}\right)^{-\eta}\theta_S\,C_t^{eS} & \text{and} & C_{M,t} = \left(\frac{P_{M,t}}{P_t}\right)^{-\eta}\theta_M\,C_t^{eM}, \\ \\ C_{M,t}^D & = & \left(\frac{P_{M,t}^D}{P_{Mt}}\right)^{-\eta_M}\theta_D\,C_{Mt} & \text{and} & C_{M,t}^F = \left(\frac{1}{P_{Mt}}\right)^{-\eta_M}\theta_F\,C_{Mt}, \end{array}$$ → Demands for individual varieties $$q_{St}^d(\omega) = C_{St} \left(\frac{p_{St}(\omega)}{P_{St}} \right)^{-\sigma}$$ and $q_{Mt}^d(\omega) = C_{Mt}^D \left(\frac{p_{Mt}(\omega)}{P_{Mt}^D} \right)^{-\sigma}$ \rightarrow Euler equations: $$1 = \Lambda_{t,t+1}(1 - \delta^k + r_{t+1}^k)$$ and $1 = \Lambda_{t,t+1}(1 + r_{t+1})$ #### Household \rightarrow Prices $$\begin{split} P_t &= \left[\theta_M P_{Mt}^{1-\eta} C_t^{e_M-1} + \theta_S P_{St}^{1-\eta} C_t^{e_S-1}\right]^{\frac{1}{1-\eta}} \quad \text{and} \quad P_{Mt} = \left[\theta_D (P_{Mt}^D)^{1-\eta_M} + \theta_F\right]^{\frac{1}{1-\eta_M}} \\ P_{St} &= \left[\int_{\omega \in \Omega_t} p_{St}(\omega)^{1-\sigma} d\omega\right]^{\frac{1}{1-\sigma}} \quad \text{and} \quad P_{Mt}^D = \left[\int_{\omega \in \Omega_t} p_{Mt}(\omega)^{1-\sigma} d\omega\right]^{\frac{1}{1-\sigma}} \,. \end{split}$$ #### Value Functions $$\begin{array}{lcl} V_{St}(\phi) & = & \max \left\{ 0, \pi_{St}^d(\phi) + (1-\delta)\Lambda_{t,t+1}V_{S,t+1}(\phi) \right\}, \\ \\ V_{Mt}(\phi) & = & \max \left\{ V_{Mt}^d(\phi), V_{Mt}^{x}(\phi) \right\}, \\ \\ V_{Mt}^d(\phi) & = & \max \left\{ 0, \pi_{Mt}^d(\phi) + (1-\delta)\Lambda_{t,t+1}V_{M,t+1}(\phi) \right\}, \\ \\ V_{Mt}^{x}(\phi) & = & \max \left\{ 0, \pi_{Mt}^d(\phi) + \pi_{Mt}^{x}(\phi) + (1-\delta)\Lambda_{t,t+1}V_{M,t+1}(\phi) \right\} \end{array}$$ The operational productivity cut-offs are defined implicitly by : $$V_{St}(\varphi^d_{St}) = 0, \quad V^d_{Mt}(\varphi^d_{Mt}) = 0, \quad \pi^{\times}_{Mt}(\varphi^{\times}_{Mt}) = 0$$ Return #### Entry and Distributions Entry: $$\int_{\varphi_{jt}^d}^{\infty} V_{jt}(\varphi) g_j(\varphi) d\varphi = \phi_{jt} \left[f_j^e + \xi \left(e^{M_{jt}^e - \overline{M}_j^e} - 1 \right) \right] \qquad j \in \{S, M\}$$ Distributions: $$M_{j,t+1}\mu_{j,t+1}(\varphi) = \left\{egin{array}{ll} (1-\delta)M_{jt}\mu_{jt}(arphi) + M_{j,t+1}^e \mathsf{g}_j(arphi) & ext{if} \quad arphi \geq arphi_{j,t+1}^d \ 0 & ext{otherwise} \end{array} ight.$$ Mass of producers: $$M_{j,t+1} = (1-\delta)M_{jt} \int_{\varphi_{j,t+1}^d}^\infty \mu_{jt}(\varphi)d\varphi + M_{j,t+1}^e \int_{\varphi_{j,t+1}^d}^\infty g_j(\varphi)d\varphi$$ Return #### Entry and Mass of Firms - Free-entry condition: $\int_{q_{jt}^d}^{\infty} V_{jt}(\varphi) g_j(\varphi) d\varphi = \phi_{jt} \left[f_j^e + \xi \left(e^{M_{jt}^e \overline{M}_j^e} 1 \right) \right]$, Entrants draw their productivity from a sector specific distribution $G_j(\varphi)$. - Law of motion of the mass of firms: $$M_{j,t+1} = (1-\delta)M_{jt} \int_{\varphi_{j,t+1}^d}^{\infty} \mu_{jt}(\varphi)d\varphi + M_{j,t+1}^e \int_{\varphi_{j,t+1}^d}^{\infty} g_j(\varphi)d\varphi.$$ Distribution of producers : $$M_{j,t+1}\mu_{j,t+1}(\varphi) = \left\{ \begin{array}{ll} (1-\delta)M_{jt}\mu_{jt}(\varphi) + M_{j,t+1}^e g(\varphi) & \quad \text{if} \quad \varphi \geq \varphi_{j,t+1}^d \\ 0 & \quad \text{otherwise} \end{array} \right.$$ ◆ Return #### Equilibrium • Labor market: $$\overline{L} = L_{eM,t} + L_{dM,t} + L_{xM,t} + L_{eS,t} + L_{dS,t}$$ Capital market: $$K_t = K_{eM,t} + K_{dM,t} + K_{xM,t} + K_{eS,t} + K_{dS,t}$$ • Goods market: $$P_{M,t}^{D} C_{M,t}^{D} = P_{M,t}^{D} Q_{dM,t}^{D}$$ and $P_{S,t} C_{S,t} = P_{S,t} Q_{S,t}$ • Balance of Payments $$CA_t = B_{t+1} - B_t = TB_t + (r_t - \tau)B_t$$ Return #### Externally-Calibrated Parameters | Parameter | Description | Value | Source | |--------------|--------------------------------|-------|----------------------------------| | r* | World interest rate | 0.04 | Macro Data | | β | Discount Rate | 0.95 | Literature | | γ | Risk aversion | 2 | Corsetti, Dedola and Leduc (2008 | | η | Substitution C_M - C_S | 0.50 | Comin, Lashkari, Mestiere (2018) | | η_M | Substitution C_M^D - C_M^F | 0.85 | Corsetti, Dedola and Leduc (2008 | | σ | Substitution M varieties | 3.8 | Ghironi and Melitz (2005) | | δ^k | Depreciation of capital | 0.12 | Macro Data | | δ_{S} | Exogenous exit rate M | 0.11 | Micro data | | δ_M | Exogenous exit rate S | 0.08 | Micro data | | α_S | Capital Share S Sector | 0.30 | Micro data | | α_{M} | Capital Share M Sector | 0.36 | Micro data | | f_S^e | Fixed entry cost S | 1 | normalization | | f_M^e | Fixed entry cost M | 1 | normalization | | ξ | Variable entry cost | 2 | small | | μ_S | Mean prod dist S | 0 | normalization | | Α | Foreign demand for M | 1 | normalization | | τ | Capital control tax | 0 | na | **∢** Return #### Where does the decrease in the long-term level of capital come from? - Compare the terminal level of capital for three economies: - (1) 2 sectors with representative firms and exogenous pricing of M good. - (2) 2 sectors with representative firms and endogenous pricing of M good. - (3) 2 sectors with heterogeneous firms and endogenous pricing of M goods. - Across different values of capital and expenditure elasticities (12 combinations). | | Representative Firm | Representative Firm | Heterogeneous Firms | | |--------------------------------|-----------------------------|-----------------------------|-----------------------------|--| | | with Exogenous $P_{\cal M}$ | with Endogenous $P_{\it M}$ | with Endogenous $P_{\it M}$ | | | | (1) | (2) | (3) | | | (i) Same $lpha$ and e | 1.000 (neoclassical) | | | | | (ii) Same α and Het. e | | | | | | (iii) Same e and Het. α | | | | | | (iv) Het. α and Het. e | | | 0.963 (benchmark) | | # Permanent Effects of Financial Liberalization: Lower Level of Capital - → Where Does the Decrease in the Long-Term Level of Capital Comes from? - (1) Differences in capital and expenditure elasticities affect marginally. - \rightarrow higher α generates small Rybczynski effect, e has negligible effect. | | Representative Firms | Representative Firms | Heterogeneous Firms | |--------------------------------|----------------------------------|-----------------------|-----------------------| | | with Exogenous $P_{\mathcal{M}}$ | with Endogenous P_M | with Endogenous P_M | | | (1) | (2) | (3) | | (i) Same α and e | 1.000 (neoclassical) | | | | (ii) Same α and Het. e | 1.000 | | | | (iii) Same e and Het. α | 1.007 | | | | (iv) Het. $lpha$ and Het. e | 1.009 | | 0.963 (benchmark) | # Permanent Effects of Financial Liberalization: Lower Level of Capital - → Where Does the Decrease in the Long-Term Level of Capital Comes from? - (1) Differences in capital and expenditure elasticities affect marginally. - \rightarrow higher α generates small Rybczynski effect, e has negligible effect. - (2) Lower in the long-term capital stems from endogenous pricing of M good. | | Representative Firms | Representative Firms | Heterogeneous Firms | |--------------------------------|----------------------|-----------------------|-----------------------| | | with Exogenous P_M | with Endogenous P_M | with Endogenous P_M | | | (1) | (2) | (3) | | (i) Same α and e | 1.000 (neoclassical) | 0.911 | | | (ii) Same α and Het. e | 1.000 | 0.913 | | | (iii) Same e and Het. α | 1.007 | 0.914 | | | (iv) Het. $lpha$ and Het. e | 1.009 | 0.913 | 0.963 (benchmark) | # Permanent Effects of Financial Liberalization: Lower Level of Capital - ightarrow Where Does the Decrease in the Long-Term Level of Capital Comes from? - (1) Differences in capital and expenditure elasticities affect marginally. - \rightarrow higher α generates small Rybczynski effect, e has negligible effect. - (2) Lower in the long-term capital stems from endogenous pricing of M good. - (3) Heterogeneous model alleviates part of the price effect (less firms, less varieties). | | Representative Firms | Representative Firms | Heterogeneous Firms | | |--------------------------------|----------------------------------|-----------------------|-----------------------|--| | | with Exogenous $P_{\mathcal{M}}$ | with Endogenous P_M | with Endogenous P_M | | | | (1) | (2) | (3) | | | (i) Same α and e | 1.000 (neoclassical) | 0.911 | 0.956 | | | (ii) Same α and Het. e | 1.000 | 0.913 | 0.956 | | | (iii) Same e and Het. α | 1.007 | 0.914 | 0.965 | | | (iv) Het. α and Het. e | 1.009 | 0.913 | 0.963 (benchmark) | | #### Optimal Policy for Hungary #### Consider gradual financial liberalization (reduction τ given by ϕ) - lower speed of convergence \rightarrow lower adjustment of P & higher K in long-term. - Trade slower convergence for higher capital in long-term. - Gradual reduction in au given by ϕ : $au_t = \max \left\{ \left(1 \left(\frac{2t}{T}\right)^{\phi}\right) \cdot \overline{ au}, 0 \right\}$. d) Half Life C Convergence #### Welfare Comparisons ■ Return #### Counterfactual Economies #### Two exercises to assess the
contribution of the input-cost & consumption channels: - 1. Same capital intensity across sectors: $\alpha_M = \alpha_S = 0.33$ (consumption channel). - 2. Same expenditure elasticity across sectors: $e_M = e_S = 1.01$ (input-cost channel). Adjust \bar{L} such that Y = 1 in open steady state. #### Counterfactual: Short Run Transition • Each line is the difference (%) between autarky and liberalized path. → Consumption channel is key for inter-sectoral reallocation #### Trade and Capital Flows → Trade balance: $$TB_t = \underbrace{X_{M,t}}_{\text{Exports}} - \underbrace{C_{Mt}^F - (K_{t+1} - (1 - \delta^k)K_t)}_{\text{Imports}}$$ #### \rightarrow Capital Controls - Household can issue a foreign bond B, but pays a per unit tax τ . - Domestic interest rate: $$r_t = r^* + \underbrace{\tau\{B_t < 0\}}_{\text{Capital controls}} + \underbrace{\tilde{\psi}(B_t)}_{\text{Risk premium}}$$ ## Financial Liberalization Experiment - Financial autarky: economy transitioning to the steady state. - $\ \, \text{Capital controls high enough:} \quad \underbrace{r_0^k \delta^k}_{\text{net capital return}} < \underbrace{r^* + \tau}_{\text{Cost of Borrowing}} \rightarrow B_0 = 0.$ #### Financial liberalization: - Unexpected decrease of capital controls: $\tau = 0$. - 60% of capital with respect to the financial autarky steady state. ## Relative Input-Cost and Consumption Channels in the Short Term -Liberalization in $t = 3 \rightarrow$ decrease in interest rate and start borrowing. ### Reallocation across Sectors in the Short Term #### Reallocation within Sectors in the Short Term ## Financial Openness (τ) and Long-Term Debt In any period with financial openness $$\underbrace{r_{t+1}^k - \delta^k}_{\text{(net) capital return}} = \underbrace{r^* + \tau + \tilde{\psi}(B_{t+1})}_{\text{cost of international borrowing}}$$ • In open economy steady state, a given τ_{ss} determines B_{ss} : $$rac{1}{eta} - 1 = r^* + au_{\mathsf{ss}} + ilde{\psi}(B_{\mathsf{ss}})$$ - Two terminal cases for τ: - 1. Partial financial openness: find τ_{ss} such that $B_{ss} = 0$ $$\frac{1}{\beta} - 1 = r^* + \underline{\tau}_{ss}$$ 2. Full financial openness: let $\tau_{ss} = 0$ $$rac{1}{eta}-1=r^*+ ilde{\psi}(B_{ss})$$ \rightarrow The level of financial openness (τ) determines B_{ss} and, thus, the characteristics of the long term steady state. ### Small versus Large Reforms Financial Autarky; Partial Financial Openness ($B_{ss} = 0$); Full Openness ($\tau = 0$) ## Comparison of Long-Run Steady States with Different ### Levels of au #### more open (au=0) o less open (au>0). a) Consumption - b) Consumption Share of Services - c) Production Share of Services - d) Relative Mass of Firms (M_S/M_M) - e) Price Index ($\approx 1/RER$) f) Aggregate TFP