The Micro and Macro Dynamics of Capital Flows

Felipe E. Saffie

Liliana Varela

Kei-Mu Yi

U. of Virginia (Darden)

LSE & CEPR

U. of Houston, Dallas FED & NBER

3rd Workshop on International Capital Flows Financial Policies
October 17th 2022

This paper does not necessarily reflect the views of the Federal Reserve System, or its Board of Governors, or any Regional Federal Reserve Bank.

Motivation

- Large expansion of capital flows over the last decades.
- Understanding their implications requires assessing their effect on allocation of resources within and across industries.
- Macro papers link inflows to the expansion in non-tradable activities.
- ightarrow (European crisis: Reis 2013, Benigno and Fornaro 2014, Benigno et al 2015...)
- Yet, the absence of data on service firms hinders the identification of the forces shifting resources between sectors.

This Paper

I. Assess the impact of capital flows employing

- firm-level census data for Hungary on all economic activities over 1995-2008.
 - Build from micro to macro, and assess the extensive margin.
 - 2001 Quasi natural experiment: Financial deregulation in 2001.

This Paper

I. Assess the impact of capital flows employing

- firm-level census data for Hungary on all economic activities over 1995-2008.
 - Build from micro to macro, and assess the extensive margin.
 - 2001 Quasi natural experiment: Financial deregulation in 2001.

II. Investigate two channels leading to resource allocation

- Relative input-cost channel: lower the relative price of capital.
 - favors industries with high capital elasticity.
- Consumption channel: increases current consumption.
 - favors industries producing high expenditure-elasticity goods.
- → Use diff. in capital and expenditure elasticities to assess impact of capital flows.

This Paper

I. Assess the impact of capital flows employing

- firm-level census data for Hungary on all economic activities over 1995-2008.
 - Build from micro to macro, and assess the extensive margin.
 - 2001 Quasi natural experiment: Financial deregulation in 2001.

II. Investigate two channels leading to resource allocation

- Relative input-cost channel: lower the relative price of capital.
 - favors industries with high capital elasticity.
- Consumption channel: increases current consumption.
 - favors industries producing high expenditure-elasticity goods.
- → Use diff. in capital and expenditure elasticities to assess impact of capital flows.

III. Build a small open economy model to assess impact of capital flows

- Two sectors: manufacturing and services, composed by heterogeneous firms.
- Economy transitioning to financial autarky steady state opens to capital flows.
- Study impact of capital flows on resource allocation within and across sectors.

1. Financial Liberalization in Hungary and Data

International Financial Liberalization in Hungary

 \rightarrow In 2001, Hungary deregulated capital controls leading to capital inflows.

Before After 2001-2008			
Financial account (net)* 2.5 8.2 NFA/GDP -62 -87 Credit-to-GDP ratio 25 49 Lending interest rate 22 10			
NFA/GDP -62 -87 Credit-to-GDP ratio 25 49 Lending interest rate 22 10		(1)	(2)
Credit-to-GDP ratio 25 49 Lending interest rate 22 10	Financial account (net)*	2.5	8.2
Lending interest rate 22 10	NFA/GDP	-62	-87
	Credit-to-GDP ratio	25	49
Consumption/GDP 74 77	Lending interest rate	22	10
	Consumption/GDP	74	77

Note: in %. *In billions of USD dollars. Year averages. Source: NBH, IMF.

Data

→ Database:

- APEH (NBH), census data on all firms in the economy (1995-2008).
- Accounts for more than 95% of empl. in agriculture, manufacturing and services.
 - \rightarrow in 2000, about 150,000 firms, 4 employees, 80% in services. Table

→ Identification Strategy (Diff-in-Diff)

- Three sources of variation:
 - 1. Time: reform (2001).
 - 2. Cross sectional: capital elasticity (4-digit industries, WLP 2009).
 - 3. Cross sectional: expenditure elasticity (2-digit industries, Bils et al 2013).
- Potential concerns: parallel-trend assumption, survival, firms' characteristics.

2. Empirical Design

Model Intuition

• Non-homothetic preferences à la Comin et al (2020):

$$1 = \sum_j heta_j^{rac{1}{\eta}} C_t^{rac{e_j - \eta}{\eta}} C_{j,t}^{rac{\eta - 1}{\eta}}$$

where e_j : expenditure elasticity of sector j, $C_{j,t}$ is composed by intermediate varieties.

Model Intuition

• Non-homothetic preferences à la Comin et al (2020):

$$1 = \sum_{j} \theta_{j}^{\frac{1}{\eta}} C_{t}^{\frac{e_{j} - \eta}{\eta}} C_{j,t}^{\frac{\eta - 1}{\eta}}$$

where e_j : expenditure elasticity of sector j, $C_{j,t}$ is composed by intermediate varieties.

• Firm heterogeneous model (à la Melitz):

$$q_{(\varphi)t} = \varphi \, k_t^{\alpha_j} I_t^{\beta_j}$$

 φ is productivity, $\frac{\alpha_j}{\alpha_j}$: capital elasticity of sector j, input-cost index $\phi_{j,t} \equiv \left(\frac{r_t^k}{\alpha_j}\right)^{\alpha_j} \left(\frac{w_t}{\beta_j^*}\right)^{\beta_j}$.

Model Intuition

• Non-homothetic preferences à la Comin et al (2020):

$$1 = \sum_j \theta_j^{\frac{1}{\eta}} C_t^{\frac{e_j - \eta}{\eta}} C_{j,t}^{\frac{\eta - 1}{\eta}}$$

where e_j : expenditure elasticity of sector j, $C_{j,t}$ is composed by intermediate varieties.

• Firm heterogeneous model (à la Melitz):

$$q_{(\varphi)t} = \varphi \, k_t^{\alpha_j} I_t^{\beta_j}$$

 φ is productivity, $\frac{\alpha_j}{\alpha_j}$: capital elasticity of sector j, input-cost index $\phi_{j,t} \equiv \left(\frac{r_t^k}{\alpha_j}\right)^{\alpha_j} \left(\frac{w_t}{\beta_j}\right)^{\beta_j}$.

· Optimal production for each firm:

$$q_{jt}(\varphi) = \left[\left(\frac{\frac{\phi_j}{\varphi \rho}}{\varphi \rho} \right)^{-\sigma} \theta_j C_t^{e_j} P_{j,t}^{\sigma - \eta} P_t^{\eta} \right]$$

→ Relative input-cost and consumption channels.

Empirical Design

• Re-write optimal production for each firm

$$\log(q_{jt}(\varphi)) = \underbrace{-\alpha_j \eta \log(r_t^k/w_t)}_{} + \underbrace{e_j \log(C_t)}_{} - (\alpha_j + \beta_j) \eta \log(w_t) + (\sigma - \eta) \tilde{\varphi}_{jt} + \eta \log(P_t) + D_{\varphi j}.$$

input-cost channel consumption channel

Empirical Design

Re-write optimal production for each firm

$$\log(q_{jt}(\phi)) = \underbrace{-\alpha_j \eta \log(r_t^k/w_t)}_{\text{input-cost channel}} + \underbrace{e_j \log(C_t)}_{\text{consumption channel}} - (\alpha_j + \beta_j) \eta \log(w_t) + (\sigma - \eta) \tilde{\phi}_{jt} + \eta \log(P_t) + D_{\phi j}.$$

• In a diff-in-diff estimator:

$$\begin{split} \log(q_{ijt}) &= \gamma_0 \mathit{FL}_t + \textcolor{blue}{\gamma_1} (\alpha_j \times \mathit{FL}_t) + \textcolor{blue}{\gamma_2} (e_m \times \mathit{FL}_t) + \gamma_3 ((\alpha_j + \beta_j) \times \mathit{FL}_t) + \gamma_4 \tilde{\varphi}_{jt} + \mu_i + \varepsilon_{it} \end{split}$$
 where $\mathit{FL}_t = 1$ if year ≥ 2001 , 0 otherwise, μ_i are firm-FE, $\tilde{\varphi}_{jt} = \frac{1}{\sigma - 1} \log \left[\int_{\phi_{jt}^*} \phi^{\sigma - 1} \mu(\phi) d\phi \right].$

Empirical Design

· Re-write optimal production for each firm

$$\log(q_{jt}(\varphi)) = \underbrace{-\alpha_j \eta \log(r_t^k/w_t)}_{\text{input-cost channel}} + \underbrace{e_j \log(C_t)}_{\text{consumption channel}} - (\alpha_j + \beta_j) \eta \log(w_t) + (\sigma - \eta) \widetilde{\varphi}_{jt} + \eta \log(P_t) + D_{\varphi j}.$$

In a diff-in-diff estimator:

$$\begin{split} \log(q_{ijt}) &= \gamma_0 F L_t + \gamma_1(\alpha_j \times F L_t) + \gamma_2(e_m \times F L_t) + \gamma_3((\alpha_j + \beta_j) \times F L_t) + \gamma_4 \tilde{\varphi}_{jt} + \mu_i + \varepsilon_{it} \\ \end{aligned}$$
 where $\mathsf{FL}_t = 1$ if year ≥ 2001 , 0 otherwise, μ_i are firm-FE, $\tilde{\varphi}_{jt} = \frac{1}{\sigma - 1} \log \left[\int_{\varphi_s^*} \varphi^{\sigma - 1} \mu(\varphi) d\varphi \right].$

In first differences:

$$\Delta q_{ij} = \gamma_0 + \gamma_1 \alpha_j + \gamma_2 e_m + \gamma_3 (\alpha_j + \beta_j) + \gamma_4 \Delta \tilde{\varphi}_j + \Delta \varepsilon_i$$
 (1)

where
$$\Delta q_{ij} = \log(\frac{1}{8}\sum_{2001}^{2008}q_{ij}) - \log(\frac{1}{6}\sum_{1995}^{2000}q_{ij})$$

- γ_1 : impact across capital-elasticity industries (j: four-digit industry).
- γ_2 : impact across expenditure-elasticity industries (m: two-digit industry).
- Standard errors are clustered at the four-digit industry level.

3. Empirical Results:

Firm, industry and aggregate level analysis

Summary of Empirical Results

\rightarrow Firm-level results show that:

- 1. Capital-intensive sectors: firms increase value added & capital (p25-p75: 3.5%).
- 2. High expenditure elasticity sectors: firms increase value added (p25-p75: 4%).

\rightarrow Industry-level results show that:

- High expenditure elasticity sectors:
 - higher net entry (p25-p75: 20%), entrants are smaller & less productive.
 - from agriculture ($e_m = 0.44$) to bars ($e_m = 1.8$) 800 net entrants more per year.
 - smaller firm-size, lower RTFP and higher price level.

	Firm-Level Analysis		Industry-L	Entrants			
	Value Added	Δ Net Entrants	Δ Entrants	Δ Firm Size (VA x firm)	Δ Industry RTFP	Log VA	Log RTFP
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Capital elasticity	0.752**	-0.984	-1.481**	0.645	0.552	0.404**	1.327***
	(0.361)	(0.724)	(0.593)	(0.570)	(0.518)	(0.205)	(0.323)
Expenditure elasticity	0.079*	0.420***	0.325***	-0.138*	-0.144*	-0.038*	-0.090**
	(0.044)	(0.112)	(0.117)	(0.076)	(0.079)	(0.023)	(0.040)
Average sectoral RTFP	yes						
Returns to scale	yes						
R^2	0.002	0.042	0.039	0.015	0.014	0.127	0.096
N	56,525	348	348	348	348	185,609	95,576

Notes: *, **, *** significant at 10, 5, and 1 percent. Source: APEH.

4. Model Economy

Household

→ Preferences

• Non-homothetic preferences on manufacturing (M) and services (S):

$$U = \sum_{t=0}^{\infty} \beta^t \frac{(C_t^{1-\gamma} - 1)}{1-\gamma} \qquad \text{and} \qquad 1 = \left[\theta_M^{\frac{1}{\eta}} C_t^{\frac{e_M - \eta}{\eta}} C_{M,t}^{\frac{\eta - 1}{\eta}} + \theta_S^{\frac{1}{\eta}} C_t^{\frac{e_S - \eta}{\eta}} C_{S,t}^{\frac{\eta - 1}{\eta}}\right]$$

em & es: expenditure elasticities.

- M composed by D & F goods: $C_{Mt} = \left[\theta_D^{\frac{1}{1M}} C_{Mt}^D \frac{\eta_M 1}{\eta_M} + \theta_F^{\frac{1}{\eta_M}} C_{Mt}^F \frac{\eta_M 1}{\eta_M}\right]^{\frac{\eta_M 1}{\eta_M 1}}$
- M^D and S composed by differentiated varieties: $C_{d,j,t} = \left[\int_{\omega \in \Omega_t} c_{j,t}(\omega) \frac{\sigma 1}{\sigma}\right]^{\frac{\sigma}{\sigma} 1}$

\rightarrow Budget constraint

$$P_{M,t}^{D}C_{M,t}^{D}+C_{M,t}^{F}+P_{S,t}C_{S,t}+K_{t+1}-(1-\delta^{k})K_{t}+B_{t+1}=w_{t}L+r_{t}^{k}K_{t}+(1+r_{t})B_{t}+\Pi_{t}+T_{t}$$

▶ Demand Functions

Firms, Trade and Capital Flows

$$\rightarrow$$
 Production function:

$$q_{jt}(\varphi) = \varphi k_{jt}(\varphi)^{\alpha_j} I_{jt}(\varphi)^{1-\alpha_j} \qquad j = \{M, S\}$$

$$\rightarrow$$
 Foreign demand for manufacturing:

$$q_{Mt}^{\times}(\varphi) = Ap_{Mt}(\varphi)^{-\sigma}$$

(Fixed costs for producing and exporting.)

$$\rightarrow \text{ Trade balance:}$$

$$ightarrow$$
 Trade balance: $TB_t = \underbrace{X_{M,t}}_{\text{Exports}} - \underbrace{C_{Mt}^F - (K_{t+1} - (1 - \delta^k)K_t)}_{\text{Imports}}$

→ Capital Controls

- Household can issue a foreign bond B, but pays a per unit tax τ .

Domestic interest rate:
$$r_t = r^* + \underbrace{\tau.\mathbb{1}_{\{B_t < 0\}}}$$

where
$$r^*=rac{1}{eta}-1$$
.

Capital controls

5. Quantitative Analysis

Financial Liberalization Experiment

→ Calibration:

• at annual frequency to Hungarian micro and macro data for $\tau = 0$.

▶ Table

\rightarrow Exercise:

- Financial autarky: economy transitioning to the steady state.
- Financial liberalization:
 - Unexpected decrease of capital controls to $\tau = 0$.
 - 55% of capital with respect to the financial autarky steady state.
 - ightarrow match 3.5% decrease in the interest rate in the post-reform period.

Relative Input-Cost and Consumption Channels

-Liberalization in $t = 3 \rightarrow$ decrease in capital controls and start borrowing.

	Model	Data $ert arepsilon_M = arepsilon_S$	$\alpha_M = \alpha_S$	$\varepsilon_M = \varepsilon_S \& \alpha_M = \alpha_S$
	(1)	(2) (3)	(4)	(5)
Household consumption (real) (log)	0.061	0.083		
Average within firm capital increase	0.292	0.235		
Real Consumption Ratio (S/M)	0.033	0.028		
Share of value added in services (real)	0.018	0.038		
Relative price index (S/M) (log diff)	0.018	0.052		
Relative op. cut-off (S/M) (log diff)	-0.009	-0.031		
Relative expo. cut-off (log diff)	0.029	0.040		
Relative entry rate (S/M) (log diff)	0.045	0.113		
Relative entrant size (S/M) (log diff)	-0.014	-0.020		

Note: Coefficients in column 2 are computed in a regression of the variable on a time trend and a dummy for the reform period: $y_t = \alpha F L_t + T_t + \varepsilon_t$, where $F L_t = 1$ if year ≥ 2001 and 0 otherwise. All data coefficients are significant.

Non targeted: Cost and demand channel are quantitatively relevant.

	Model	Data	$arepsilon_{M}=arepsilon_{S}$	$\alpha_{M}=\alpha_{S}$	$\varepsilon_M = \varepsilon_S \& \alpha_M = \alpha_S$
	(1)	(2)	(3)	(4)	(5)
Household consumption (real) (log)	0.061	0.083			0.097
Average within firm capital increase	0.292	0.235			0.249
Real Consumption Ratio (S/M)	0.033	0.028			0.001
Share of value added in services (real)	0.018	0.038			0.011
Relative price index (S/M) (log diff)	0.018	0.052			-0.001
Relative op. cut-off (S/M) (log diff)	-0.009	-0.031			-0.001
Relative expo. cut-off (log diff)	0.029	0.040			0.027
Relative entry rate (S/M) (log diff)	0.045	0.113			0.030
Relative entrant size (S/M) (log diff)	-0.014	-0.020			-0.008

Note: Coefficients in column 2 are computed in a regression of the variable on a time trend and a dummy for the reform period: $y_t = \alpha F L_t + T_t + \varepsilon_t$, where $F L_t = 1$ if year ≥ 2001 and 0 otherwise. All data coefficients are significant.

- Non targeted: Cost and demand channel are quantitatively relevant.
- Homogeneous model tilts production towards services.

	Model	Data	$\varepsilon_{M}=\varepsilon_{S}$	$\alpha_{M}=\alpha_{S}$	$\varepsilon_M = \varepsilon_S \& \alpha_M = \alpha_S$
	(1)	(2)	(3)	(4)	(5)
Household consumption (real) (log)	0.061	0.083	0.101		0.097
Average within firm capital increase	0.292	0.235	0.268	[0.249
Real Consumption Ratio (S/M)	0.033	0.028	-0.011	[0.001
Share of value added in services (real)	0.018	0.038	0.008	[0.011
Relative price index (S/M) (log diff)	0.018	0.052	0.017	- [-0.001
Relative op. cut-off (S/M) (log diff)	-0.009	-0.031	0.002	- [-0.001
Relative expo. cut-off (log diff)	0.029	0.040	0.026	- 1	0.027
Relative entry rate (S/M) (log diff)	0.045	0.113	0.024	[0.030
Relative entrant size (S/M) (log diff)	-0.014	-0.020	-0.005		-0.008

Note: Coefficients in column 2 are computed in a regression of the variable on a time trend and a dummy for the reform period: $y_t = \alpha F L_t + T_t + \varepsilon_t$, where $F L_t = 1$ if year > 2001 and 0 otherwise. All data coefficients are significant.

- Non targeted: Cost and demand channel are quantitatively relevant.
- Homogeneous model tilts production towards services.
- Heterogeneous α deliver changes in relative prices.

	Model	Data $arepsilon_M$	$= \varepsilon_S \alpha_M = \alpha_S$	$\epsilon_M = \epsilon_S \& \alpha_M = \alpha_S$
	(1)	(2)	3) (4)	(5)
Household consumption (real) (log)	0.061	0.083 0.	101 0.059	0.097
Average within firm capital increase	0.292	0.235 0.	268 0.268	0.249
Real Consumption Ratio (S/M)	0.033	0.028 -0	.011 0.043	0.001
Share of value added in services (real)	0.018	0.038 0.	0.021	0.011
Relative price index (S/M) (log diff)	0.018	0.052 0.	017 -0.001	-0.001
Relative op. cut-off (S/M) (log diff)	-0.009	-0.031 0.	002 -0.011	-0.001
Relative expo. cut-off (log diff)	0.029	0.040 0.	0.030	0.027
Relative entry rate (S/M) (log diff)	0.045	0.113 0.	0.048	0.030
Relative entrant size (S/M) (log diff)	-0.014	-0.020 -0	.005 -0.010	-0.008

Note: Coefficients in column 2 are computed in a regression of the variable on a time trend and a dummy for the reform period: $y_t = \alpha F L_t + T_t + \varepsilon_t$, where $F L_t = 1$ if year > 2001 and 0 otherwise. All data coefficients are significant.

- Non targeted: Cost and demand channel are quantitatively relevant.
- Homogeneous model tilts production towards services.
- ullet Heterogeneous lpha deliver changes in relative prices.
- Heterogeneous ε deliver changes in relative consumption.

6. Policy Analysis

 Faster transition: Smoother consumption path, trade long-run consumption for short-run consumption. Lower initial capital, larger gains.

- Faster transition: Smoother consumption path, trade long-run consumption for short-run consumption. Lower initial capital, larger gains.
- 2. **Long-run level:** Lower initial capital implies more borrowing and larger long-run deficit. Lower domestic abortion in the long-run implies lower prices and lower capital. Intuitively: $MPK_s = \frac{r_k}{LP_s} \implies \downarrow K_s$

- Faster transition: Smoother consumption path, trade long-run consumption for short-run consumption. Lower initial capital, larger gains.
- 2. **Long-run level:** Lower initial capital implies more borrowing and larger long-run deficit. Lower domestic abortion in the long-run implies lower prices and lower capital. Intuitively: $MPK_s = \frac{r_k}{lP_c}$ \Rightarrow $\downarrow K_s$

- Faster transition: Smoother consumption path, trade long-run consumption for short-run consumption. Lower initial capital, larger gains.
- 2. **Long-run level:** Lower initial capital implies more borrowing and larger long-run deficit. Lower domestic abortion in the long-run implies lower prices and lower capital. Intuitively: $MPK_s = \frac{r_k}{lP_c} \implies \downarrow K_s$

The literature has ignored this channel by assuming a unique price taking sector.

- Faster transition: Smoother consumption path, trade long-run consumption for short-run consumption. Lower initial capital, larger gains.
- 2. **Long-run level:** Lower initial capital implies more borrowing and larger long-run deficit. Lower domestic abortion in the long-run implies lower prices and lower capital. Intuitively: $MPK_s = \frac{r_k}{lP_c}$ \Rightarrow $\downarrow K_s$

- The literature has ignored this channel by assuming a unique price taking sector.
- Reminiscent of Bhagwati (1958) Immiserizing Growth.

Welfare Analysis

 \rightarrow Gourinchas and Jeanne (2006): Welfare gains of a full liberalization are small.

Welfare Analysis

 \rightarrow Gourinchas and Jeanne (2006): Welfare gains of a full liberalization are small.

Figure: Full liberalization CEQ Welfare (%) over Autarky

 \rightarrow Financial liberalization can lead to welfare losses!

Welfare Analysis

 \rightarrow Gourinchas and Jeanne (2006): Welfare gains of a full liberalization are small.

Figure: Full liberalization CEQ Welfare (%) over Autarky

- \rightarrow Financial liberalization can lead to welfare losses!
- \rightarrow Potential welfare gains from slowing down the liberalization.

Policy Analysis

- $\rightarrow \text{ Tax on borrowing: } \tau_t = \max \left\{ \left(1 \left(\frac{2t}{T}\right)^{\phi}\right) \cdot \overline{\tau}, 0 \right\}$
 - Immediate full liberalization $o \phi = 0$.

Policy Analysis

$$o$$
 Tax on borrowing: $au_t = \max\left\{\left(1-\left(rac{2t}{T}
ight)^{\phi}
ight)\cdotar{ au},0
ight\}$

• Immediate full liberalization $\rightarrow \phi = 0$.

Figure: Policy Gains over Autarky CEQ Welfare (%)

Policy Analysis

$$ightarrow$$
 Tax on borrowing: $au_t = \max\left\{\left(1-\left(rac{2t}{T}
ight)^{\phi}
ight)\cdot ar{ au}, 0
ight\}$

• Immediate full liberalization $\rightarrow \phi = 0$.

Figure: Policy Gains over Autarky CEQ Welfare (%)

ightarrow Slowing down the reform leads to higher long-run K and welfare gains.

Conclusion

- This paper makes three contributions:
 - 1. Novel evidence about the impact of capital flows on service firms.
 - Consumption channel is important to understand within and across sectoral reallocation of resources.
 - In the long term, financial openness affects the structure of the economy and can lead to welfare loses.
 - \rightarrow Slowing down a financial liberalization can improve welfare.

Extra Slides

Hungary: Financial Liberalization and Net Foreign Asset Position

Source: Lane and Milesi-Ferreti (2018)

Hungary: Financial Liberalization and Capital Flows

	Before	After	В	efore	After		
	1995-2000	2001-2008	1995-1998	1998-2000	2001-2004	2005-2008	
	(1)	(2)	(3)	(4)	(5)	(6)	
Financial account (net)*	2.5	8.2	1.2	3.8	6.1	10.4	
NFA/GDP	-62	-87	-57	-67	-79	-95	
Credit-to-GDP ratio	25	49	23	27	39	59	
Lending interest rate	22	10	27	16	11	9	
Consumption/GDP	74	77	74	74	77	76	

Note: in %. *In billions of USD dollars. Source: NBH, IMF, Lane and Milesi-Ferreti (2018).

◆ Return

Trade with the EU

Manufacturing Trade with the EU

Foreign Direct Investment

Capital Controls in Hungary before 2001

- \rightarrow Foreign exchange (FX) market regulations were the main tool of capital controls.
 - Restrict banks' ability to intermediate foreign funds:
 - → Spot and Forward FX markets:
 - Forward: banned all instruments to hedge the currency risk.
 - Spot: made very costly and difficult to acquire foreign currency.
 - → Critical: costly and illiquid spot market and inexistent forward market.
 - → Banks relied their credit supply on local savings, leading to low credit.

In 2000	Hungary	OECD
Credit-to-GDP Ratio	0.27	0.86
Credit-to-Deposit Ratio	0.83	1.20

Summary Statistics

	Agriculture	Manufacture	Services
	(1)	(2)	(3)
Value Added*	2,058	3,029	1,008
Capital*	5,200	2,140	1,038
Capital Intensity*	1,150	386	358
Employment	5	6	3
Log RTFP	5.40	5.53	5.10
Age	5	5	4
Export Share**	0.19	0.31	0.19
Number of firms	6,925	23,231	115,949

Notes: *in thousands of Forints. ** Conditional on Exporting/Importing. Median values. Average over 1995-2000. Source: APEH.

Identification Strategy: Firms' Characteristics across Sectors

	Mean	Capital Elasticity	Expenditure Elasticity
	(1)	(2)	(3)
Log value added	7.165	7.408*** (0.225)	-0.399*** (0.018)
Log capital	7.103	6.211*** (0.249)	-0.227*** (0.019)
Log employment	1.350	2.236*** (0.148)	-0.372*** (0.011)
Log RTFP	5.139	1.146*** (0.159)	-0.125*** (0.013)
Log age	1.319	1.058*** (0.068)	-0.127*** (0.005)
Log export share	0.036	0.415*** (0.014)	-0.007*** (0.001)
Number of firms	255,008	255,008	255,008

Notes: *, **, *** significant at 10, 5, and 1 percent. This table reports the estimated coefficients from a regression of the log of each variable on the capital and expenditure elasticities for the pre-reform period (1995-2000). Source: APEH. Source: APEH.

Identification Strategy: Growth Rate Pre-Reform

		Capital Elasticity		Expenditure Elasticity			
	Value Added Growth	Capital Growth	Employment Growth	Value Added Growth	Capital Growth	Employment Growth	
	(1)	(2)	(3)	(4)	(5)	(6)	
Capital Elasticity	-0.125	0.135	-0.080				
	(0.148)	(0.114)	(0.078)				
Expenditure Elasticity				0.003	-0.022	-0.007	
				(0.014)	(0.041)	(0.005)	
R^2	0.002	0.001	0.002	0.001	0.000	0.001	
N	274,591	256,947	242,221	274,591	256,947	242,221	
Sector FE	Yes	Yes	Yes	Yes	Yes	Yes	
N	313,512	313,512	335,895	335,895	335,895	335,895	

Notes: *, **, *** significant at 10, 5, and 1 percent. This table reports the estimated coefficients from a regression of the growth rate of each variable on the capital and expenditure elasticities for the pre-reform period (1995-2000). Source: APEH.

4 Poturn

Identification Strategy: Survival Ratio

	Capital Elasticity	Expenditure Elasticity
	(1)	(2)
Survival Ratio	0.024	-0.038***
	(0.031)	(0.007)
N	103,555	103,555

Notes: *, **, *** significant at 10, 5, and 1 percent. This table reports the estimated coefficients from a regression of the survival rate between 2000 and 2007 on the capital and expenditure elasticities. All regressions include a constant term. Source: APEH.

◆ Return

Firm-Level Analysis: Value Added

		△ Value Ad	ded	
	(1)	(2)	(3)	
		Capital Elast	icity	
Capital elasticity	0.728**	0.701**	0.656*	_
	(0.351)	(0.343)	(0.342)	
Average sectoral productivity		0.025	0.022	
		(0.037)	(0.038)	
Returns to scale			-0.122	
			(0.142)	
R^2	0.001	0.001	0.001	
		Expenditure El	asticity	
Expenditure elasticity	0.094*	0.091*	0.102**	
	(0.051)	(0.052)	(0.051)	
Average sectoral productivity		0.034	0.026	
		(0.036)	(0.039)	
Returns to scale			-0.242	
			(0.148)	
R^2	0.001	0.001	0.002	
		Panel C. Capital and Expe	nditure Elasticities	
Capital elasticity	0.752**	0.725**	0.687*	
	(0.361)	(0.354)	(0.353)	
Expenditure elasticity	0.079*	0.077*	0.079*	
	(0.044)	(0.045)	(0.042)	
Average sectoral productivity		0.025	-0.008	
		(0.034)	(0.020)	
Returns to scale			-0.185	
			(0.141)	
R^2	0.002	0.002	0.002	
N	56,525	56,525	56,525	

Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Source: APEH.

Aggregate-Level Analysis: Expenditure and Capital Elasticities

Aggregate sectors with high (low) expenditure and high (low) capital elasticities.

 $y_{s,t} = \sum_{i=2001}^{2008} \beta_i D_i + \mathsf{Time}_t + \varepsilon_{st}$, where $D_i = 1$ if year = i and 0 otherwise.

Aggregate-Level Analysis: Expenditure and Capital Elasticities

		Expenditure E ligh Capital Ela			Expenditure I Low Capital El			Expenditure E High Capital E			Expenditure El ow Capital Ela	
	Value Added	Empl.	Number	of Value Added	Empl.	Number of Firms	Value Added	Empl.	Number of Firms	Value Added	Empl.	Number of
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
2001	0.019**	0.011**	0.013***	0.011	-0.002	0.013**	-0.034**	0.004	-0.017**	0.004	-0.013**	-0.009***
	(0.007)	(0.003)	(0.003)	(0.007)	(0.004)	(0.005)	(0.011)	(0.006)	(0.007)	(0.006)	(0.005)	(0.002)
2002	0.016*	0.019***	0.010**	0.009	-0.001	0.010	-0.029**	0.002	-0.010	0.004	-0.021***	-0.010***
	(0.007)	(0.004)	(0.003)	(0.007)	(0.005)	(0.006)	(0.011)	(0.006)	(0.007)	(0.006)	(0.005)	(0.002)
2003	0.025**	0.025***	0.010**	0.011	0.003	0.011	-0.034**	0.005	-0.004	-0.001	-0.033***	-0.017***
	(800.0)	(0.004)	(0.003)	(800.0)	(0.005)	(0.006)	(0.012)	(0.007)	(0.007)	(0.006)	(0.006)	(0.002)
2004	0.025**	0.031***	0.000	0.012	0.015**	0.025***	-0.026*	-0.005	-0.020**	-0.011	-0.041***	-0.005*
	(800.0)	(0.004)	(0.004)	(800.0)	(0.005)	(0.006)	(0.013)	(0.007)	(800.0)	(0.007)	(0.006)	(0.002)
2005	0.026**	0.039***	0.001	0.016	0.013**	0.022**	-0.031*	0.001	-0.013	-0.011	-0.053***	-0.010***
	(0.009)	(0.004)	(0.004)	(0.009)	(0.005)	(0.007)	(0.014)	(800.0)	(800.0)	(0.007)	(0.007)	(0.002)
2006	0.033***	0.046***	0.008*	0.024**	0.016**	0.019**	-0.045**	0.005	-0.004	-0.012	-0.067***	-0.024***
	(0.009)	(0.005)	(0.004)	(0.009)	(0.006)	(0.007)	(0.014)	(800.0)	(0.009)	(0.007)	(0.007)	(0.002)
2007	0.040***	0.051***	0.003	0.022*	0.018**	0.017*	-0.048**	0.011	0.004	-0.014	-0.080***	-0.024***
	(0.010)	(0.005)	(0.004)	(0.010)	(0.006)	(0.007)	(0.015)	(0.009)	(0.009)	(0.008)	(0.007)	(0.003)
2008	0.121***	0.071***	0.067***	0.020*	0.011	-0.022**	-0.111***	0.013	0.009	-0.029**	-0.096***	-0.054***
	(0.011)	(0.005)	(0.005)	(0.010)	(0.006)	(800.0)	(0.016)	(0.009)	(0.010)	(800.0)	(0.008)	(0.003)
Time	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
trend												
R^2	0.980	0.973	0.995	0.983	0.997	0.997	0.985	0.997	0.998	0.819	0.987	0.991
N	17	17	17	17	17	17	17	17	17	17	17	17

Notes: *, **, *** significant at 10, 5, and 1 percent. Source: APEH.

Aggregate Analysis: Broadly-Defined Sectors

- Manufacturing: more capital intensive $\alpha_i = 0.36$ (vs 0.30 in S).
- Services: high expenditure elasticity $e_m = 1.19$ (vs 0.96 in M).

$$y_{s,t} = \sum_{i=2001}^{2008} \beta_i D_i + \mathsf{Time}_t + \varepsilon_{st}$$
, where $D_i = 1$ if year $= i$ and 0 otherwise.

 \rightarrow Increase in the share of services in value added and employment. \bigcirc Re

Reallocation across Broadly-Defined Sectors II

Define: entrant before if entry <2001, and entrant after if entry ≥ 2001.

 \rightarrow Entrants explain a non-negligible in the expansion of services.

Return
 Re

Cross-Country Evidence: Financial Liberalization and Value Added Share

Cross-Country Evidence: FL and Structural Change

 Estimate a Arellano and Bond (1995), GMM system of 5 years non-overlapping data.

					Log	g share in value	added					
	Agriculture Manufacturing									Services		
	OLS	(MM	OLS		(SMM		OLS	(ММ	
							LDC	Developed Countries				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	
FL Index	-0.020*** (0.007)	-0.028* (0.015)	-0.026*** (0.008)	0.007 (0.008)	0.032** (0.015)	-0.000 (0.017)	0.041* (0.022)	0.003 (0.064)	0.010** (0.004)	0.007**	0.014*** (0.005)	
Trade Openness			-0.363** (0.143)			-0.136 (0.315)	-0.613 (0.950)	-0.936*** (0.313)			0.100*** (0.022)	
Government Size			0.337*** (0.127)			0.132 (0.264)	0.735 (1.018)	0.862*** (0.328)			-0.109*** (0.019)	
Financial Depth			-0.041* (0.021)			-0.017 (0.062)	0.018 (0.077)	0.015 (0.075)			0.032*** (0.006)	
Financial Crisis			0.034** (0.015)			-0.103** (0.051)	-0.033 (0.054)	-0.023 (0.048)			0.033*** (0.006)	
Lag Dep. Var.	1.006*** (0.009)	0.983*** (0.040)	1.004*** (0.027)	0.877*** (0.027)	0.827*** (0.047)	0.709*** (0.132)	0.613** (0.278)	0.792*** (0.216)	0.817*** (0.037)	0.807*** (0.028)	0.704*** (0.023)	
Year FE Country FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
N Countries	914 163	914 163	342 62	914 163	914 163	342 62	229 31	127 27	914 163	914 163	342 62	
Sargan (pvalue)		0.410	0.821		0.313	0.220	0.314	0.648		0.208	0.265	

Notes: *, **, **** significant at 10, 5, and 1 percent. All regressions include a constant term. Period 1970-2015. Chinn and Ito (2016) index of Financial Liberalization. Source: World Bank, IMF, Chinn and Ito (2016).

Cross-Country Evidence: FL and Structural Change

Firm-Level Analysis: Capital and Employment

		Δ Capital			△ Employme	nt
	(1)	(2)	(3)	(4)	(5)	(6)
			Capital and Ex	penditure Elastici	ties	
Capital elasticity	1.033***	1.008***	1.030***	0.516	0.456	0.408
	(0.364)	(0.369)	(0.354)	(0.317)	(0.315)	(0.295)
Expenditure elasticity	-0.083	-0.085	-0.088	0.119***	0.114***	0.123***
	(0.064)	(0.064)	(0.061)	(0.040)	(0.038)	(0.035)
Average sectoral productivity		0.023	0.024		0.058***	0.054***
		(0.019)	(0.023)		(0.015)	(0.018)
Returns to scale			0.058			-0.130
			(0.151)			(0.112)
R^2	0.002	0.002	0.002	0.004	0.006	0.006
N	53,987	53,987	53,987	54,251	54,251	54,251

Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Source: APEH.

Firm-Level Analysis: Value Added

ightarrow No differential trend before the reform, but higher growth according with capital and expenditure elasticities after it.

Robustness: Non-Exporters and Domestic Firms

		Non-Exporter	s	I	Domestically-Owner	ed Firms
	Δ Value Added	Δ Value Added Δ Capital		Δ Value Added	Value Added Δ Capital	
	(1)	(2)	(3)	(4)	(5)	(6)
Capital elasticity	0.887**	1.274***	0.546*	0.653*	1.030***	0.408
	(0.399)	(0.387)	(0.327)	(0.368)	(0.354)	(0.295)
Expenditure elasticity	0.087*	-0.100	0.125***	0.103**	-0.088	0.123***
	(0.052)	(0.065)	(0.040)	(0.048)	(0.061)	(0.035)
Average sectoral productivity	0.042	0.035	0.061***	0.024	0.024	0.054***
	(0.036)	(0.028)	(0.019)	(0.038)	(0.023)	(0.018)
Returns to scale	-0.268*	0.022	-0.171	-0.210	0.058	-0.130
	(0.162)	(0.168)	(0.123)	(0.153)	(0.151)	(0.112)
R^2	0.004	0.003	0.007	0.003	0.002	0.006
N	49102	46636	46805	56525	53987	54251

Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Columns 1-3 exclude multinational firms (where MNC are firms with 10% foreign ownership). Columns 4-6 exclude exporters. Columns 7-9 exclude government firms (firms with more than 50% local and state shares). Source: APEL of the state of the state shares).

↓ Return

Robustness: Firms without Debt.

	Credit Registry		Balance Sheet Data					
	No ST or LT	No LT		ST	Obligations		No Credit or LT/ST	
	Credit	Obligations	w/ Owners	Trade Credit	w/ Banks	All	Obligation	
						=(3)+(4)+(5)	=(1)+(2)+(6)	
			Value Added					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Capital elasticity	0.126 (0.397)	-0.193 (0.508)	0.416 (0.509)	0.107 (0.754)	0.064 (0.492)	-0.209 (1.151)	-0.854 (1.400)	
Expenditure elasticity	0.152** (0.063)	0.232** (0.103)	0.232** (0.091)	0.350** (0.141)	0.186* (0.100)	0.608*** (0.193)	0.737*** (0.217)	
Average sectoral productivity	yes	yes	yes	yes	yes	yes	yes	
Returns to scale	yes	yes	yes	yes	yes	yes	yes	
R^2	0.003	0.007	0.008	0.024	0.006	0.066	0.081	
N	27,790	23,358	20,989	8,420	22,583	4,410	2,508	

Notes: *, **, **** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit NACE industries. Column 1 excludes firms reporting short term (ST) and/or long term (LT) credit in the credit registry data. Columns 2 to 6 consider liabilities obligations reported in balance shed ata. Column 2 excludes firms reporting ghort-term loans with owners, column 4 excludes firms reporting short-term trade credit; column 5 excludes firms reporting short-term trade credit; column 5 excludes firms reporting all short-term obligations. Column 7 excludes firms reporting any type of short or long term obligation or credit registry or balance sheet data. Source: APEH and credit registry.

Robustness: Financial Dependence

	Rajan and Zingales		Inventories to Sales		Cash Conversion Cycle				
	Δ Value Added	Δ Capital	Δ Employment	Δ Value Added	△ Capital	Δ Employment	Δ Value Added	△ Capital	Δ Employment
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Capital elasticity	0.701*	1.322***	0.666**	0.729**	1.205***	0.580**	0.681*	1.245***	0.589**
	(0.361)	(0.394)	(0.285)	(0.366)	(0.360)	(0.284)	(0.391)	(0.356)	(0.283)
Expenditure elasticity	0.077*	-0.096	0.105***	0.114*	-0.120	0.071*	0.106*	-0.103	0.103***
	(0.041)	(0.074)	(0.039)	(0.064)	(0.074)	(0.042)	(0.062)	(0.072)	(0.039)
Financial Dependence	0.011**	-0.008	-0.003	0.136	-0.255	-0.334**	0.025	-0.022	-0.005
	(0.005)	(0.007)	(0.005)	(0.201)	(0.177)	(0.155)	(0.028)	(0.021)	(0.003)
Average sectoral productivity	yes	yes	yes	yes	yes	yes	yes	yes	yes
Returns to scale	yes	yes	yes	yes	yes	yes	yes	yes	yes
R ²	0.005	0.003	0.005	0.005	0.003	0.005	0.006	0.003	0.004
N	47,549	45,723	46,163	46,723	44,652	45,020	46,831	44,754	45,127

Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit NACE industries. Columns 1-3 include as a control the Rajan and Zingales (1988) index. Columns 4-6 controls for the inventories to sales index and columns 7-9 controls for the cash conversion cycle, both estimated as in Raddatz (2006). The three financial dependence measures are estimated at four-digit NACE industries. Source: APEH.

Robustness: Price index

	Δ Value Added (1)	Δ Capital (2)	Δ Employment (3)
Capital elasticity	0.671*	1.135***	0.603**
	(0.365)	(0.350)	(0.280)
Expenditure elasticity	0.080*	-0.103	0.101***
	(0.047)	(0.063)	(0.034)
Sectoral price index	-0.024	0.182***	0.315***
	(0.312)	(0.069)	(0.069)
Returns to scale	-0.175	0.007	-0.226**
	(0.137)	(0.135)	(0.096)
R^2	0.002	0.003	0.008
N	56,525	53,987	54,251

Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Source: APEH.

Robustness: Panel Regressions

	Log Value Added (1)	Log Capital (2)	Log Employment (3)
FL * Capital Elasticity	0.534*	1.068**	0.573*
	(0.316)	(0.392)	(0.304)
FL * Income Elasticity	0.066*	-0.072	0.098**
	(0.039)	(0.065)	(0.039)
Average sectoral productivity	0.027***	0.016*	0.020**
	(800.0)	(800.0)	(800.0)
FL * Returns to scale	-0.158	0.130	-0.099
	(0.130)	(0.144)	(0.109)
Firm FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
R^2	0.802	0.865	0.781
N	905,630	846,162	791,981

Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at year and four-digit sector levels. Source: APEH.

Robustness: Standardized Beta Coefficient: Firm-level

	Δ Value Added (1)	Δ Capital (2)	Δ Employment (3)
Capital elasticity	0.029*	0.035***	0.022
	(0.015)	(0.012)	(0.016)
Expenditure elasticity	0.031*	-0.027	0.060***
	(0.016)	(0.019)	(0.017)
Average sectoral productivity	-0.007	0.013	0.043***
	(0.017)	(0.012)	(0.014)
Returns to scale	-0.023	0.006	-0.020
	(0.017)	(0.015)	(0.017)
R^2	0.002	0.002	0.006
N	56,525	53,987	54,251

Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Source:

APEH.

Robustness: Standardized Beta Coefficient: Extensive Margin

	Industry-Level Analysis		
	Δ Net Entrants	Δ Entrants	
	(1)	(2)	
Capital elasticity	-0.074	-0.114**	
	(0.054)	(0.046)	
Expenditure elasticity	0.194***	0.154***	
	(0.052)	(0.055)	
R^2	0.042	0.039	
N	348	348	

Notes: *, **, *** significant at 10, 5, and 1 percent. Source: APEH.

■ Return

Correlation Capital and Expenditure Elasticities

Expenditure Elasticities across Sectors

Robustness: Expenditure and Capital Elasticities

	Capital Elasticity Olley and Pakes (1996)			Expenditure Elasticity Comin, Lashkari, Mestiere (2018)		
	Δ Value Added	△ Capital	Δ Employment	Δ Value Added	△ Capital	Δ Employment
	(1)	(2)	(3)	(4)	(5)	(6)
Capital elasticity	0.800**	0.888***	0.887***	0.873**	1.211***	1.073***
	(0.321)	(0.244)	(0.201)	(0.431)	(0.358)	(0.255)
Expenditure elasticity	0.081*	-0.109*	0.102***	0.083*	0.076	0.288***
	(0.042)	(0.058)	(0.027)	(0.050)	(0.069)	(0.036)
Average sectoral productivity	0.015	0.017	0.043**	0.001	0.013	0.027
	(0.041)	(0.021)	(0.017)	(0.027)	(0.027)	(0.017)
Returns to scale	-0.232	0.015	-0.139	-0.210	-0.013	-0.162*
	(0.145)	(0.143)	(0.115)	(0.156)	(0.173)	(0.087)
R ²	0.004	0.002	0.009	0.002	0.002	0.015
N	56,485	53,978	54,242	47,579	53,950	54,212

Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at the firm-level. Columns 1-3 employ capital elasticities computed with Olley and Pakey (1996) method. Columns 4-6 employ the expenditure elasticity from Comin, Lashkari, Mestiere (2018). Source: APEH.

◆ Return

Robustness: Balanced Panel 1995-2008

	Δ Value Added (1)	Δ Capital (2)	Δ Employment (3)
Capital elasticity	0.665*	1.121***	0.376
	(0.368)	(0.375)	(0.353)
Expenditure elasticity	0.094*	-0.037	0.107***
	(0.048)	(0.052)	(0.038)
Average sectoral productivity	0.024	0.027	0.060***
	(0.028)	(0.023)	(0.021)
Returns to scale	-0.287*	-0.024	-0.097
	(0.159)	(0.155)	(0.133)
R^2	0.004	0.003	0.006
N	20,936	20,936	20,936

Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at four-digit sector level. Source: APEH.

◆ Return

Robustness: Top 30 in Net entry Return

4544

Painting and glazing

Service

Construction

Activity	Broad sector (II digits)	Sector (IV digits)	Description	Income elasticity	Net entry per year	Number of employees	Share agg. employment (in %)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Service	Real estate activities	7012	Buying and selling of own real estate	2.02	982	2	0.08
Service	Construction	4521	General construction of buildings and civil engineering works	0.89	505	3	0.21
Service	Hotels and restau- rants	5530	Restaurants	1.80	480	3	0.13
Service	Other business activ- ities	7414	Business and management consultancy activities	1.35	446	2	0.08
Service	Other business activ- ities	7487	Other business activities n.e.c.	1.35	439	3	0.10
Service	Retail trade	5248	Other retail sale in specialized stores	0.83	420	2	0.06
Service	Land transport	6024	Freight transport by road	2.02	404	3	0.08
Service	Other business activ- ities	7420	Architectural and engineering activities and related techni- cal consultancy	1.35	363	2	0.06
Service	Real estate activities	7020	Letting of own property	2.02	297	4	0.03
Service	Retail trade	5211	Retail sale in non-specialized stores with food, beverages or tobacco predominating	0.83	271	4	0.11
Service	Sale, maintenance and repair of motor vehicles	5010	Sale of motor vehicles	0.85	250	2	0.06
Service	Hotels and restau- rants	5540	Bars	1.80	248	2	0.04
Service	Retail trade	5263	Other non-store retail sale	0.83	229	2	0.02
Service	Construction	4531	Installation of electrical wiring and fittings	0.89	212	3	0.05
Service	Other business activ- ities	7411	Legal activities	1.35	211	2	0.04
Service	Retail trade	5242	Retail sale of clothing	0.83	201	2	0.06
Service	Computer and re- lated activities	7222	Other software consultancy and supply	1.35	199	2	0.04
Service	Construction	4533	Plumbing	0.89	197	3	0.04
Service	Sale, maintenance and repair of motor vehicles	5020	Maintenance and repair of motor vehicles	0.85	189	2	0.03
Service	Activities auxiliary to financial inter	6720	Activities auxiliary to insurance and pension funding	1.44	182	1	0.02
Service	Real estate activities	7011	Development and selling of real estate	2.02	176	2	0.01
Service	Other business activ- ities	7460	Investigation and security activities	1.35	170	6	0.11
Service	Other services activ- ities	9302	Hairdressing and other beauty treatment	1.18	151	2	0.02
Service	Retail trade	5246	Retail sale of hardware, paints and glass	0.83	143	2	0.03
Service	Other business activ- ities	7440	Advertising	1.35	141	2	0.03
Service	Recreational, cul- tural and sporting activities	9262	Other sporting activities	1.79	131	2	0.01
Service	Activities auxiliary to financial inter	6713	Activities auxiliary to financial intermediation n.e.c.	1.44	123	2	0.01
Service	Computer and re- lated activities	7220	Software consultancy and supply	1.35	121	2	0.03
Service	Other business activ- ities	7470	Industrial cleaning	1.35	121	7	0.08

0.89

112 8109 0.03 1.68

Robustness: Imports

	Δ Value Added	Δ Capital	Δ Employment	
	(1)	(2)	(3)	
Capital elasticity	0.564*	1.005***	0.352	
	(0.339)	(0.365)	(0.283)	
Expenditure elasticity	0.082**	-0.087	0.122***	
	(0.041)	(0.063)	(0.034)	
Imports	0.011***	0.004	0.016***	
	(0.003)	(0.003)	(0.002)	
Average sectoral productivity	0.012	0.022	0.048***	
	(0.036)	(0.022)	(0.018)	
Returns to scale	-0.113	0.065	-0.035	
	(0.139)	(0.156)	(0.112)	
R^2	0.004	0.002	0.011	
N	55,928	53,535	53,278	

Notes: *, **, *** significant at 10, 5, and 1 percent. Std. errors are clustered at the firm-level. Source: APEH.

Return

Household

 \rightarrow Optimal demands

$$\begin{array}{lll} C_{S,t} & = & \left(\frac{P_{S,t}}{P_t}\right)^{-\eta}\theta_S\,C_t^{eS} & \text{and} & C_{M,t} = \left(\frac{P_{M,t}}{P_t}\right)^{-\eta}\theta_M\,C_t^{eM}, \\ \\ C_{M,t}^D & = & \left(\frac{P_{M,t}^D}{P_{Mt}}\right)^{-\eta_M}\theta_D\,C_{Mt} & \text{and} & C_{M,t}^F = \left(\frac{1}{P_{Mt}}\right)^{-\eta_M}\theta_F\,C_{Mt}, \end{array}$$

→ Demands for individual varieties

$$q_{St}^d(\omega) = C_{St} \left(\frac{p_{St}(\omega)}{P_{St}} \right)^{-\sigma}$$
 and $q_{Mt}^d(\omega) = C_{Mt}^D \left(\frac{p_{Mt}(\omega)}{P_{Mt}^D} \right)^{-\sigma}$

 \rightarrow Euler equations:

$$1 = \Lambda_{t,t+1}(1 - \delta^k + r_{t+1}^k)$$
 and $1 = \Lambda_{t,t+1}(1 + r_{t+1})$

Household

 \rightarrow Prices

$$\begin{split} P_t &= \left[\theta_M P_{Mt}^{1-\eta} C_t^{e_M-1} + \theta_S P_{St}^{1-\eta} C_t^{e_S-1}\right]^{\frac{1}{1-\eta}} \quad \text{and} \quad P_{Mt} = \left[\theta_D (P_{Mt}^D)^{1-\eta_M} + \theta_F\right]^{\frac{1}{1-\eta_M}} \\ P_{St} &= \left[\int_{\omega \in \Omega_t} p_{St}(\omega)^{1-\sigma} d\omega\right]^{\frac{1}{1-\sigma}} \quad \text{and} \quad P_{Mt}^D = \left[\int_{\omega \in \Omega_t} p_{Mt}(\omega)^{1-\sigma} d\omega\right]^{\frac{1}{1-\sigma}} \,. \end{split}$$

Value Functions

$$\begin{array}{lcl} V_{St}(\phi) & = & \max \left\{ 0, \pi_{St}^d(\phi) + (1-\delta)\Lambda_{t,t+1}V_{S,t+1}(\phi) \right\}, \\ \\ V_{Mt}(\phi) & = & \max \left\{ V_{Mt}^d(\phi), V_{Mt}^{x}(\phi) \right\}, \\ \\ V_{Mt}^d(\phi) & = & \max \left\{ 0, \pi_{Mt}^d(\phi) + (1-\delta)\Lambda_{t,t+1}V_{M,t+1}(\phi) \right\}, \\ \\ V_{Mt}^{x}(\phi) & = & \max \left\{ 0, \pi_{Mt}^d(\phi) + \pi_{Mt}^{x}(\phi) + (1-\delta)\Lambda_{t,t+1}V_{M,t+1}(\phi) \right\} \end{array}$$

The operational productivity cut-offs are defined implicitly by :

$$V_{St}(\varphi^d_{St}) = 0, \quad V^d_{Mt}(\varphi^d_{Mt}) = 0, \quad \pi^{\times}_{Mt}(\varphi^{\times}_{Mt}) = 0$$

Return

Entry and Distributions

Entry:

$$\int_{\varphi_{jt}^d}^{\infty} V_{jt}(\varphi) g_j(\varphi) d\varphi = \phi_{jt} \left[f_j^e + \xi \left(e^{M_{jt}^e - \overline{M}_j^e} - 1 \right) \right] \qquad j \in \{S, M\}$$

Distributions:

$$M_{j,t+1}\mu_{j,t+1}(\varphi) = \left\{egin{array}{ll} (1-\delta)M_{jt}\mu_{jt}(arphi) + M_{j,t+1}^e \mathsf{g}_j(arphi) & ext{if} \quad arphi \geq arphi_{j,t+1}^d \ 0 & ext{otherwise} \end{array}
ight.$$

Mass of producers:

$$M_{j,t+1} = (1-\delta)M_{jt} \int_{\varphi_{j,t+1}^d}^\infty \mu_{jt}(\varphi)d\varphi + M_{j,t+1}^e \int_{\varphi_{j,t+1}^d}^\infty g_j(\varphi)d\varphi$$

Return

Entry and Mass of Firms

- Free-entry condition: $\int_{q_{jt}^d}^{\infty} V_{jt}(\varphi) g_j(\varphi) d\varphi = \phi_{jt} \left[f_j^e + \xi \left(e^{M_{jt}^e \overline{M}_j^e} 1 \right) \right]$, Entrants draw their productivity from a sector specific distribution $G_j(\varphi)$.
- Law of motion of the mass of firms:

$$M_{j,t+1} = (1-\delta)M_{jt} \int_{\varphi_{j,t+1}^d}^{\infty} \mu_{jt}(\varphi)d\varphi + M_{j,t+1}^e \int_{\varphi_{j,t+1}^d}^{\infty} g_j(\varphi)d\varphi.$$

Distribution of producers :

$$M_{j,t+1}\mu_{j,t+1}(\varphi) = \left\{ \begin{array}{ll} (1-\delta)M_{jt}\mu_{jt}(\varphi) + M_{j,t+1}^e g(\varphi) & \quad \text{if} \quad \varphi \geq \varphi_{j,t+1}^d \\ 0 & \quad \text{otherwise} \end{array} \right.$$

◆ Return

Equilibrium

• Labor market:

$$\overline{L} = L_{eM,t} + L_{dM,t} + L_{xM,t} + L_{eS,t} + L_{dS,t}$$

Capital market:

$$K_t = K_{eM,t} + K_{dM,t} + K_{xM,t} + K_{eS,t} + K_{dS,t}$$

• Goods market:

$$P_{M,t}^{D} C_{M,t}^{D} = P_{M,t}^{D} Q_{dM,t}^{D}$$
 and $P_{S,t} C_{S,t} = P_{S,t} Q_{S,t}$

• Balance of Payments

$$CA_t = B_{t+1} - B_t = TB_t + (r_t - \tau)B_t$$

Return

Externally-Calibrated Parameters

Parameter	Description	Value	Source
r*	World interest rate	0.04	Macro Data
β	Discount Rate	0.95	Literature
γ	Risk aversion	2	Corsetti, Dedola and Leduc (2008
η	Substitution C_M - C_S	0.50	Comin, Lashkari, Mestiere (2018)
η_M	Substitution C_M^D - C_M^F	0.85	Corsetti, Dedola and Leduc (2008
σ	Substitution M varieties	3.8	Ghironi and Melitz (2005)
δ^k	Depreciation of capital	0.12	Macro Data
δ_{S}	Exogenous exit rate M	0.11	Micro data
δ_M	Exogenous exit rate S	0.08	Micro data
α_S	Capital Share S Sector	0.30	Micro data
α_{M}	Capital Share M Sector	0.36	Micro data
f_S^e	Fixed entry cost S	1	normalization
f_M^e	Fixed entry cost M	1	normalization
ξ	Variable entry cost	2	small
μ_S	Mean prod dist S	0	normalization
Α	Foreign demand for M	1	normalization
τ	Capital control tax	0	na

∢ Return

Where does the decrease in the long-term level of capital come from?

- Compare the terminal level of capital for three economies:
 - (1) 2 sectors with representative firms and exogenous pricing of M good.
 - (2) 2 sectors with representative firms and endogenous pricing of M good.
 - (3) 2 sectors with heterogeneous firms and endogenous pricing of M goods.
- Across different values of capital and expenditure elasticities (12 combinations).

	Representative Firm	Representative Firm	Heterogeneous Firms	
	with Exogenous $P_{\cal M}$	with Endogenous $P_{\it M}$	with Endogenous $P_{\it M}$	
	(1)	(2)	(3)	
(i) Same $lpha$ and e	1.000 (neoclassical)			
(ii) Same α and Het. e				
(iii) Same e and Het. α				
(iv) Het. α and Het. e			0.963 (benchmark)	

Permanent Effects of Financial Liberalization: Lower Level of Capital

- → Where Does the Decrease in the Long-Term Level of Capital Comes from?
 - (1) Differences in capital and expenditure elasticities affect marginally.
 - \rightarrow higher α generates small Rybczynski effect, e has negligible effect.

	Representative Firms	Representative Firms	Heterogeneous Firms
	with Exogenous $P_{\mathcal{M}}$	with Endogenous P_M	with Endogenous P_M
	(1)	(2)	(3)
(i) Same α and e	1.000 (neoclassical)		
(ii) Same α and Het. e	1.000		
(iii) Same e and Het. α	1.007		
(iv) Het. $lpha$ and Het. e	1.009		0.963 (benchmark)

Permanent Effects of Financial Liberalization: Lower Level of Capital

- → Where Does the Decrease in the Long-Term Level of Capital Comes from?
 - (1) Differences in capital and expenditure elasticities affect marginally.
 - \rightarrow higher α generates small Rybczynski effect, e has negligible effect.
 - (2) Lower in the long-term capital stems from endogenous pricing of M good.

	Representative Firms	Representative Firms	Heterogeneous Firms
	with Exogenous P_M	with Endogenous P_M	with Endogenous P_M
	(1)	(2)	(3)
(i) Same α and e	1.000 (neoclassical)	0.911	
(ii) Same α and Het. e	1.000	0.913	
(iii) Same e and Het. α	1.007	0.914	
(iv) Het. $lpha$ and Het. e	1.009	0.913	0.963 (benchmark)

Permanent Effects of Financial Liberalization: Lower Level of Capital

- ightarrow Where Does the Decrease in the Long-Term Level of Capital Comes from?
 - (1) Differences in capital and expenditure elasticities affect marginally.
 - \rightarrow higher α generates small Rybczynski effect, e has negligible effect.
 - (2) Lower in the long-term capital stems from endogenous pricing of M good.
 - (3) Heterogeneous model alleviates part of the price effect (less firms, less varieties).

	Representative Firms	Representative Firms	Heterogeneous Firms	
	with Exogenous $P_{\mathcal{M}}$	with Endogenous P_M	with Endogenous P_M	
	(1)	(2)	(3)	
(i) Same α and e	1.000 (neoclassical)	0.911	0.956	
(ii) Same α and Het. e	1.000	0.913	0.956	
(iii) Same e and Het. α	1.007	0.914	0.965	
(iv) Het. α and Het. e	1.009	0.913	0.963 (benchmark)	

Optimal Policy for Hungary

Consider gradual financial liberalization (reduction τ given by ϕ)

- lower speed of convergence \rightarrow lower adjustment of P & higher K in long-term.
- Trade slower convergence for higher capital in long-term.
- Gradual reduction in au given by ϕ : $au_t = \max \left\{ \left(1 \left(\frac{2t}{T}\right)^{\phi}\right) \cdot \overline{ au}, 0 \right\}$.

d) Half Life C Convergence

Welfare Comparisons

■ Return

Counterfactual Economies

Two exercises to assess the contribution of the input-cost & consumption channels:

- 1. Same capital intensity across sectors: $\alpha_M = \alpha_S = 0.33$ (consumption channel).
- 2. Same expenditure elasticity across sectors: $e_M = e_S = 1.01$ (input-cost channel).

Adjust \bar{L} such that Y = 1 in open steady state.

Counterfactual: Short Run Transition

• Each line is the difference (%) between autarky and liberalized path.

→ Consumption channel is key for inter-sectoral reallocation

Trade and Capital Flows

→ Trade balance:

$$TB_t = \underbrace{X_{M,t}}_{\text{Exports}} - \underbrace{C_{Mt}^F - (K_{t+1} - (1 - \delta^k)K_t)}_{\text{Imports}}$$

\rightarrow Capital Controls

- Household can issue a foreign bond B, but pays a per unit tax τ .
- Domestic interest rate:

$$r_t = r^* + \underbrace{\tau\{B_t < 0\}}_{\text{Capital controls}} + \underbrace{\tilde{\psi}(B_t)}_{\text{Risk premium}}$$

Financial Liberalization Experiment

- Financial autarky: economy transitioning to the steady state.
 - $\ \, \text{Capital controls high enough:} \quad \underbrace{r_0^k \delta^k}_{\text{net capital return}} < \underbrace{r^* + \tau}_{\text{Cost of Borrowing}} \rightarrow B_0 = 0.$

Financial liberalization:

- Unexpected decrease of capital controls: $\tau = 0$.
- 60% of capital with respect to the financial autarky steady state.

Relative Input-Cost and Consumption Channels in the Short Term

-Liberalization in $t = 3 \rightarrow$ decrease in interest rate and start borrowing.

Reallocation across Sectors in the Short Term

Reallocation within Sectors in the Short Term

Financial Openness (τ) and Long-Term Debt

In any period with financial openness

$$\underbrace{r_{t+1}^k - \delta^k}_{\text{(net) capital return}} = \underbrace{r^* + \tau + \tilde{\psi}(B_{t+1})}_{\text{cost of international borrowing}}$$

• In open economy steady state, a given τ_{ss} determines B_{ss} :

$$rac{1}{eta} - 1 = r^* + au_{\mathsf{ss}} + ilde{\psi}(B_{\mathsf{ss}})$$

- Two terminal cases for τ:
 - 1. Partial financial openness: find τ_{ss} such that $B_{ss} = 0$

$$\frac{1}{\beta} - 1 = r^* + \underline{\tau}_{ss}$$

2. Full financial openness: let $\tau_{ss} = 0$

$$rac{1}{eta}-1=r^*+ ilde{\psi}(B_{ss})$$

 \rightarrow The level of financial openness (τ) determines B_{ss} and, thus, the characteristics of the long term steady state.

Small versus Large Reforms

Financial Autarky; Partial Financial Openness ($B_{ss} = 0$); Full Openness ($\tau = 0$)

Comparison of Long-Run Steady States with Different

Levels of au

more open (au=0) o less open (au>0).

a) Consumption

- b) Consumption Share of Services
- c) Production Share of Services

- d) Relative Mass of Firms (M_S/M_M)
- e) Price Index ($\approx 1/RER$)

f) Aggregate TFP