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Abstract 

Open source software is everywhere, both as specialized applications nurtured by devoted user 
communities, and as digital infrastructure underlying platforms used by millions daily, yet its value and 
impact are not currently measured (with small exceptions). We develop an approach to document the 
scope and impact of open source software created by all sectors of the economy: businesses, universities, 
government research institutions, nonprofits, and individuals. We use a bottom-up approach to measure 
subset of OSS projects and languages, collecting data on open source software languages R, Python, Julia, 
and JavaScript, as well as from the Federal Government’s code.gov website.   

Using lines of code and a standard model to estimate package developer time, we convert lines of code to 
resource cost. We estimate that the resource cost for developing R, Python, Julia, and JavaScript exceeds 
$3 billion dollars, based on 2017 costs.  Applying this approach to open source software available on 
code.gov results in an estimated value of more than $1 billion, based on 2017 costs, as a lower bound for 
the resource cost of this software. We analyze the dependencies between software packages through 
network analysis and estimate re-use statistics. This reuse is one measure of relative impact.   
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.Introduction and Contribution 

Open source software allows free access to digital tools and are a part of intangible investment 

with the qualities of public goods.  Beginning in the early 1980s, open source software (OSS) 

projects have provided users with an unknown amount of freely modifiable software tools and 

other useful products that are used for work and for leisure.  OSS projects are those where the 

underlying computer source code is made available with a license for which the copyright holder 

provides the rights to study, change, and distribute the software to anyone and for any purpose.  

Popular OSS licenses include the MIT license, the GNU General Public License, the Apache 

License and the ISC (Open Source Initiative) License.2  While these kinds of software in recent 

years are generally downloaded from the internet for free, for many years OSS software was 

shared via disks or other physical media.   

These tools include LaTeX typesetting program introduced initially in 1983, LAMP web 

services (Linux, Apache, MySQL, and PHP); Mozilla, Firefox web browser, and the WordPress 

content management system. OSS gaming software includes games and free tools to make 

games. Freeciv, is a multiplayer game where players use technology to create and conquer; 

GDevelop is an open source tool that allows users to create their own games. OSS has penetrated 

markets in areas including operating systems, servers, and specialized languages. The most 

widely used operating system on the internet globally is the Linux-based Android operating 

system (GlobalStats statcounter 2018). As of July 2018, Apache is the most frequently used 

HTTP server on the internet (W3Techs 2018).   Based on the cost of the nearest available 

                                                           
2 The BlackDuck repository lists the licenses most frequently used on its site:  
https://www.blackducksoftware.com/top-open-source-licenses 
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substitute, Greenstein and Nagle (2013) estimated the value of capital stock of Apache software 

in use in 2013 at between $2 and $12 billion. 

 While OSS projects can compete directly with proprietary software, as in the Apache 

example, OSS projects are increasingly used in combination with proprietary code, either as 

extensions of a proprietary base, or with proprietary software extending the open source base.   

These cases highlight the potential for complementarity between open source and proprietary 

software.  Top institutional contributors to the code repository GitHub in 2017 are Microsoft and 

Google. 

However, OSS is created and used outside of the business sector as well.  Recent policies 

of the U.S. Federal government now promote the posting and sharing of software source code 

developed by or for the Federal Government (Scott and Rung 2016).  While this particular policy 

to promote reusing and sharing of software created with public funding is relatively new, public 

funding has an important and not fully accounted role in the creation of OSS.  

We do know that many of the most widely used OSS tools have been developed in 

universities and other publicly-funded institutions.  Apache is open source server software 

developed with federal and state funds at the National Center for Supercomputing Applications 

in Illinois. Linux was developed in part while its creator was at the University of Helsinki. The R 

language was developed at the University of Auckland in New Zealand by professors for use in 

their teaching laboratory, with extended development by Hadley Wickham, including at Rice and 

Stanford Universities (Ihaka, 1998, Wickham, n.d.). Independent nonprofit institutions have also 

played an important role in OSS, assuming the management and coordination of OSS projects; 

examples include the Apache Software Foundation, the Mozilla Foundation, and the Linux 

Foundation.  Private nonprofit institutions such as Stanford University, the Massachusetts 



4 

Institute of Technology, The Broad Institute, and University of California at Berkeley are among 

the top contributors to OSS on Github, a popular repository. 

Our contribution to measuring economic welfare in the digital age is to focus on one 

aspect of digital products that are produced both in the market and outside of the market. We are 

measuring the value and use of OSS using a familiar sectoral framework and cost estimation 

approach from economic accounting, thus adapting current methods in new ways. We do three 

things in this paper. First, we present preliminary data on OSS shared publicly by the U.S. 

government on code.gov, including counts of OSS projects by government organization and lines 

of code. Second, we present a framework for the presentation of statistics about OSS, 

categorizing it as a subcomponent of two recognized investment categories in national economic 

accounts: own-account software and custom software. Third, we estimate resource cost for OSS 

investment that is conceptually consistent with current measurement of own-account software 

investment in national accounts. Our “bottom-up” methodology uses data collected from within 

OSS package code and data about OSS packages.  This method can be replicated with other OSS 

packages to better account for investment in these software tools.   

We also show how network analysis using these same data can be used to measure the 

relative impact of OSS packages.  Linkages between OSS packages represent how one package 

depends upon another, and the outdegree of a package (the number of packages that require the 

package to function) can be used as a measure of the relative impact of those that are frequently-

re-used.  Together, the cost and impact measures provide potential indicators of research dollar 

outcomes, currently shown primarily with patents and bibliometric indicators.  
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Related Literature 

A decade ago, interest in OSS centered around understanding the motivations for 

participation in OSS projects and evaluations of its growth potential. Surveys conducted in the 

early 2000s described the contributor community (Ghosh, et al. 2002; Lakhani, et al. 2002; 

David, Waterman, Arora 2003).  While the motivations described for participation include skill 

development, creativity, and interest in the open source community, user-need and functionality 

consistently rate as critically important. Lakhani and co-authors (2002) probed the multiple 

motivations for participating in OSS projects; over 40% reported intellectual stimulation and 

reported improvement of skills. Functionality, either for work or non-work motivated over 60% 

of contributors at that time.  

For many academics and researchers, software tools and databases are by-products of 

their own work that can also be used by other academics as well (Gambardella and Hall 2005).  

Advantages of OSS include the ability to scale customization projects and to resolve program 

bugs quickly through many users (Lerner and Tirole 2005).  OSS communities can also be 

viewed as user innovation networks, where contributors more successfully develop solutions to 

their own software needs through the OSS community (von Hippel 2005).  

Interest in better measurement of the economic impact of computer software and the 

increased digitization of knowledge led to parallel development in national economic accounting 

in many countries. For example, Gross Domestic Product (GDP) statistics for the US have 

treated computer software as investment since 1999, extending this treatment to research and 

development expenditures and entertainment and literary originals in 2013 (BEA 2013). Beyond 

these three categories, Corrado, Hulten, and Sichel (2005) provide a framework for consistent 

accounting for expenditures on intangibles that generate future benefits. Arguing that public 
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expenditures yielding long-lived returns should be understood as investment, Corrado, Haskell, 

and Jona-Lasinio (2015) propose a public investment category, information, scientific, and 

cultural assets, which includes software and databases along with R&D, mineral exploration and 

cultural products.  They argue that better accounting of public investment in intangibles would 

provide a more complete picture of economic growth (CSL 2015).  

Open source code share by the US Government 
 

A lot of re-useable code is first created as part of the ongoing work of the Federal 

Government. This can happen in the performance of a Federal contract or other Government-

funded activity. As of late July 2018, more than 4000 separate software code projects are shared 

for reuse on code.gov.  The projects are shared as part of an effort to make custom-developed 

code broadly available across the Federal Government, including publishing as OSS when 

appropriate. Twenty-six Federal departments, agencies, and other entities have contributed open 

source code on projects that have start dates between 2009 and 2018.  

Most, but not all, of these projects listed on code.gov provided links to the repository to 

download code. We used the applications programming interface (API) provided by code.gov to 

collect data on projects associated with 26 Federal government agencies. We obtained a total of 

4,457 projects listed on code.gov as of July 30, 2018, and 4,051 of these projects included a URL 

to a code repository.  These repositories include well-known ones such as Github, SourceForge, 

and Bitbucket, as well as webpage repositories run by units of the Federal government, such as 

those run by NASA and Sandia National Lab.  
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Table 1 shows the number of projects on code.gov for the Federal government. The third column 

shows the number of projects for each organization that included a link to a Github repository 

location where we obtained development information by project.  We collected this detailed 

information on Github for 2,977 of these projects, yielding detailed data for 67% of the projects 

on code.gov. Limiting our analysis to those projects that started before January 1, 2018, we have 

data for 2,688 projects, or 60% of all projects on Code.gov. The data we collected include 

number of lines of code, both additions and deletions, contributors, and commits. These 2,688 

projects contain 2.5 billion lines of code, represent 950,000 commits, and over 8,000 

contributors.  

 

Table 1. Summary Counts by Government Organizations on code.gov 

By number of separate projects, the General Services Administration contributed the 

most, with 1,501 projects, while based on lines of code, the Department of Energy (DOE) 
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contributed the most, with 1.2 billion lines of code. One DOE project, Raven3, accounts for 10.6 

million of the more than 2.5 billion lines of code.  Raven is statistical software for risk analysis in 

nuclear reactor systems.  Another DOE project is Qball4, with 9.5 million lines of code, which 

uses molecular dynamics to compute the electronic structure of matter.  These projects include 

both code developed within the Federal Government and code created through contracting. 

 

Figure 1. Contributions to Code.gov by lines of code.  

 

                                                           
3 https://raven.inl.gov/SitePages/Overview.aspx 
4 (https://github.com/LLNL/qball 

https://raven.inl.gov/SitePages/Overview.aspx
https://github.com/LLNL/qball
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OSS and Economic Measurement  
 

In economic accounts of intangible investment and intellectual property products, 

software investment is measured in three types, based on available data sources for each type. 

These are prepackaged, custom, and own-account.  Prepackaged and custom software are 

purchased inputs, and in national economic accounts, industry receipts and government budget 

data are used for these estimates. 

To make sense of the cost and impact estimates we are trying to develop, we need a  

framework to add things up using standards that are broadly used, but can be adapted to highlight 

OSS. The table presents broad economic sector categories that connect directly to existing 

measures of market-based software.  Figure 2 extends BEA’s software measurement framework 

in two directions, by sector and by proprietary vs OSS.  

 

 Figure 2. Economic Sectors and Measurement Categories for the Production Software 

Household 
Sector

Business
Other private 
nonprofits

Higher 
education

Higher 
education

Federal 
Government 

and FFRDCs
Non-federal 
government

Prepackaged
Custom

Proprietary
Open Source (OSS)

Own-account
Proprietary
Open Source (OSS)

Private Sector Public Sector

Software 
subcategory of 
Intellectual Property 
Products Investment

Framework for Accounting for Investment in Software by US Sectors Rest of 
the World



10 

OSS fits into two subcategories of software investment, custom and own account.  Figure 

2 shows in green where OSS intersects custom software and own-account software for the 

Federal Government.  Federal government purchases of custom created software are shared as 

OSS.  When created inhouse, OSS would fit within the own-account measurement category: 

new, or significantly-enhanced software created by business enterprises or government units for 

their own use and its value is estimated based on in-house expenditures for its creation (Parker 

and Grimm 2000).   

Empirical Framework for Cost Measurement 
 

The description of data from Code.gov provides a preview of what information from code 

repositories may be used to create cost estimates for OSS, including that which is created 

internally.  The sections below on counts, linkages and cost of production summarize the work 

by others that we build on for our data analysis.  

Counts and Linkages: The production and delivery of open source software through publicly 

accessible websites provide harvestable count and linkage data for software languages and 

packages.  These data can be analyzed with methods developed for bibliometrics and patent 

analysis.  Indicators of research activity and impact are calculated from databases covering 

scientific article publications and their citations.  Many well-developed methodologies and 

extensions exist, and a research community continues to grow, invigorated by improved 

computing power and algorithms.  For patents, an intersecting literature thrives around the use of  

data sets from patent offices. For software code, Ghosh (2002) describes methods of extraction, 

interpretation and analysis of empirical data from software source code that we apply and extend 

in this paper.    
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Cost of production:  Investment in own-account software, created for internal use, is estimated 

for national investment statistics based on its cost of production. This approach is the same one 

used for other types of products not sold in the market. BEA researchers have proposed a similar 

methodology to measure advertising-supported products: when bundled with advertising, free 

content created in the business sector can be valued based on its production cost (Nakamura, 

Samuels, and Soloveichik 2018).   

Production costs for own account software include those for analysis, design, 

programming and testing, and exclude maintenance and repair (Parker and Grimm 2000).  As 

originally described, cost of production is the sum of labor costs and intermediate inputs (such as 

materials and supplies and overhead).  In BEA’s economic statistics these costs are estimated 

with the mean wage rate for computer programmers and system analysts, adjusted for 

compensation costs, and multiplied by the number of these workers in each industry.  Wage, 

employment and compensation are from the U.S. Bureau of Labor Statistics 2017 Occupational 

Employment Statistics (OES) program. To account for time spent on tasks other than software 

development, BEA uses an adjustment ratio from a survey of software developers on time spent 

on different tasks for 487 businesses (Boehm 1981).  Non-labor costs for OSS development are 

estimated with industry production ratios (Parker and Grimm 2000).  As of July 2018, the sum of 

costs now also includes the value of capital services for own account software (Kelly, McCulla, 

and Wasshausen, 2018).  
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 Data Collection and Preparation 
 

Keller et al. (2018) describes the overall approach used here to explore data sources 

beyond surveys to improve and extend indicators of science and engineering activity and of 

innovation. This approach includes structured processes to discover, acquire, profile, clean, link, 

explore the fitness-for-use, and statistically analyze the data.  Here we gather and use publicly 

available metadata about individual packages and their contributors, as well as information 

within the code.  

The natural way to obtain the information about the development of an OSS project that is 

shared as packages is to inspect the repository that hosts the code for that language or application. 

The first step is to catalog all projects available to the programming language or application. 

Package managers are the tools used to discover, retrieve, and bring added functionality to users 

and developers. A package manager obtains the list of available packages and repository locations 

through a registry. A registry contains basic information such as a unique identifier (usually the 

package name), a release version to identify what version of the package should be retrieved, and 

the repository location (where to find the actual code). Registries collect this information from the 

package manifest file which in turn holds the project's metadata: name, author, maintainer, license, 

description, dependencies, project status, etc.  

 We use four registries for the analysis: (1) The Comprehensive R Archive Network 

(CRAN) at  https://cran.r-project.org/web/packages/available_packages_by_name.html , (2) The 

Python Package Index (PyPI) at  https://pypi.org/search/ , (3) METADATA.jl (the official registry 

for the Julia language) at https://pkg.julialang.org/, and (4) CDNJS (one of the most commonly 

used JavaScript content delivery systems) at https://cdnjs.com/.  

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://pypi.org/search/
https://pkg.julialang.org/
https://cdnjs.com/


13 

 

Figure 3. Data Collection Strategy 

Our data collection strategy is illustrated in Figure 3. Based on our definition of OSS, we 

focus on projects that have an Open Source Initiative (OSI)-approved license and that are 

production ready, i.e., not in development stage. This definition determines the data to be collected. 

Data collection starts with a unique identifier and the repository location of each package. 

For repositories hosted using Git version control on GitHub, the GitHub API provides access to 

additional relevant information. For those packages that are identified as OSI-approved and have 

a current production ready registered release, we obtained the contributions for the top 100 

contributors.  This set of contributors is determined by weekly counts of lines added, lines deleted, 

and  total number of commits. We treat lines of code as a first order proxy for effort, though it can 

be quite noisy under certain scenarios. For example, this method in its current version does not 

distinguish between lines of code, documentation, generated output, data files, etc.  
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Table 2. Languages and Packages Collected 
 

Data Description 

Table 2 shows the number of packages we collected from GitHub for the four major OSS 

programming languages: R, Python, Julia and JavaScript. The number of packages collected for 

each language is given in the final column. For the latest release of the package, we collected 

development information including the number of contributors, the lines of code (added and 

deleted), number and time of commits (suggested code edits from contributors), and profile of 

contributors.  

For these four OSS languages we observe the same kind of power-law distribution found 

in other distributions of digital and knowledge products.5  In an analysis of R packages, 

Korkmaz et al. (2018) find 1) that while the median number of downloads for R packages is 8.5, 

                                                           
5 .  Articles and patents share features of skewed count-based distributions, where only a small number of articles 
or patents generate measurable impact, and those that have impact can be blockbusters.  For bibliometrics for 
example, Bornmann and Leydesdorff found in an analysis of paper published in 2010 papers that nearly half of the 
citation impact is accounted for by the top 10% most-frequently cited papers (2017). Similarly, for patents only a 
small number of patents have high valuations, based on the market valuation of owner-firms (Hall et al. 2000). This 
skewness for patents and papers also emerges in the analysis of OSS packages themselves. 
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the mean number is 45,775 and 2) for R packages that have citations, the median value is 0, 

while the average is 8.  

Cost and Impact Estimates 
 

The resource cost approach we use is modeled after the method described earlier that is 

used to estimate own-account software and other kinds of own-account investment in economic 

statistics.  In the US, those own-account software investment measures are created using data 

from the BLS  Occupational Employment Survey to obtain the mean wage rate for computer 

programmers and system analysts other input costs, multiplied by the number of these workers in 

each industry in a given time period (Parker and Grimm 2000).  This industry-level estimate 

provides a top-down measure of own-account investment. Our approach starts with a software 

package or project and works up from the bottom.  

Cost of Creation: For the four OSS languages, the creation cost of complete packages is 

estimated using data that we can collect from the R package code itself, and from registries and 

repositories, summed across completed packages. The unit of analysis is a completed and 

released OSS package and lines of code, both additions and deletions, are the measure of effort.  

Using lines of code and a cost model approach from software engineering we estimate person-

months of OSS contributors to completed packages.  We assume that the cost of contributors’ 

time is roughly equivalent to the average wage for computer programmers plus additional 

intermediate input and capital services costs.   

Cost estimation for software projects is a recurring topic in software engineering 

literature, motivated by the challenge of keeping large software projects on schedule and within 

budget (Sharma, Bhardwaj, Sharma 2011).  Estimation models emerged first in the 1960s and 
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evolved from a linear function of the number of instructions.  However, as software projects 

grow, experience shows that effort increases nonlinearly.  Cost estimation models have evolved 

that account for complexity, reliability, and scale in a variety of ways based on characteristics of 

the product, the platform, the contributors, and the project.  Examples of these estimation models 

include Constructive Cost model COCOMO II, the Putnam Software Life Cycle Management 

model, and models based on function points (Boehm and Valerdi, 2008). 

The logic of the constructive cost model is that: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑠𝑠 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  

The calibration factor represents the person months needed for a set number of lines of 

code, unadjusted for effort factors.  The effort multipliers account for complexity, reliability, and 

scale for these models; they lead to increased cost. In COCOMO II for example, the effort 

factors are based on qualitative assessments for each attribute with ratings from very low to extra 

high. Translating this approach to our data on OSS, the package-specific data we collected 

provides lines of code (added and deleted by each contributor) for each completed package. We 

use the COCOMO II calibration factor (Boehm et al. 2000) to estimate person-hours per 

package. The formula below shows the parameters we used, selected for the organic software 

class which consists of software dealing with a well-known programming language and a small, 

but experienced team of contributors. The model allows for these parameters to be adjusted 

based on additional data.  

Effort = 2.4(KLOC)1.05   

Nominal development time = 2.5(Effort).38   

Development cost = Monthly wage x Nominal development time 
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KLOC stands for kilo (thousand) lines of code. With these person-month calculations per 

OSS package, we estimate a resource cost by multiplying by monthly wages for programming 

occupations plus additional costs.  Appendix Table 1 shows the steps and data sources for the 

estimation. To summarize our method, we assume that the input time of contributors is roughly 

equivalent to the average wage for computer programmers (from Bureau of Labor Statistics 

(BLS) 2017 Occupational Employment Survey data) plus additional intermediate input and 

capital services costs (from Bureau of Economic Analysis (BEA) 2007 Input Output table data). 

The per person month cost for OSS contribution is obtained as $19,963, which is the amount 

used in our cost calculations. 

Order of Magnitude Resource Cost Calculations for OSS Languages 
 

Using this approach, the total costs of all packages for each language are as follows: R 

($942 million for 3,396 packages), Python ($824 million for 3,804 packages), Julia ($264 million 

for 1,324 packages), and JavaScript ($1,323 million for 3,213 packages). Summing costs for 

these four languages yields over $3 billion dollars in total costs, based on 2017 wage rates. US 

wage rates were used, though clearly contributors come from many countries.  

 

Table 3. Order of Magnitude Cost Estimates.  

We report the top packages with the highest total cost in Table 3. Many of these high 
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resource cost packages, such as googleAnalyticsR, and Webkit.js, are used for web-development. 

 

Estimating Impact through Dependency Networks: OSS is generally distributed without cost, 

and so standard market measures of revenue cannot provide an impact measure. We use ‘reuse of 

packages’ as a measure of the impact and value. The greater the reuse, the greater the value. 

When an OSS package requires the code of a second package to do its work, the first package is 

dependent on the second.  For example, an R package for statistics as well as an R package for 

inventory may be both be dependent on a separate graphing package.  This reuse, through 

multiple dependencies, increases the graphing package’s impact.  The dependency information is 

obtained from the manifest files described earlier. Outdegree, as described below, is a measure of 

this value. Taken together with other measures network analysis provides a fuller picture of 

impact.  

We use the dependency interactions to study the connection between the structural 

features and the cost of the OSS projects. We generate the dependency network where a directed 

edge i → j indicates that the package j requires i to be installed to function. Packages with no 

edges (i.e., dependency links) are removed from the network. The main characteristics of the 

dependency network for all languages are given in Table 4, and the features are defined in the 

table caption. We observe that the R dependency network has a high number of connected 

components and communities compared to the other packages; it also has a higher number of 

packages.  
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Figure 4 presents a subgraph of the R dependency network; this is the largest component 

after removing the small-size communities with less than 5% of the nodes. The size of the node 

is proportional to the out-degree, i.e., number of packages that reuses the package, and the 

different colors indicate communities (different uses of R). 6 

                                                           
6 We identified these using the modularity algorithm implemented in Gephi (Bastian, Heymann, and Jacomy 2009). 

Table 4. Dependency Network Characteristics 

Average degree (indegree and outdegree) indicates the average number of packages that they depend on (and are 
used by). Diameter is the shortest distance between the two most distant nodes in the network.(Connected 
components are subgraphs such that there is an undirected path from every pair of nodes in the subgraph. 
Communities are detected using modularity algorithm [4] that identifies densely connected subgraphs of the 
network. *R dependency network includes both dependencies and imports. Standard libraries that are supplied 
with R  (e.g., stats, utils, graphics) are removed from the network. 
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Figure 4. A subgraph of the R dependency network  

As seen in the figure, ggplot2, which is one of the main R packages used for 

visualization, has a high outdegree. This high outdegree means that many packages use ggplot2. 

In fact, it is the package with the highest outdegree of 925, followed by Rcpp with an outdegree 

of 838.  

Table 5 presents the top packages with the highest out-degree, i.e., the number of other 

packages that depend on the package, and other network features (defined in the table caption) 

together with the creation cost of these packages. We find that ggplot2, requests, Compat and 

mocha have the highest number of packages that depend on them in the languages R, Python, 

Julia and CDNJS, respectively. This outdegree measure, the dependency linkage between two 

packages, is described further below. 

Closeness centrality measures how close a node is to every other node in the network, 

betweenness is a measure of being connected to other nodes that are not connected to each other 
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(as a bridge) and eigencentrality of a node takes into account the centrality of its neighbors. 

When we compare these values to the cost of these packages, we do not observe a consistent 

pattern between cost and value based on the centrality measures. 

 

Table 5. Cost Estimates and Network Centrality (Impact) Measures. 

Cost and Impact  
 

The dependency relationships between packages with a OSS language allow us to explore 

the relationship between the estimated cost and impact. The absence of a strong relationship is 

also illustrated with the correlation heatmap in Figure 6, which shows that the correlation 

between the log(cost) of packages and network characteristics is low and positive for most of the 

features.  
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Figure 5. Heatmap of Pearson Correlation between log(cost) and network characteristics 

of packages. 

The heatmap illustrates the Pearson coefficients (the color scale given in the legend) 

between the network features of the packages/nodes (centrality measures) and their cost.7 We 

observe that there is a positive correlation (given in blue) between most of the centrality 

measures and the cost, however the correlation coefficients are lower than 0.4 indicating a low 

correlation between these variables. The highest positive correlation (a coefficient of 0.36) is 

between the cost and indegree of the nodes, implying that the cost of the packages that depend on 

more packages are likely to be higher. In-degree (the number of used packages) has the highest 

positive correlation with cost for all the languages.  

                                                           
7 Correlation coefficients takes values between -1 and 1, a value of 1 (and -1, respectively) indicates a perfect 
positive (negative) linear correlation, and a value of zero indicates that there is no linear relationship between the 
variables of interest. 
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Apply Cost Approach to Code.gov 
 

Using the cost approach described above for OSS packages, we estimated the cost this implies 

for the OSS projects shared through Github on Code.gov. Since many of the projects contributed 

by Government organizations have been developed by contractors as custom software, this 

resource cost is not an estimation of what the Government actually paid for these software 

projects. Rather, it gives an order of magnitude cost estimate consistent with own-account 

software that allows comparison with the OSS language packages described in the previous 

section.  

The quantity inputs are the same –kilo-lines of code and we have not yet integrated other 

variables into the cost estimation.  Using the OSS language parameters, working in well-known 

programming language with a small, experienced team of contributors, we estimated a resource 

cost for these 2.5 billion lines of code at about $1.1 billion dollars, calculating all contributions at 

the rate of 2017 costs.  The code contributed by the DOE accounts for about $480 million of that 

total, and the GSA accounted for about $330 million.  This is a partial estimate of all the 

contributed projects, because our calculation is only for those projects on Github.   

Putting these values in context, BEA reports that private investment in software in 2017 

was $352.9 billion dollars, composed of $147.6 billion in prepackaged software, $141.1 billion 

for custom software and $64.3 billion dollars for own-account software. Government investment 

measures for 2017 are not yet available from BEA, however, for 2016 Government investment in 

software was $43.1 billion dollars for Federal and $15.8 billion dollars for State and Local, the 

category that includes investments by public universities (BEA, 2017.) 
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Further Work 
 

Further work has three parts: 

1) Use harvested information to link OSS contributors with institutional affiliations into 

meaningful economic sectors. To illustrate the contribution to OSS from public 

spending, more detailed breakdown by sector is needed, both for relative measures 

based on counts and uses, and for dollar-denominated cost measures. That level of 

detail would show the contributions of public sector institutions, households, 

businesses, academia, and other nonprofits. We have these questions to address:  

a. Flow Measures: How much is created each year? 

b.  Categories: What types can be identified? 

c.  Sectors and collaborators: Who creates it? 

d.  Users: Beyond the developers of OSS, who benefits from its development? 

 
2)  Scale up and extend our collection of OSS project and package data to additional 

repositories, including adding to the Code.gov estimates in this paper to include data on projects 

that are not linked to Github. Our prototype estimates used one simple set of parameters in the 

conversion of lines of code to person-months.  Through additional data collection, we can 

explore ways to use characteristics of the contributors, the languages, and the packages to create 

bounds around the costs that better account for heterogeneity compared with our blunt 

assumptions.  

3) We will also need to validate or understand differences between our prototype 

estimates and existing statistics.  One way to validate the estimates would be in comparison with 

national accounts statistics for own-account software at the economic sector level.  
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Conclusion  
 

In this paper, we have described a methodology to use freely-harvestable data about OSS 

packages to develop statistics on the scope and use of OSS languages. This is a bottom-up 

approach that we apply to a handful of OSS languages as well as to 60% of OSS software shared 

by Federal agencies on Code.gov projects. The ultimate goal is to measure the value and impact 

of OSS in the economy. These data provide characteristics about OSS packages and their 

contributors that are used in two different ways.   

• With lines of code to estimate effort, we use a modification of a national 

economic accounts method to estimate an order-of- magnitude resource cost.   

• We estimate a resource cost of producing R, Python, Julia, and JavaScript exceeds 

$3 billion dollars, based on 2017 costs. 

• For OSS shared by the US Federal Government on Code.gov, we estimate a lower 

bound resource cost of over $1 billion dollars.  

We conclude with network analysis to provide a nonmarket measure of impact, reuses of 

code. Using this we identify software packages that are high impact.  
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Appendix Table for Cost Estimation 

 

Cost Component Data Source

Cost Factor 
Applied to 
Wages

Cost Factor 
Applied to 

Compensation
per person 

month

Labor Compensation Cost

 Total compensation for professional and 
technical services industries;  for 2017, 
BLS 
[https://www.bls.gov/news.release/eci.t05.
htm] 136,909

Wage and Salary Rate

Mean Annual Wage for Software 
Developers and Applications, 2017, BLS
[https://www.bls.gov/oes/2017/may/oes_n
at.htm] 106,710

Non-wage compensation 

Estimated based on the inverse ratio of 
wages and salaries to total compensation 
for professional and technical services 
industries; Four quarter average for 2017, 
BLS 
[https://www.bls.gov/news.release/eci.t05.
htm] 30,199        28%

Intermediate input cost

Intermediate input ratio to compensation 
for computer systems design and related 
services from the 2007 Use Table, BEA 80,249        59%

Capital services (GOS)
[https://www.bea.gov/industry/input-output-
accounts-data ] 22,405        16%

Estimated resource cost 
  without gross operating surplus 217,157.69    
  with gross operating surplus 239,562.62    

  without gross operating surplus 18,096.47   
  with gross operating surplus 19,963.55   

per person
 year

Per month Resource Cost for Software Developers

Cost in 2017 Dollars


	Open Source Software as Intangible Capital: Measuring the Cost and Impact of Free Digital Tools
	Carol A. Robbins*(1), Gizem Korkmaz (2), José Bayoán Santiago Calderón (3), Daniel Chen (2), Claire Kelling (4) , Stephanie Shipp (2), Sallie Keller (2)
	Abstract
	.Introduction and Contribution
	Related Literature
	Open source code share by the US Government
	OSS and Economic Measurement
	Empirical Framework for Cost Measurement
	Data Collection and Preparation
	Table 2. Languages and Packages Collected

	Data Description
	Cost and Impact Estimates
	The logic of the constructive cost model is that:
	Order of Magnitude Resource Cost Calculations for OSS Languages
	Cost and Impact

	Apply Cost Approach to Code.gov
	Further Work
	Conclusion
	References
	Appendix Table for Cost Estimation


