COVID-19 Vaccination and Financial Frictions

Cristina ArellanoYan BaiGabriel MihalacheFederal Reserve Bank
of MinneapolisUniversity of Rochester
and NBERStony Brook University

22nd Jaques Polak Annual Research Conference International Monetary Fund

November 2021

The views expressed here are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System

Introduction

Three features of COVID in many developing countries

- Slow vaccination
- Financial market frictions limit fiscal support and mitigation efforts
- Robust international financial assistance to manage the epidemic

We study the interaction between these features by asking:

- Do financial frictions make an epidemic more costly?
- Is vaccine scarcity especially detrimental for developing countries?
- Does international financial assistance increase vaccinations?

What we find

Do financial frictions make an epidemic more costly? Yes!

- ▶ Financial market access helps with epidemic management
- Supports consumption while social distancing and supports vaccine purchases

What we find

Do financial frictions make an epidemic more costly? Yes!

- Financial market access helps with epidemic management
- Supports consumption while social distancing and supports vaccine purchases

Is vaccine scarcity especially detrimental for developing countries? Yes!

- Financial market access and vaccinations are **complements**
- ► Financial resources reduce early infections → more people in need of vaccine
- Developing countries do not have the leisure of time if tight financial frictions

Financial assistance loans buy time until vaccination is possible

Framework

Small open economy with epidemiological and economic blocs

- Add vaccinations to Arellano, Bai, and Mihalache (2020)
- ▶ Epidemic follows SIR model with multiple waves and mitigation:
 - Social distancing temporarily reduces infections
 - Vaccination permanently reduce infections
- Economic side
 - International borrowing subject to financial frictions
 - Preferences over consumption and life
 - Social distancing reduces output; vaccine purchases reduce domestic resources

Epidemic Dynamics with Vaccination

Epidemic: Population transits from susceptible to infected or recovered

 $\mu^S o \mu^I o [\mu^R \text{ or } \mu^D], \qquad \text{ or, } \qquad \mu^S o \mu^R \text{ with vaccination}$

▶ New infections from the interaction of infected (μ_t^I) and susceptible (μ_t^S)

$$\mu_t^n = \tilde{\mathcal{R}}_0 \left[(1 - \theta \mathbf{L}_t) \mu_t^I \right] \left[(1 - \theta \mathbf{L}_t) \mu_t^S \right]$$

Social distancing (L_t) reduce temporarily infections

Susceptible might become infected or receive a vaccine (X_t):

$$\mu_{t+1}^S = \mu_t^S - \mu_t^n - \mathbf{X}_t$$

- Vaccinated gain immunity and become recovered— infections reduced permanently
- Deceased depend on infections subject to health care constraints

$$\mu_{t+1}^D = \mu_t^D + \pi_D(\mu_t^I)\mu_t^I$$

Preferences, Technology, and Debt

• Preferences over consumption c_t and life — ϕ_t^D are fatalities, χ value of life

$$v_0 = \sum_{t=0}^\infty eta^t \left(u(c_t) - \chi \phi^D_t
ight)$$

• Output depends on social distancing L_t and population N_t : $Y_t = [N_t(1 - L_t)]^{\alpha}$

• Use international borrowing B_{t+1} to support consumption and vaccine purchases

$$N_t c_t + p X_t \le Y_t - (1+r)B_t + B_{t+1}.$$

- ▶ Borrowing and *vaccine capacity* subject to constraints: $B_{t+1} \leq \overline{B}$, $X_t \leq \overline{X}_t$
 - Social distancing L_t: depresses output
 - Vaccines X_t: in limited supply and cost p

Dynamic Problem: Baseline

• Unexpected epidemic outbreak at time t = 0, March 2020, the "first wave"

- Initial infections $\mu_0^I > 0$, initial stock of debt B_0
- Vaccines become available in one year with limited quantities
- Planner makes all choices: social distancing (L_t) , vaccine purchases (X_t) , and borrowing (B_{t+1})
 - Maximize objective function subject to all constraints
- Unexpected "second wave" of infection one year in, in March 2021
 - Increase in infectiousness (\mathcal{R}_0) from new variant

Parameters

Weekly model

• Vaccination Capacity: $\overline{X} = 3.5\%$ peak weekly vaccinations in US

$$\overline{X}_{t} = \begin{cases} 0, & \text{unavailable, if } t < 52\\ \frac{t - 52}{52}\overline{X}, & \text{ramp up, if } t \in [52, 103]\\ \overline{X}, & \text{peak capacity reached, if } t \ge 104 \end{cases}$$

Vaccine Price:

\$40 per vaccine course, giving p = 0.2 of weekly income for Mexico

• Other parameters from literature and Arellano, Bai, and Mihalache (2020) from Latin America calibration: SIR probabilities, time-varying \mathcal{R}_0 with two waves, technology and preferences, financial markets, $\beta(1 + r) < 1$, initial debt to output and borrowing limit 60%

Baseline Results

Vaccines save lives but not fully used

Baseline Outcomes

Health	
Vaccinations	45
Fatalities	0.2
Mitigation Costs (% output)	
Social Distancing	15
Vaccine Expenditure	0.2
Welfare Cost of Pandemic	
Consumption Equivalent	-0.70

- Sizable welfare cost of epidemic
- Large number of fatalities (similar to fatalities for Mexico)
 - But lower than without vaccines (40% less)
- Social distancing cost significant, vaccine expenditure very minor

Vaccine Scenarios

- Quantity scenarios: Quick full capacity immediately after a year; Slow: Ramp-up takes 2 years
- ▶ Price scenarios: Low–0.035 relative to weekly income (U.S.); High–7 (Burundi)

Quantity ramp up	Quick	Baseline	Slow
Vaccinations	56	45	37
Fatalities	0.16	0.20	0.22
Social Distance Cost	13	15	16
Welfare (CE)	-0.59	-0.70	-0.74
Price	Low	Baseline	High
Price Vaccinations	Low 60	Baseline 45	High 18
Price Vaccinations Fatalities	Low 60 0.20	Baseline 45 0.20	High 18 0.24
Price Vaccinations Fatalities Social Distance Cost	Low 60 0.20 15	Baseline 45 0.20 15	High 18 0.24 14

• Deploying vaccines *fast* is more important than pricing, except at very low income levels

Financial Markets and Vaccines

• We compare baseline to the reference case of *Perfect Financial Markets*:

Choices subject only to a lifetime budget constraint.

$$\sum_{t=0}^{\infty} \frac{1}{(1+r)^t} (N_t c_t + pX_t) \le -(1+r)B_0 + \sum_{t=0}^{\infty} \frac{1}{(1+r)^t} [N_t (1-L_t)]^{\alpha}$$

Consumption need not track income

Financial Markets and Vaccines

	Baseline	Perfect
Health		
Vaccinations	45	65
Fatalities	0.20	0.05
Mitigation Costs (% output)		
Social Distancing	15	30
Vaccine Expenditure	0.2	0.3
Welfare Cost of Pandemic		
Consumption Equivalent	-0.70	-0.38

- ▶ Better financial markets are *complementary* with vaccine use
- ▶ In expectation of vaccine ramp up, aggressive early social distancing.
- Epidemic less costly with perfect financial markets

International Financial Assistance

	Baseline	Early Loan	Late Loan
Health			
Vaccinations	45	50	44
Fatalities	0.20	0.17	0.19
Mitigation Costs (% output)			
Social Distancing	15	19	16
Vaccine Expenditure	0.17	0.19	0.17
Welfare Cost of Pandemic			
Consumption Equivalent	-0.70	-0.47	-0.37

Evaluate long-term loans where international assistance breaks even

Early loan (first wave): intensive early social distancing, prevents first wave infections

Late loan (second wave): supports social distancing during the second wave, helps smooth consumption.

Conclusions

Vaccines are complementary to better financial market conditions

- International financial assistance particularly useful with this complementarity
- Vaccine prices are low compared to social value, binding constraint is capacity, unless very poor