The Macro-Economics of Superstars

Anton Korinek and Ding Xuan Ng

Johns Hopkins University and NBER

5th IMF Statistical Forum, November 2017

Introduction

Rosen (1981) first described the Economics of Superstars:

- [information] technology allows a small number of talented individuals to serve a large market and reap correspondingly large rewards
 - description pre-dated the Internet
 - Rosen's first example: comedians and TV
- superstars were a curious phenomenon in a handful of sectors
- but outside of the domain of traditional macroeconomics

Introduction

Over the past three decades, advances in information technology, chiefly the Internet, have supercharged the superstars phenomenon

Superstars (broadly defined to capture both individuals and firms):

- have become macroeconomically relevant
- are important drivers of several recent aggregate trends:
 - 1. declining demand for labor (and traditional capital)
 - 2. declining labor share
 - 3. increasing rents
 - 4. rise in income inequality

The Macro-Economics of Superstars analyzes

- the recent forces behind and
- the broader macro implications

Rising Superstar Profit Share

Figure: Estimate of superstar profit share in national income, 1984 - 2014 (Source: Authors' calculations based on Barkai, 2017, Piketty and Saez, 2017)

Information and Superstars

- Critical factor behind proliferation of superstars: digital innovation
 - = advances in collection, processing, and provision of information
- Information differs from traditional production factors:
 - lacktriangle information is non-rival ightarrow can be copied at negligible cost
 - lacktriangleright information is excludable ightarrow may generate monopoly power
- ightarrow Information technology supercharges the superstar effect
 - ► Rosen's examples: comedians, musicians, authors, sport stars, artists, etc.
 - ► more generally: Internet entrepreneurs, finance professionals, franchise owners, manufacturers who automate, etc.

Summary of Contribution

- Our model of digital innovation leading to superstars
 an innovation that replaces a fraction of production tasks by
 a digital process that can be scaled at negligible cost
 - ightarrow superstars technology features increasing returns
 - ightarrow superstars capture large market share, earn rents (in contrast to models of "factor-biased" technological change)
- ► We derive implications for:
 - factor prices and shares
 - market concentration
 - income distribution
 - public policy

Evolution of Aggregate Factor Shares

- Labor share declined across OECD (Karbarabounis and Neiman, 2014, Alvarez-Cuadrado et al, 2014, Elsby et al 2013)
 - ▶ US decline 64% to 58% from mid-1980s to mid-2010s
 - similar in other developed countries
 - at firm level, correlated with:
 - patents (Barrufaldi and Paunov, 2016)
 - ▶ information technology (Brynjolfsson et al, 2010)
 - ▶ rising market concentration (Autor et al, 2017)
- Traditional capital share has declined (e.g. Barkai, 2017)
- Profit share of income has increased
- → our explanation: rising superstar profits as main driver

Overview of Model

Model structure:

- Representative consumer
- Two traditional factors: capital and labor
- Intermediate goods combined into final good a la Dixit-Stiglitz

Technologies for intermediate goods production:

- traditional CRS technology: Cobb-Douglas
- superstar technology: digital innovation automates a fraction of tasks involved in production

Baseline Model

Consumers:

- ▶ Inelastic labor supply L = 1
- ightharpoonup Final good obtained from differentiated intermediate goods with $\epsilon>1$

$$Y = \left(\int Y_i^{1 - \frac{1}{\epsilon}} di\right)^{\frac{\epsilon}{\epsilon - 1}}$$

with price of final good $P=\left(\int P_i^{1-\epsilon}di
ight)^{rac{1}{1-\epsilon}}=1$ as numeraire

Demand for each intermediate good is

$$Y_i = (P_i)^{-\epsilon} Y$$

ightarrow inverse demand curve $P_{i}\left(Y_{i};\cdot\right)$

Traditional Technology

Traditional technology for intermediate goods:

$$Y_i = F_i(K_i, L_i) = A_i K_i^{\alpha} L_i^{1-\alpha}$$

open access \rightarrow perfect competition

- Factors are hired at market prices R and W
- Total cost function with traditional technology

$$TC^{T}(Y_{i}) = \left(\frac{R}{\alpha}\right)^{\alpha} \left(\frac{W}{1-\alpha}\right)^{1-\alpha} \frac{Y_{i}}{A_{i}}$$

Constant unit cost

$$UC^{T}(Y_{i}) = \left(\frac{R}{\alpha}\right)^{\alpha} \left(\frac{W}{1-\alpha}\right)^{1-\alpha}/A_{i}$$

Superstar Technology

- Consider an entrepreneur in sector i who develops a digital innovation
 - ▶ that imposes a fixed cost $\xi_i \geq 0$ but
 - ▶ that automates a fraction $\gamma_i \in (0,1)$ of production tasks at negligible marginal cost
 - in baseline model: entrepreneur has exclusive right to the innovation (e.g. patent)
- The total and unit cost functions of superstars are

$$TC^{S}(Y_{i}) = \xi_{i} + (1 - \gamma_{j}) TC^{T}(Y_{i})$$

 $MC^{S}(Y_{i}) = (1 - \gamma_{j}) UC^{T}(Y_{i})$

- → fixed cost generates increasing return
- → exclusiveness generates market power

Superstar Strategy

- Adopting the superstar technology is profitable if fixed cost ξ_i sufficiently low / cost-saving γ_i sufficiently high
- \triangleright Superstars internalize demand curve $P_i(Y_i; Y)$ and maximize

$$\max_{P_i, Y_i} \Pi^{S}(Y_i) = P_i Y_i - TC^{s}(Y_i) \qquad \text{s.t.} \qquad P_i = P_i(Y_i; Y) \le UC_i^{T}$$
(1)

lacktriangleright if cost savings small $(\gamma_i < 1/\epsilon)$ then constrained by competition from traditional firms:

$$P_i = UC_i^T$$

• if cost savings large $(\gamma_i \geq 1/\epsilon)$ then charge optimal monopoly price:

$$\underbrace{P_Y(Y_i;\cdot)Y_i + P_i(Y_i;\cdot)}_{\text{Marg Rev.}} = \underbrace{(1 - \gamma_j) UC_i^T}_{\text{Marg Cost}}$$

→ superstar price and markup

$$P_i^S = \mu_i \cdot UC_i^T \qquad \text{where} \qquad \mu_i = \min\left\{1, \frac{\epsilon}{\epsilon - 1} \left(1 - \gamma_i\right)\right\}$$

Digital Innovation and Superstars

Proposition (Digital innovation and superstar effect in sector i)

- if digital innovation is small $(\gamma_i < 1/\epsilon)$, further innovation:
 - leaves the price charged and the output level unchanged
 - linearly reduces demand for labor and capital
 - ► linearly increases superstar profits (rents & inequality)
 - → labor-saving effect of innovation, divergence of output and employment
- if digital innovation is large $(\gamma_i > 1/\epsilon)$, further innovation:
 - lacktriangleright reduces the price charged, with a constant markup $rac{\epsilon}{\epsilon-1}$
 - ► increases factor demands, output and superstar profits in a convex fashion
 - → output scale effect of innovation

Digital Innovation and Superstars

Figure: Effect of increasing digital innovation

Superstar Effect in General Equilibrium

Consider synchronized cost-savings γ_i for all sectors $i \in [0, 1]$:

Proposition (Superstars and Factor Shares in GE)

Superstars earn a profit share of

$$\sigma = \min \left\{ \gamma_i, \frac{1}{\epsilon} \right\}$$

as well as a capital share of $\alpha(1-\sigma)$ and a labor share of $(1-\alpha)(1-\sigma)$.

Intuition:

- before the optimal monopoly markup is reached, superstars absorb all cost-savings as profits
- once cost savings are sufficiently high, they cut prices to increase quantities

But: this involves significant monopoly rents and inequality

Digital Innovation and Superstars

Welfare Analysis

Proposition (Monopoly Distortions from Digital Innovation)

The decentralized equilbrium exhibits

- insufficient digital innovation
- inefficiencly low quantities

Intuition:

 markups distort both innovation decision and quantities after innovation implemented

Policy Remedies:

- use public investment to finance digital innovation
- offset monopoly markups via subsidy
- charge consumers fixed + variable cost

Extensions

Dynamic model:

lacktriangle additional capital K is only accumulated once $\gamma>1/\epsilon$

More general market structure for superstars:

- overall rents lower the more competition
- but fixed cost creates a natural monopoly
 - ightarrow trade-off btw duplicating innovation and markups

Digital innovation with endogenous choice of γ :

 superstars earn rents as long as decreasing returns to innovation

Conclusions

Digital Innovation and Superstar Technologies

- first lead to a reallocation from traditional factor income to superstar rents
 - but superstars keep prices low
- once superstars earn their optimal monopoly rents, further innovation expands income for all
 - but monopoly deadweight losses
 - → role for policy intervention