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VII Mechanical Projections

A. Introduction

7.1. This chapter presents some relatively simple
techniques that can be used to fill information gaps
with synthetic data using mechanical projections
based on past trends. Note that this is a fundamentally
different situation from the situation described in the
previous chapter in that indicators are not available,
although there are some similarities in the mathemat-
ics. Reliance on mechanical trend projection tech-
niques is only justifiable if the gaps are few and minor
because over-reliance on these techniques can easily
impart a fictional character to the accounts and does
not add any information about current trends.
Furthermore, historic trends that are no longer relevant
could muffle current trends that would be visible from
other components calculated from actual direct or indi-
rect indicators. Thus, as far as possible, quarterly
national account (QNA) estimates should be based on
direct observations of the relevant detailed accounting
item, and QNA compilers should constantly be on the
lookout for possibilities to improve the coverage of the
economy with relevant source data.

7.2. Although great caution should be used in applying
any of these techniques, there may be situations in
which they are a last resort solution to covering gaps in
the coverage of the economy. Even in the situation of
well-established QNA that are underpinned by an
extensive set of short-term data, there may be some
economic activities for which no timely direct or indi-
rect indicators are available. When that is the case, we
can distinguish two situations: (a) no directly relevant
short-term source data are available at all, and (b) an
indicator becomes available with a time lag that bars its
use in the compilation of the QNA. Obviously, the lat-
ter situation is more prominent for the first estimates of
a quarter than for second or third estimates.

7.3. Compilation of national accounts requires that the
whole economy be covered and thus all data gaps be

filled, explicitly or implicitly. If QNA data are compiled
from both the production and the expenditure side
(which is a key recommendation of this manual), the
confrontation of supply and demand can help in filling
some gaps, and in fact this is recommended for esti-
mating changes in inventories if no direct observations
are available. Using the balancing process as an esti-
mation process, however, diminishes the power of the
plausibility checks that are such a strong advantage of
the commodity flow method. Thus, it is recommended
that estimates be generated for all elements of the com-
modity flow equation, even if some of the estimates are
less than satisfactory. Obviously, the less satisfactory
estimates are the first choice for making adjustments if
the balancing process requires these, but having an esti-
mate in place will support a well-considered decision.

7.4. To ensure control over the estimates, it is prefer-
able to fill the gaps explicitly. Omitting an item from
the estimation process means that implicitly the item is
assumed either to be zero or to move in line with other
parts of the aggregate of which the item is a part. For
instance, compiling an output estimate based on the
movements in the data for two months without making
an explicit estimate of what the third month may look
like is the same as forecasting the third month to be
equal to an average of the two first months in the quar-
ter. This may not be the most satisfactory way of fore-
casting (or nowcasting) the missing month. Thus, there
is a need to produce an estimate to fill in the gap to
ensure a comprehensive total, even if such an estimate
is less than satisfactory. 

7.5. Deriving estimates using projections based on
past trends is particularly undesirable for current price
data because, implicitly, current price data also depend
on underlying price trends, which tend to be more
volatile than volume trends. Thus, if possible, extrapo-
lation based on past trends should be based on volume
data combined with available price data. Relevant
price data are often available. The timeliness of price



statistics generally does not cause any problems, and
if price data for the item are not collected, price
indices for similar or related products may provide
acceptable proxies.

7.6. There are two main QNA uses of projections
based on past trends: one based on past trends in
annual data and one based on past trends in
monthly and quarterly data. Projections based on
past trends in annual data are used to fill gaps in
cases where no relevant quarterly information is
available. Extrapolation based on past trends in
monthly or quarterly data is used to mechanically
extend indicator series that become available with a
time lag that bars direct use. 

B. Trend Projections Based on Annual
Data

7.7. This section deals with the situation in which
no short-term data are available at all and presents
techniques that can be used to construct quarterly
data based on past trends in annual data. The two
main elements of constructing quarterly data based
on past trends in annual data are (a) to extend the
series of annual data to include forecasts or now-
casts for the current periods and (b) to fit a quarterly
series through the annual totals. Extending the
series with nowcasts can be achieved by using avail-
able forecasts (e.g., crop forecasts, forecasts based
on econometrics models) or by simply assuming a
continuation of the current trend in the data (e.g.,
expressed as a simple average of the growth in the
series for the past years).

7.8. Fitting a quarterly series through annual totals
should ideally be based on some actual information
about the seasonal pattern of the series and the timing
of any turning points in the series. In cases where data
gaps have to be filled by trend projections based on
annual data, however, information on the actual tim-
ing of possible turning points is normally not avail-
able.  Although generally unknown, the seasonal
pattern of the series may in some cases be broadly
known from other information.

7.9. In cases where no information is available
about a series’ seasonal pattern, the only available
option is to use the trend in the annual data to con-
struct a quarterly series without any seasonal pat-
tern that equals the annual totals. Such a series
should be as  smooth as possible to ensure that its

impact on the period-to-period change in the aggre-
gates is minimized.

7.10. A large number of disaggregation methods,
with different degrees of sophistication, have been
proposed in the academic literature. In general, most
of these methods produce similar results. The main
goal in these circumstances is to select a method to
fill the gaps that is simple and can be implemented
easily.

7.11. It is important to emphasize that quarterly dis-
tribution without any related series produces purely
synthetic numbers that may not be indicative of the
real developments. In particular, such numbers do not
contain any information about the precise timing of
turning points. Because of this, quarterly distributed
data may also deviate substantially from estimates of
the underlying trend in subannual data produced by
standard seasonal adjustment packages.

7.12. In cases where the seasonal pattern of the
series is broadly known, the distribution procedure
can be improved by superimposing this known sea-
sonal pattern on the derived quarterly series.

7.13. In this chapter, we look at two methods to con-
struct synthetic quarterly data based on past trends in
annual data that are reasonably simple and give simi-
lar results, as illustrated in Example 7.1. Both are used
by several countries. The first is a purely numerical
disaggregation technique proposed by Lisman and
Sandee, while the second is based on the least-squares
techniques discussed in Chapter VI.1 The latter can, as
will be shown, easily be extended to incorporate a
known seasonal pattern into the estimates.

1. The Lisman and Sandee Quarterly Distribution
Formula

7.14. Lisman and Sandee (1964) proposed a purely
numerical technique for constructing synthetic quar-
terly data based on past trends in annual data. It
works as follows:

(i) Make a forecast of the annual data for the 
current year (Aβ+1) and for the next year (Aβ+2).
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1Some of the alternatives to the two methods presented in this chap-
ter include the autoregressive integrated moving average (ARIMA)
model-based procedure proposed in Stram and Wei (1986) and Wei
and Stram (1990); and the state space modeling procedure proposed
in Al-Osh (1989). While generally producing similar results to the
two presented in this chapter, these alternative methods are substan-
tially more complicated.
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Example 7.1. Quarterly Distribution of Annual Data Without a Related Series 

Date Annual Data Least-Squares Distribution Lisman & Sandee Distribution

1994 3,930.0

q1 1995 967.8 979.2

q2 1995 983.7 967.0

q3 1995 1,015.4 1,001.4

q4 1995 4,030.0 1,063.1 1,082.4

q1 1996 1,126.6 1,163.8

q2 1996 1,204.4 1,226.3

q3 1996 1,296.4 1,288.8

q4 1996 5,030.0 1,402.7 1,351.2

q1 1997 1,523.2 1,466.9

q2 1997 1,565.1 1,581.2

q3 1997 1,528.5 1,564.7

q4 1997 6,030.0 1,413.2 1,417.2

q1 1998 1,219.4 1,225.8

q2 1998 1,104.1 1,088.6

q3 1998 1,067.4 1,056.4

q4 1998 4,500.0 1,109.1 1,129.2

q1 1999 1,229.5 1,234.6

q2 1999 1,285.8 1,296.6

q3 1999 1,278.2 1,281.0

q4 1999 5,000.0 1,206.6 1,187.8

q1 2000 1,071.0 1,062.3

q2 2000 988.3 969.0

q3 2000 958.7 953.4

q4 2000 4,000.0 982.0 1,015.4

q1 2001 1,058.3 1,088.6

q2 2001 1,115.5 1,130.1

q3 2001 1,153.6 1,145.8

q4 2001 4,500.0 1,172.7 1,135.5

2002 4,500.0 

As can be seen, the two alternative procedures for quarterly distribution of annual data without using a related series give very similar results.
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Example 7.2. Quarterly Distribution of Annual Data with a Superimposed Seasonal Pattern

Date Assumed Seasonal Pattern Annual Data Least-Squares Distribution

q1 1995 3,930.0 979.2

q1 1995 0.9 870.7 

q2 1995 0.8 785.2 

q3 1995 1.0 1,008.2 

q4 1995 1.3 4,030.0 1,365.9 

q1 1996 0.9 1,002.1 

q2 1996 0.8 952.0 

q3 1996 1.0 1,278.6 

q4 1996 1.3 5,030.0 1,797.3 

q1 1997 0.9 1,355.5 

q2 1997 0.8 1,245.8 

q3 1997 1.0 1,543.8 

q4 1997 1.3 6,030.0 1,884.9 

q1 1998 0.9 1,126.1 

q2 1998 0.8 900.3 

q3 1998 1.0 1,064.3 

q4 1998 1.3 4,500.0 1,409.4 

q1 1999 0.9 1,088.4 

q2 1999 0.8 1,019.9 

q3 1999 1.0 1,287.5 

q4 1999 1.3 5,000.0 1,604.2 

q1 2000 0.9 985.1 

q2 2000 0.8 803.3 

q3 2000 1.0 957.2 

q4 2000 1.3 4,000.0 254.4 

q1 2001 0.9 939.2 

q2 2001 0.8 883.5 

q3 2001 1.0 1,149.6 

q4 2001 1.3 1,527.7 
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(ii) Derive a smooth continuous quarterly time 
series from the annual data using the follow-
ing disaggregation formula:

X1,y = 1/4(0.291 • Ay – 1 + 0.793 • Ay – 0.084 • Ay +1) (7.1)

X2,y = 1/4(–0.041 • Ay – 1 + 1.207 • Ay – 0.166 • Ay + 1)  

X3,y = 1/4(– 0.166 • Ay – 1 + 1.207 • Ay – 0.041 • Ay + 1) 

X4,y = 1/4(– 0.084 • Ay – 1 + 0.793 • Ay + 0.291 • Ay + 1)

where
Xq,y is the derived quarterly estimate for quarter q in

year y,
Ay is the annual estimate for year y, and
β is the last year for which annual data are

available.

7.15. The coefficients in the Lisman and Sandee dis-
aggregation formula were derived by imposing a num-
ber of restrictions; for example, when the annual data
for three consecutive years y – 1, y, and y + 1 are not on
a straight line, they are assumed to lie on a sine curve.

2. Least-Squares Distribution

7.16. Boot, Feibes, and  Lisman (1967) proposed a
least-squares-based technique for constructing syn-
thetic quarterly data based on past trends in annual
data. It works as follows:

(i) make a forecast of the annual data for the 
current year (Aβ + 1).

(ii) Derive a smooth continuous quarterly time 
series from the annual data using a least-
squares minimization technique, as follows:

(7.2)

under the restriction that

(that is, the sum of the quarterized data should be
equal to the observed annual data)

where
t is used as a generic symbol for time (t = q,y)

(e.g.,  t = 4y – 3 is equal to the first quarter of
year y, and 4y the fourth quarter of year y);

Xt is the derived quarterly estimate for quarter t;
Ay is the annual estimate for year y; and
β is the last year for which any annual observa-

tions are available.

7.17. This least-squares-based technique can be
extended to incorporate a known seasonal pattern into
the estimates by replacing the least-squares expression
in step (ii) above with the following expression:2

(7.3)

under the restriction that

(that is, the sum of the quarterized data should be
equal to the observed annual data)

where
SFt is a time series with assumed seasonal factors.

Example 7.2 shows the results of using equation (7.3)
to superimpose a seasonal pattern on the annual data
used in Example 7.1.

7.18. A small problem with the Boot-Feibes-Lisman
method, as well as other methods of distribution that
use least squares, is a tendency of the derived series
to flatten out at endpoints3 (as can be seen from
Example 7.1). This problem can be alleviated by pro-
jecting the annual series for two years in both direc-
tions and distributing the extended series.

C. Projection Based on Monthly or
Quarterly Data

7.19. This section presents some simple techniques
that can be used to mechanically extend data series
that are not sufficiently timely to be used when the
first QNA estimates for a particular quarter are com-
piled. The monthly and quarterly source data com-
monly become available with varying delays. Some
quarterly and monthly source data may be available
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Projection Based on Monthly or Quarterly Data

2As proposed in for example Cholette (1998a).
3This is not a problem for using least squares for benchmarking as dis-
cussed in Chapter VI. In that case, the implied flattening out at the
endpoints of the quarterly benchmark-indicator (BI) ratios helps
reduce the potential wagging tail problem discussed in Annex 6.2.
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within the first month after the end of the reference
period (e.g., price statistics and industrial production
indices), while other data may only be available with
a delay of more than three months. Thus, when
preparing the first estimates, for some series only data
for two months of the last quarter may be available,
while for other series data may be missing altogether.

7.20. If no related indicator is available to support an
extrapolation, several options can be considered,
depending on the strength of the underlying trend in
the series and the importance of seasonality in the
series. One generally applicable option would be to
use ARIMA4 time-series modeling techniques, which
in many cases have proved to produce reasonable
forecasts for one or two periods ahead. ARIMA mod-
eling, however, is complicated and time-consuming,
and requires sophisticated statistical knowledge.
Also, ARIMA models are basically not able to fore-
cast changes in the underlying trend in the series.
Their good forecasting reputation stems mainly from
their ability to pick up repeated patterns of the series,
such as seasonality.

7.21. Thus, if there is strong seasonal variation and
trend in the series, a substantially less demanding,
and potentially better, solution would be the follow-
ing three-step procedure:
• First, use standard seasonal adjustment software

(e.g., X-11-ARIMA or X-12-ARIMA) to season-
ally adjust the series and to estimate the trend com-
ponent of the series. For this particular purpose,
only a basic knowledge of seasonal adjustment is
required, and knowledge of ARIMA modeling is
not necessary.

• Second, extend the trend component of the series
based on judgment, forecasts, or annual data, or by
projecting the current trend using the simple trend
formula in equation (7.5) below.

• Third, multiply the trend forecast with the seasonal
and irregular factors computed by the program.

7.22. In many cases, the following, much simpler,
approaches may prove sufficient:
• If there is no clear trend or seasonality in the move-

ments of the series (either in volume or price), one
may simply repeat the last observation or set the
value for the missing period equal to a simple aver-
age of, for example, the last two observations.

• With strong seasonal variation in the series but no
clear underlying trend in the series’ movements,
one may simply repeat the value of the variable in
the same period of the previous year or set the
value for the missing observation equal to the
average for the same period in several of the pre-
vious years.

• If there is a clear trend in the series but no pro-
nounced seasonal variation, the past trend may be
projected using a weighted average of the period-
to-period rates of change for the last observations,
for example, by using a weighted average for three
last observations as follows:

(7.4)

• With both a clear trend and strong seasonal vari-
ation in the series, one simple option may be to
extrapolate the value of the series in the same
period in the previous year, using a weighted
average of the rates of change from the same
period in the previous year for the last observa-
tions as an extrapolator, for example, by using a
weighted average for three last observations as
follows:

(7.5)

In this formula, s is the periodicity of the series, XT is
the level of the last observation, and t is the number
of periods to be projected.
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Projection Based on Monthly or Quarterly Data

4Autoregressive integrated moving average.
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